肿瘤相关巨噬细胞在胃癌中的研究进展
Research Progress of Tumor-Associated Macrophages in Gastric Cancer
DOI: 10.12677/ACM.2023.134741, PDF, HTML, XML, 下载: 226  浏览: 348 
作者: 仝建宁, 王晓宇, 周浩楠:甘肃中医药大学第一临床医学院,甘肃 兰州;呼永华*:甘肃中医药大学第一临床医学院,甘肃 兰州;甘肃中医药大学附属医院肿瘤科,甘肃 兰州;兰州大学第二临床医学院,甘肃 兰州;陈 昊:兰州大学第二临床医学院,甘肃 兰州
关键词: 肿瘤相关巨噬细胞胃癌免疫微环境Tumor-Associated Macrophages Gastric Cancer Immune Microenvironment
摘要: 肿瘤相关巨噬细胞在不同因子的作用下可以分化为经典活化型和交替活化型两种表型,两种表型对胃癌细胞的发生、发展发挥相反的作用,其中,M2型能够分泌多种趋化因子,抑制炎性反应的发生,促进血管和淋巴管形成。胃癌是常见的恶性消化道肿瘤,患者整体生存率还较低,因此寻找特异性的能够预测预后的因素,开发新的作用靶点迫在眉睫。鉴于此本文就肿瘤相关巨噬细胞在胃癌中的有关研究进行分析、综述,以期为改善胃癌患者预后,研发新型靶向药物提供新视角。
Abstract: Tumor-associated macrophages can differentiate into two phenotypes, classical activation and al-ternating activation under the action of different factors, and the two phenotypes play opposite roles on the occurrence and development of gastric cancer cells, among which M2 can secrete a va-riety of chemokines, inhibit the occurrence of inflammatory reactions, and promote the formation of blood vessels and lymphatic vessels. Gastric cancer is a common malignant digestive tract tumor, and the overall survival rate of patients is still low, so it is urgent to find specific factors that can predict prognosis and develop new targets. In view of this, this paper analyzes and reviews the rel-evant research of tumor-associated macrophages in gastric cancer, in order to provide a new per-spective for improving the prognosis of gastric cancer patients and developing new targeted drugs.
文章引用:仝建宁, 呼永华, 陈昊, 王晓宇, 周浩楠. 肿瘤相关巨噬细胞在胃癌中的研究进展[J]. 临床医学进展, 2023, 13(4): 5236-5241. https://doi.org/10.12677/ACM.2023.134741

1. 引言

2020年,全世界约有1930万新发癌症病例,近1000万患者死于癌症,不同癌症的发病率有明显的地域分布特征。其中,我国是胃癌的高发地区,发病数占全球总数的42.6%。胃癌已成为城市第二大常见的恶性肿瘤,在农村中则成为第一大常见恶性肿瘤 [1] 。胃癌起病隐匿,总体来说,胃癌患者5年生存率还处在较低水平,如通过对SEER数据库分析发现T1M1期胃癌患者中位生存时间仅为(5.000 ± 0.312)个月 [2] 。胃癌细胞的生长、增殖、侵袭和转移是多因素共同驱动发展的过程,其中,肿瘤微环境具有重要的作用 [3] ,肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)是免疫微环境中最丰富的固有免疫细胞,现已成为免疫治疗研究的热点靶标。本文就TAMs的起源及分型、参与胃癌恶性生物学作用的作用机制及作为抗胃癌可能的靶点进行综述。

2. TAMs概述

过去的研究认为TAMs起源于单核细胞,在微环境中经周围细胞分泌的细胞因子作用下发育为TAMs,但随着研究的深入发现完全清除其关键的趋化因子CCL2及其受体CCR2并不能使TAMs完全消失 [4] ,除单核起源外,巨噬细胞还可能起源于胚胎。前者称为髓源性巨噬细胞,在除上述提到的CCL2外还有巨噬细胞集落刺激因子、血管内皮生长因子以及巨噬细胞炎性蛋白的作用下被募集至肿瘤微环境中发育成熟为TAMs。后者为组织驻留巨噬细胞,具有更强的增殖活性 [5] ,促进肿瘤的生长。

TAMs具有多样性,能够对胃癌细胞的生长产生不同的生物学效应。经典活化型(M1)和替代活化型(M2)是其中最经典的分类。首先,M1型极化是通过干扰素调节因子/干扰素以及转录激活因子进行的,巨噬细胞经干扰素-γ (IFN-γ)、脂多糖(LPS)和肿瘤坏死因子(TNF-α)刺激,使得络氨酸激酶磷酸化,进一步激活转录激活因子1(STAT1)信号传导通路传递信号,促进细胞因子如IL-6、IL-12、IL-15以及细胞间黏附分子等受体的表达,使得巨噬细胞向M1型极化。M1型TAMs可以通过分泌多种细胞因子包括:IL-12、IL-23、TNF-α以及CXCL10等吞噬杀灭细菌,呈递抗原,促进炎症细胞募集至肿瘤细胞,参与免疫应答以发挥杀伤肿瘤细胞的作用 [6] 。其次,由CD4+T淋巴细胞和调节性T细胞分泌的IL-4和IL-10激活STAT6信号转导通路,刺激精氨酸酶-1的产生,从而诱导巨噬细胞向M2型极化,M2型又可具体分为M2a、M2b、M2c、M2d四种类型。与M1型相反,M2型TAMs的主要作用是抑制炎症反应,促进肿瘤的发生发展。M2a型可通过分泌趋化因子介导参与Th2免疫应答从而发挥抑制机体发生超敏反应,还可能参与了组织的修复。M2b型同样介导参与了Th2的免疫应答并且能够诱导抗体的产生。M2c型则募集T细胞和嗜酸性粒细胞抑制机体的免疫反应。M2d型也同样抑制了炎症因子IL-12和肿瘤坏死因子的产生,促进血管生成因子(VEGF)的生成有利于肿瘤的侵袭和转移。

3. TAMs与胃癌的发生、发展

3.1. TAMs与胃癌细胞的增殖

幽门螺杆菌感染引发的慢性炎症是胃癌发生的重要原因,其可促进肿瘤干细胞的增殖,降低并减少M1型TAMs的数量并诱导M1型向M2型极化。研究发现,TAMs与胃癌的大小、分化程度以及TNM分期等有关 [7] ,如Kindlin-2与胃癌细胞的生长浸润相关,高表达的患者总体的生存期低于低表达,而TAMs通过分泌转化生子因子来调节Kindlin-2的表达进而参与胃癌细胞的增殖 [8] [9] 。另外,TAMs还可以分泌肿瘤坏死因子和白介素-6等炎性因子,进一步激活参与转录激活因子3相关的信号通路,提高了肿瘤细胞的活力,促进其增殖 [10] 。此外,还有证据表明TAMs的浸润程度与肿瘤细胞的增殖成正相关 [11] ,CSF-1R存在于TAMs细胞膜的表面,单核细胞即通过该受体所在的信号轴分化成为TAMs,并且调控TAMs的生长和活性间接影响肿瘤微环境的免疫调节。胃癌一类的实体瘤常处于缺氧的环境中,这一环境使得TAMs分泌的血管内皮生长因子表达增加,进一步保障了胃癌细胞增殖所需的营养,促进了肿瘤细胞的生长 [12] [13] 。

3.2. TAMs与胃癌细胞的侵袭和转移

胃癌细胞的侵袭和转移与其周围血管的新生密切相关,血管提供营养方便其浸润和生长,并且能够应对实体瘤的缺氧环境 [14] 。M2型TAMs与血管内皮细胞相互作用,内皮细胞产生的几种凝血因子如III、VIIa、XIIa能够刺激并激活M2型巨噬细胞分泌炎性因子发挥作用,而激活的巨噬细胞还会产生VEGF进一步促进血管内皮细胞继续分泌凝血因子进而促进胃癌新生血管的生成 [15] 。另外,胸苷磷酸化酶作为血管生成因子的一部分,Shen [16] 等通过体外实验证明胸苷磷酸化酶能够促进内皮细胞的迁移,其高表达能够使得新生血管增多。络氨酸激酶受体2存在于内皮细胞表面,不仅可以表达出存在于肿瘤细胞周围的TAMs,还可以与血管生成素结合维持血管内皮细胞的动态活性并进一步促进新生分支的形成,保障肿瘤细胞浸润及生长所需的环境。最后,临床研究发现在胃癌组织中,TAMs的数量与微血管新生的数量成正比 [17] 。

胃癌细胞的转移与淋巴管的形成有重要关联。巨噬细胞产生的VEGF不仅促进肿瘤周围血管的新生,还与淋巴管的形成有关,另外,Liu [18] 等发现胃癌患者的淋巴结转移与TAMs浸润的数量有关。巨噬细胞可通过诱导淋巴上皮细胞的表型和功能发生改变进而增殖,新生新的淋巴管使得胃癌细胞容易向淋巴结转移 [19] 。此外,CHEN [20] 等证实TAMs可通过Akt/mTOR通路传递信号调节VEGFC和VEGFD进而控制淋巴管的形成。

除血管与淋巴管外,胃癌细胞侵袭和转移的发生还与上皮–间充质转化(epithelial-mesenchymal transition, EMT)有关。TAMs分泌的肿瘤坏死因子、组织蛋白酶还有转化生子因子等能够促进上皮细胞极化的发生,降低细胞间的粘性,帮助原发肿瘤病灶脱离限制,提前准备好胃癌细胞转移前所需的微环境,为胃癌细胞转移提供条件 [21] 。Liu [22] 等结合临床和动物实验发现基质金属蛋白酶9 (matrix metalloproteinase, MMP9)在胃癌组织及其癌旁组织巨噬细胞中的表达量明显较高,在小鼠荷瘤模型中,注射了TAMs的小鼠较加上MMP9抑制剂的小鼠肺转移发生率高,说明TAMs可以通过调控MMP9破坏细胞外基质,水解基底膜,促进EMT的发生进而保障胃癌侵袭转移的发生。

4. TAMs与胃癌的预后及治疗策略

Eissmann [23] 等认为TAMs对胃癌预后的影响与其分型相关,M1型浸润数量多提示预后较好,而M2相反,且其数量往较M1多,因此巨噬细胞数量通常与胃癌患者5年生存率成反比,但也有实例验证M2型高表达的印戒细胞癌患者生存时间较低表达患者长 [24] 。还有在高度不稳定微卫星型胃癌中发现CD163 + M2型TAMs可以作为独立的预后预测因素,浸润数量高的患者总体生存时间较长 [25] 。由此可见不同分型的巨噬细胞对于胃癌患者预后的影响不同,但可以肯定的是,TAMs作为肿瘤微环境中含量丰富的免疫细胞,独立作为预测胃癌患者生存时间和质量的因素的作用。

TAMs在促进胃癌细胞增殖、调节新生血管和淋巴管的生成和促进侵袭和转移的发生方面发挥了重要的作用,另外,还有研究发现TAMs还通过外泌体以及miRNA参与了胃癌细胞的化疗耐药 [26] 。因此,可以就其具体发挥作用的机制作为靶点,制定个性化的新的治疗策略,可以从以下方面着手;1) 诱导M2型TAMs向M1型转化;2) 阻止TAMs向胃癌组织募集;3) 耗竭TAMs。

槐定碱、低剂量紫杉醇以及双抑制剂负载纳米颗粒(dual inhibitor loaded nanoparticles, DNTs)都可以轴向促使M2型向M1转化 [27] [28] [29] ,有效抑制胃癌细胞的增殖和浸润转移。集落刺激因子-1 (colony-stimulating factor-1, CSF-1)所在的信号通路是调控TAMs募集与增殖有关的重要通路,对M1型TAMs极化也有重要的作用。Emactuzumab即针对CSF-1R设计的单克隆抗体,临床试验证实有效率高,副作用和毒性较小,具有广泛的应用前景 [30] 。趋化因子CCL2、CCL5是诱导单核细胞趋化募集至肿瘤组织的关键因子,阻断此过程能有效减少巨噬细胞浸润,抑制胃癌细胞转移的进程,如将其受体拮抗剂应用于晚期胃癌患者,发现该拮抗剂能有效减缓腹膜转移的发生 [31] 。最后,近来,之前用于治疗骨质疏松的药物双膦酸盐可以影响巨噬细胞的增殖过程,将其制作成脂质体包裹可减少其毒副作用,如Zang [32] 等制作的脂质体用于荷瘤小鼠,发现其明显减少肿瘤组织的巨噬细胞数量,肿瘤体积也显著缩小。

5. 小结与展望

作为免疫微环境中的重要组成部分,TAMs通过分泌细胞因子、调节相关信号通路以及参与肿瘤代谢适应缺氧环境全程参与胃癌细胞的生长、增殖、侵袭和转移,但具体的作用靶点尚不能完全研究透彻,目前主要集中于其促进胃癌进展的单向作用上。原因可能与TAMs分型复杂,不同阶段,不同表型的TAMs作用不尽相同有关,此外还有M1型与M2型随时动态极化以及体外实验不能完全模拟体内复杂的免疫系统等原因。因此,继续明确TAMs的具体分型及对应的抗体和机制,更加精确靶向其作用的具体位点,减少药物对肿瘤组织外正常细胞的损害,为胃癌的临床治疗和新药开发提供新的思路和方向。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] 王静, 丁鹏鹏, 王亚丹, 崔建芳, 王沧海, 刘红. T1M1期胃癌患者临床病理特征及预后生存分析[J]. 胃肠病学和肝病学杂志, 2021, 30(10): 1107-1111.
[3] Bejarano, L., Jordāo, M.J.C. and Joyce, J.A. (2021) Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11, 933-959.
https://doi.org/10.1158/2159-8290.CD-20-1808
[4] Mantovani, A., Marchesi, F., Jaillon, S., et al. (2021) Tu-mor-Associated Myeloid Cells: Diversity and Therapeutic Targeting. Cellular & Molecular Immunology, 18, 566.
https://doi.org/10.1038/s41423-020-00613-4
[5] Yang, S., Liu, Q. and Liao, Q. (2020) Tumor-Associated Mac-rophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Frontiers in Cell and Developmental Biology, 8, Article ID: 607209.
https://doi.org/10.3389/fcell.2020.607209
[6] Ruytinx, P., Proost, P., Van Damme, J., et al. (2018) Chemo-kine-Induced Macrophage Polarization in Inflammatory Conditions. Frontiers in Immunology, 9, 1930.
https://doi.org/10.3389/fimmu.2018.01930
[7] Zeng, D., Li, M., Zhou, R., et al. (2019) Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures. Cancer Immunology Research, 7, 737-750.
https://doi.org/10.1158/2326-6066.CIR-18-0436
[8] Hardbower, D.M., Asim, M., Murray-Stewart, T., et al. (2016) Arginase 2 Deletion Leads to Enhanced M1 Macrophage Activation and Upregulated Polyamine Metabolism in Response to Helicobacter pylori Infection. Amino Acids, 48, 2375-2388.
https://doi.org/10.1007/s00726-016-2231-2
[9] Wang, Z., Yang, Y., Cui, Y., et al. (2020) Tumor-Associated Macrophages Regulate Gastric Cancer Cell Invasion and Metastasis through TGFβ2/NF-κB /Kindlin-2 Axis. Chinese Journal of Cancer Research, 32, 72-88.
https://doi.org/10.21147/j.issn.1000-9604.2020.01.09
[10] Ostuni, R., Kratochvill, F., Murray, P.J., et al. (2015) Macrophages and Cancer: From Mechanisms to Therapeutic Implications. Trends in Immunology, 36, 229-239.
https://doi.org/10.1016/j.it.2015.02.004
[11] Achkovad, M. (2016) Role of the Colony-Stimulating Factor (CSF)/CSF-1 Receptor Axis in Cancer. Biochemical Society Transactions, 44, 333-341.
https://doi.org/10.1042/BST20150245
[12] Ma, F., Zhang, B., Ji, S., et al. (2019) Hypoxic Macrophage-Derived VEGF Promotes Proliferation and Invasion of Gastric Cancer Cells. Digestive Diseases and Sciences, 64, 3154-3163.
https://doi.org/10.1007/s10620-019-05656-w
[13] Liu, D., Wang, N., Sun, Y., et al. (2018) Expression of VEGF with Tumor Incidence, Metastasis and Prongnosis in Human Gastric Carcinoma. Cancer Biomarkers, 22, 693-700.
https://doi.org/10.3233/CBM-171163
[14] Zhu, J., Zhi, Q., Zhou, B.P., et al. (2016) The Role of Tumor Associat-ed Macrophages in the Tumor Microenvironment: Mechanism and Functions. Anti-Cancer Agents in Medicinal Chemis-try, 16, 1133-1141.
https://doi.org/10.2174/1871520616666160520112622
[15] Ma, Y.Y., He, X.J., Wang, H.J., et al. (2011) Interac-tion of Coagulation Factors and Tumor-Associated Macrophages Mediates Migration and Invasion of Gastric Cancer. Cancer Science, 102, 336-342.
https://doi.org/10.1111/j.1349-7006.2010.01795.x
[16] Shen, Z.L., Yan, Y.C., Ye, C., et al. (2016) The Effect of Vasohibin-1 Expression and Tumor-Associated Macrophages on the Angiogenesis in Vitro and in Vivo. Tumor Biology, 37, 7267-7276.
https://doi.org/10.1007/s13277-015-4595-4
[17] 邱森, 孙淼淼, 陈奎生. 肿瘤相关巨噬细胞对肿瘤血管生成影响的研究进展[J]. 细胞与分子免疫学杂志, 2019, 35(5): 469-472.
[18] Liu, J.Y., Yang, X.J., Geng, X.F., et al. (2016) Prognostic Significance of Tumor-Associated Macrophages Density in Gastric Cancer: A Systemic Review and Meta-Analysis. Minerva Medica, 107, 314-321.
[19] Tauchi, Y., Tanaka, H., Kumamoto, K., et al. (2016) Tu-mor-Associated Macrophages Induce Capillary Morphogenesis of Lymphatic Endothelial Cells Derived from Human Gastric Cancer. Cancer Science, 107, 1101-1109.
https://doi.org/10.1111/cas.12977
[20] Chen, H., Guan, R., Lei, Y., et al. (2015) Lymphangiogenesis in Gastric Cancer Regulated through Akt/mTOR-VEGF- C/VEGF-D Axis. BMC Cancer, 15, 103.
https://doi.org/10.1186/s12885-015-1109-0
[21] Pathria, P., Louis, T.L. and Varner, J.A. (2019) Targeting Tu-mor-Associated Macrophages in Cancer. Trends in Immunology, 40, 310-327.
https://doi.org/10.1016/j.it.2019.02.003
[22] Liu, Y., Ye, Y. and Zhu, X. (2019) MMP-9 Secreted by Tumor As-sociated Macrophages Promoted Gastric Cancer Metastasis through a PI3K/AKT/Snail Pathway. Biomedicine & Phar-macotherapy, 117, Article ID: 109096.
https://doi.org/10.1016/j.biopha.2019.109096
[23] Eissmann, M.F., Dijkstra, C., Jarnicki, A., et al. (2019) IL-33-Mediated Mast Cell Activation Promotes Gastric Cancer through Macrophage Mobilization. Nature Communica-tions, 10, 2735.
https://doi.org/10.1038/s41467-019-10676-1
[24] Liu, X., Xu, D., Huang, C., et al. (2019) Regu-latory T Cells and M2 Macrophages Present Diverse Prognostic Value in Gastric Cancer Patients with Different Clinico-pathologic Characteristics and Chemotherapy Strategies. Journal of Translational Medicine, 17, 192.
https://doi.org/10.1186/s12967-019-1929-9
[25] Huang, Y.K., Wang, M., Sun, Y., et al. (2019) Macrophage Spa-tial Heterogeneity in Gastric Cancer Defined by Multiplex Immunohistochemistry. Nature Communications, 10, 3928.
https://doi.org/10.1038/s41467-019-11788-4
[26] Binenbaum, Y., Fridman, E., Yaari, Z., et al. (2018) Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma. Cancer Research, 78, 5287-5299.
https://doi.org/10.1158/0008-5472.CAN-18-0124
[27] Zhuang, H., Dai, X., Zhang, X., et al. (2020) Sophoridine Suppresses Macrophage-Mediated Immunosuppression through TLR4/IRF3 Pathway and Subsequently Upregulates CD8+ T Cytotoxic Function against Gastric Cancer. Biomedicine & Pharmacotherapy, 121, Article ID: 109636.
https://doi.org/10.1016/j.biopha.2019.109636
[28] Wang, X., Jiao, X., Meng, Y., et al. (2018) Methionine Enkephalin (MENK) Inhibits Human Gastric Cancer through Regulating Tumor Associated Macrophages (TAMs) and PI3K/AKT/mTOR Signaling Pathway inside Cancer Cells. International Immunopharmacology, 65, 312-322.
https://doi.org/10.1016/j.intimp.2018.10.023
[29] Yamaguchi, T., Fushida, S., Yamamoto, Y., et al. (2017) Low-Dose Paclitaxel Suppresses the Induction of M2 Macrophages in Gastric Cancer. Oncology Reports, 37, 3341-3350.
https://doi.org/10.3892/or.2017.5586
[30] Cassier, P.A., Italiano, A., Gomez-Roca, C.A., et al. (2015) CSF1R In-hibition with Emactuzumab in Locally Advanced Diffuse-Type Tenosynovial Giant Cell Tumours of the Soft Tissue: A Dose-Escalation and Dose-Expansion Phase 1 Study. The Lancet Oncology, 16, 949-956.
https://doi.org/10.1016/S1470-2045(15)00132-1
[31] Aldinucci, D. and Casagrande, N. (2018) Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. International Journal of Molecular Sciences, 19, 1477.
https://doi.org/10.3390/ijms19051477
[32] Zang, X., Zhang, X., Hu, H., et al. (2019) Targeted Delivery of Zoledronate to Tumor-Associated Macrophages for Cancer Immunotherapy. Molecular Pharmaceutics, 16, 2249-2258.
https://doi.org/10.1021/acs.molpharmaceut.9b00261