电催化甲烷转化为增值化学品研究进展
Research Progress in Electrocatalytic Oxidation of Methane into Value-Added Chemicals
DOI: 10.12677/MS.2023.134033, PDF, HTML, XML, 下载: 409  浏览: 886  国家自然科学基金支持
作者: 王 瑞, 郑露莹, 江佳怡, 于小晴, 张 航*:沈阳师范大学化学化工学院,辽宁 沈阳
关键词: 甲烷电催化含氧化合物 Methane Electrocatalytic Oxygenated Compounds
摘要: 甲烷(CH4)是天然气的主要成分,已被用作燃料和储氢器。CH4的部分氧化生成液体燃料方向是一个巨大的挑战,因为含氧产物比CH4更容易氧化。因此,对载流子和自由基的控制是阻止过度反应的关键。电催化是清洁、可持续的CH4转化技术,本文主要讨论了如何设计催化剂来克服CH4电催化部分氧化过程中的瓶颈,重点讨论了界面电荷转移过程、催化剂表面工程策略、影响反应机理和速率决定步骤的关键因素以及提高催化性能的反应条件。最后,本文总结了催化剂的制备,有效地产生电荷载体和中间体与温和的氧化行为,以防止不必要的反应路径。
Abstract: Methane (CH4) is considered as the main component of natural gas and has been used as fuel and hydrogen storage tank. Partial oxidation of CH4 in the direction of liquid fuel generation is a huge challenge, because oxy-gen-containing products are more easily oxidized than CH4. Therefore, the control of carriers and free radicals is the key to prevent harmful reactions. This paper mainly discusses how to design catalysts to overcome the bottleneck in the process of partial oxidation of CH4 electrocatalysis, fo-cusing on the interface charge transfer process, the catalyst surface engineering strategy, the key factors affecting the reaction mechanism and rate-determining steps, and the reaction conditions to improve the catalytic performance. Finally, this paper can guide the preparation of catalysts, effec-tively generate charge carriers and intermediates and mild oxidation behavior to prevent unnec-essary reaction paths.
文章引用:王瑞, 郑露莹, 江佳怡, 于小晴, 张航. 电催化甲烷转化为增值化学品研究进展[J]. 材料科学, 2023, 13(4): 282-296. https://doi.org/10.12677/MS.2023.134033

1. 引言

在气候和能源危机的今天,天然气中含量最多的甲烷(CH4)的转化主要有完全氧化为二氧化碳(CO2)和部分氧化为有价值的氧化合物和碳氢化合物 [1] [2] [3] 。通过CH4转化生产液态碳氢化合物和氧化合物是一个重要的关注点,因为它更可用作制造多种产品的基本组成部分,具有较高的体积能量密度,以及相对较低的运输/存储成本 [4] 。因此,开发低成本、环保、高效的CH4直接转化为所需化合物的方法受到了人们的关注。从C-H活化的固有惰性来看,sp3杂化后的CH4是一个稳定的分子 [5] ;因此,一个需要高温和高压的能源密集步骤才能将其转化为所需的产品。工业上采用蒸汽甲烷重整工艺(CH4(g) + 0.5 O2(g) → CO(g) + 2 H2(g);CH4(g) + H2O(v) → CO(g) + 3H2(g))在700℃~1000℃和3~25 bar的条件下工作,可以产生氢(H2)和一氧化碳(CO),它们不仅可以作为燃料电池汽车的燃料,还可以作为合成各种化学物质和聚合物的前体 [6] [7] 。为了使CH4直接转化为具有附加值的化学品和燃料,必须通过与少量氧气的反应(即低于化学计量氧含量的部分氧化)来禁止CH4氧化为CO2和H2O(CH4(g) + 2O2(g) → CO2(g) + 2H2O(v),Δ298 = −802.6 kJ∙mol−1)。然而,不可避免的是,大量的二氧化碳作为副产物释放,该过程相对于完全氧化是不利的(如CH4(g) + 0.5 O2(g) → CH3OH(g),Δ298 = −126.4 kJ∙mol−1;CH4(g) + O2(g) → HCHO(g) + H2O(v),Δ298 = −276 kJ∙mol−1) [8] 。

电催化将甲烷转化为增值化学品和液体燃料是一项面向未来的技术 [9] ,因为反应在温和的条件下进行。另一方面,CH4部分氧化过程中的瓶颈主要来自于对目标产物的选择性差以及活化能垒导致的反应活性低。CH4具有提取H的较高的均溶键解离能(440 kJ∙mol−1)、弱极化对称sp3几何构型、弱酸性和弱溶解度等物理化学性质,是开发活性催化剂的重要考虑因素 [10] [11] [12] 。考虑到CH4在热催化中相对有效的解离行为 [13] ,广泛的过渡金属基催化剂,如零价金属、金属氧化物、金属配合物、单金属原子和金属交换分子筛已被再次研究。此外,作为克服这种高能量位垒的方法的一部分,过氧化氢(H2O2)的加入能够形成具有强氧化能力的羟基自由基(·OH) (E°(OH/OH) = 1.90~2.70 VNHE) [14] 。

在电催化中,可以通过施加电位来控制驱动力 [15] ,其中还原和氧化反应被膜隔开(图1)。为了优化电池性能,应避免与CH4传质差和低溶解度相关的问题 [16] [17] 。在这方面,提出了一种性能优于典型的H型电池的膜电极组件(MEA),其中阴极和阳极催化剂层分别涂敷在分离器或膜的正面和背面 [18] 。涂覆在催化剂层外的气体扩散层(GDL)大大提高了CH4和气相产物的传质限制 [19] 。此外,通过流动电池的设置可以避免过度氧化,该电池能够从电解质中收集液态氧。在设计阳极催化剂时,选择性氧化CH4而不是氧化产物是至关重要的。事实上,竞争析氧反应和欧姆、质量输运和动能损失引起的性能恶化应该得到控制,特别是当电池电压或电流密度高时 [20] 。例如,为了满足CH4转化为甲醇的经济可行性,在以下条件下(过电位 < 1 V,100℃~250℃,电流密度 > 100 mA∙cm−2),选择性应至少为70% [21] 。

本文综述了近年来利用电催化对CH4进行部分氧化的研究进展,并讨论了催化剂的几何和电子参数、反应器工程以及环境对CH4活性和选择性的影响。了解与中间体和产物形成相关的电子和空穴介导反应 [22] [23] [24] 的机理途径,将为克服瓶颈和优化催化性能提供合理的解决方案。本文没有描述新材料的合成和它们的表征,而是着重于催化剂的表面工程影响微环境中的界面电荷转移过程 [25] ,以及改变反应机理和速率决定步骤的关键因素。

Figure 1. Electrocatalysis for the oxidation of CH4 [64]

图1. 电催化氧化甲烷的原理示意图 [64]

2. 甲烷转化为所需化学品的机理

CH4电催化转化为增值化学品是由阳极途径驱动的,阳极途径通过施加正偏压(M-O2− → M-O + 2 e或MOx + H2O → MOx(·OH) + H+ + e;MOx(·OH) → MOx-O + H+ + e)产生活性位点氧化CH4。随着电极电位的增加,由吸附物、载体、电解质组成影响的局部化学环境、三维化学环境、温度、压力等也会改变CH4的氧化过程 [26] 。当高压应用于过渡金属氧化物催化剂(如Co3O4、NiO和RuO2)时,析氧反应(OER)是一个主要的过程 [27] [28] [29] 。它被称为水介质中CH4氧化的竞争反应。图2(a)比较了过渡金属氧化物水氧化(O* + H2O → *OOH + H+ + e)和CH4活化(O* + CH4 → *O-CH4 → *(HO-CH3))的吉布斯自由能 [20] 。通过该反应步骤,生成了分子氧(*OOH → * + O2 + H+ + e)和甲醇(*(HO-CH3) → *CH3OH → * + CH3OH)作为的产物。在这两种反应中,通过单电子转移过程(* + H2O → *OH + H+ + e)形成的*OH (*OH → *O + H+ + e)脱氢生成吸附的活性氧原子(O*)作为一种瞬态物种。为了克服OER问题,需要设计出水氧化时吉布斯自由能高而CH4活化时吉布斯自由能低的催化剂,V2O5、TiO2、SnO2、PtO2和RhO2都能满足该条件。理论上,在接近1.23 VNHE的电势下操作可以抑制OER。高价金属氧化态的出现和表面自由能的变化会增加活性M-O位点的覆盖,改变反应路径。对于TiO2/RuO2复合材料,V2O5的引入改变了如下反应路径 [30] 。RuO2中Ru4+/6+和Ru3/+4+两种钌氧化还原对参与氧合产物的生成,并影响最终产物的选择性。对于甲醇的生成,Ru6+依次被还原为Ru4+ (i) CH4 + RuO 2 2 + → CH3-RuO2+ + H+和(ii) CH3- RuO 2 + + H+ → CH3OH + RuO2+。另一方面,钌(Ru6+ → Ru4+ → Ru3+)在CH4 + 2 RuO 2 2 + → RuO+-O-CH2-O-RuO+ → HCOOH + 2RuO+反应后转化生成甲醛。然而,当V2O5存在于RuO2上时,钒的氧化还原对(V5+/4+)不能贡献足够的电子与甲醛和甲酸形成双键;因此,对甲醇的选择性增加(CH4 + V2O42+ → CH3-V2O4+ + H+;CH3-V2O4+ + H+ → CH3OH + V2O32+)。过渡金属离子也可以作为均相体系中的氧化还原对,在这种体系中,有机金属配合物的金属中心溶解在电解液中,通过施加阳极偏压而变成高价态。如图2(b)所示,氯铂酸盐的PtII通过亲电加成反应接受CH4,脱质子生成PtII-CH3配合物,经电化学生成的[PtIVCl6]2− (即[PtIVCl6]2−和[PtIICl6]2−催化的Shilov循环)氧化后,PtΙΙ-CH3配合物进一步被氧化成PtIV-CH3配合物 [31] 。当存在H2O或HCl时,PtΙV-CH3络合物分别生成甲醇或氯甲烷。基于PEC氧化CH4的机理路径与电化学体系非常相似。WO3阳极(010)表面结合的·OH可以就地氧化生成甲醇,导致乙二醇的生成具有选择性(图2(c))。

Figure 2. (a) Comparison of the Gibbs free energy of transition metal oxide catalysts calculated from water oxidation (O* + H2O → *OOH + H+ + e) and CH4 activation (O* + CH4 → *O–CH4 → *(HO–CH3)) [18] . (b) Catalytic cycle of CH4 conversion to methanol or methyl chloride mediated by electrochemically regenerated [PtIVCl6]2−. Reproduced with permission [31] . (c) Reaction pathway to form ethylene glycol on the WO3 photoanode [32]

图2. (a) 由水氧化(O* + H2O→ *OOH + H+ + e)和甲烷活化(O* + CH4→ *O-CH4 → *(HO-CH3))计算出的过渡金属氧化物催化剂的吉布斯自由能的比较 [18] (b)通过电化学再生[PtIVCl6]2−介导的甲烷转化为甲醇或氯甲酯的催化循环。 [31] (c)在三氧化钨光阳极上形成乙二醇的反应途径 [32]

3. 在多相催化剂上电催化甲烷选择性氧化生成含氧化合物

3.1. 电催化甲烷转化

CH4的电催化活化既可以由表面电极上的活性氧直接驱动,也可以由电极/电解质界面上形成的自由基间接驱动。一般来说,电池的性能受过电位、环境和碰撞频率的影响,而碰撞频率又分别与活化能、表面活性氧形成的难易程度、CH4和产物的传质程度密切相关 [33] 。甲烷的电化学氧化可以通过几种不同的途径产生不同的产物(图3)。酒精和甲醛等含氧化合物显然是具有高经济价值的目标化学产品。为了优化CH4的部分氧化生成所需产品,应考虑三个因素,在催化剂发现、电解质工程和反应器设计方面作出努力。迄今为止,研究人员不仅研究了不同的电催化剂,而且研究了电解质和反应器的工程用于CH4的部分氧化。该电化学系统可分为(i) 非均相和均相反应,(ii) 高低温过程,(iii) 阴极和阳极反应,(iv) 固体氧化物和液体电解质,(v) 燃料电池和电解槽型电池。在以前的综述文章中,电催化剂的影响,反应条件,和生成的最终产物上的电池配置已经讨论和总结在表格中 [18] [33] - [43] 。本文主要综述了温和条件下活性位点上CH4部分氧化过程的理论解释方法,并对近年来的研究成果进行了综述。

Figure 3. Proposed pathways for electrocatalytic oxidation of methaneto oxygenated products

图3. 将甲烷电催化氧化为含氧产物的途径

Figure 4. (a) CH4 oxidation products and faradaic efficiency over diverse transition metal oxides in 0.1 M potassium phosphate buffer (pH = 7). The result of PtO2 was obtained in 1 M KCl (pH = 7) because of inactivity in 0.1 M potassium phosphate buffer. (b) Scaling relationship between the measured binding energy of *CH4 and the Madelung potential of metal in transition metal oxides. (c) Faradaic efficiency of methanol oxidation to CO2 over TiO2 with applied potential in the presence/absence of Cu2O3. Reaction profifile (d) for OER on the undercoordinated metal sites, (e) for OER on the bridging oxygen binding site, and (f) for CH4 oxidation on the undercoordinated metal sites in transition metal oxides. (g) Possible reaction pathways for CH4 oxidation and OER in an aqueous electrolyte [47]

图4. 在0.1 M磷酸钾缓冲液(pH = 7)中,(a) 甲烷氧化产物和法拉第效率。PtO2在1 M氯化钾(pH = 7)中得到,因为在0.1 M磷酸钾缓冲液中没有活性。(b) *CH4的结合能与过渡金属氧化物中金属马德隆势的尺度关系。(c) 在Cu2O3存在/不存在的情况下,在二氧化钛和应用电位下,甲醇氧化成二氧化碳的法拉第效率。反应(d)为不配位金属位点的OER,(e) 桥接氧结合位点的OER,(f) 过渡金属氧化物中不配位金属位点的甲烷氧化。(g) 在水电解质中进行甲烷氧化和OER的可能反应途径 [47]

3.2. 过渡金属氧化物

CH4在过渡金属氧化物上的电催化氧化通过CH4的物理吸附 [44] [45] ,然后活化C-H键。图4(a)为CH4在各种过渡金属氧化物催化剂上氧化得到的产物。在磷酸盐缓冲液中TiO2、IrO2和PbO2以及在KCl电解质中PtO2的CO2演化均可以观察到。磷酸盐缓冲液中PtO2的失活是由于磷酸盐离子覆盖的Pt毒害所致。CH4的物理吸附使CH4的四面体对称性 [46] 转变为扭曲结构(D2d),其H-C-H键角约为120˚,这与CH4与过渡金属氧化物之间的静电相互作用有关。因此,实验测量的CH4结合能随过渡金属氧化物中金属的马德隆电位线性增加(图4(b))。TiO2、IrO2、PbO2和PtO2为活性催化剂,具有较高的CH4结合能(>0.23 V)和较低的马德隆电位(<−40 V),而ZrO2和SnO2的失活主要是由于其导电性差和活性位点数量少。在TiO2上引入Cu2O3,在0.35 mA∙cm−2电流密度下,制备CH3OH的法拉第效率为6%,其中*OH由Cu生成*CH3填充TiO2。Cu对*CH3与*OH反应具有较低的能垒,并且对CH3OH的过氧化具有抵抗性(图4(c))。图4(d)和图4(e)分别为不配位金属位点的OER,桥接氧结合位点的OER。根据反应路径(*H2O → *OH + 0.5 H2; *OH → *O + 0.5 H2; O* + H2O → * + O2 + H2)。OER有利于SnO2、TiO2和IrO2的欠配位金属位点,而有利于PbO2的桥接O位点。图4(f)显示了CH4氧化反应途径经过五个步骤(第1步:* + CH4 → *CH3 + 0.5 H2;第2步:*CH3 → *CH2 + 0.5 H2;第3步:CH2* → *CH + 0.5 H2;第4步:*CH + H2O → *CO + 1.5 H2;第5步:*CO + H2O → * + CO2 + H2)。C-H键活化对TiO2、IrO2和PbO2具有积极的促进作用;而具有较低M-O位的SnO2则具有较高的能垒。根据反应脉冲计时电流法(RIC)和开路电位(OCP)随DFT计算的变化,反应机理提出CH4氧化过程中分别在较低和较高电位下生成*CHx和*CHxOy中间体(图4(g))。

3.3. 二维碳化物

各种二维碳化物(MXenes) [48] 上电催化CH4氧化的DFT计算为理解活性氧的稳定性、C-H键活化的反应活性和对特定的氧化合物的选择性之间的关系提供了重要的线索。在阳极电位作用下,O端接表面占主导地位,而不是金属端接表面和OH端接表面。C-H键被水氧化产生的活性氧(O*)激活(即羟基吸附:H2O + * → OH* + H+ + e;去质子反应:OH* → O* + H+ + e)。由于形成活性氧的电化学电位下限(Uform,由最大[ΔGO*GO*]/e计算)低于活性氧的离解电位(Udiss,由(ΔGOOH*GO*)/e计算),O*可以在催化剂表面积聚。如图5(a)所示,OER沿着火山曲线;因此,右侧的MXenes和火山曲线的左侧分别适合CH4氧化和OER。质子亲和能(ΔEOH*EO*)的C-H键激活(ΔEa,TS = Ea,TS-ECH4*)的变化表明,具有高质子亲和力的MXenes倾向于刺激C-H键的激活(图5(b))。活性氧的稳定性与C-H键活化反应活性之间存在萨巴提亚式关系。Hf2CO2和Zr2CO2中的活性氧过于活跃,而Ta2CO2、NbC2O2和V2CO2中稳定的O*过于惰性,从而降低了CH4的转化率。与单一金属组成的MXenes相反,CrHf2CO2和TaHfCO2在能量上有利于CH4的活化。根据对TaHfC2O2的应用电位,中间体(即相对稳定的物种)的形成发生了变化(即分别在1.4、1.8和2.4 V下的CH3O*、CO*和CO2*) (图5(c))。在TaHf2C2O2上,氧化物的生成优先于烃类的生成(图5(c)所示),这是基于投影态密度(PDOS)和投影晶体轨道汉密尔顿居群(pCOHP)的计算所支持的。对于TaHf2C2O2中d电子较少的Hf (5d2),Hf-O键比Hf-C键强;因此,氧合物的形成是主要的(图5(d))。在之前的研究中,观察到金属Pt上只产生碳氢化合物、CO和CO2,可能是由于Pt和C之间的强烈相互作用 [49] 。在Pt-C中能够占据反键轨道的电子比在Pt-O中要少(图5(e))。

关于CH4在室温下电催化部分氧化的研究文献很少 [49] - [54] 。在0.1 M Na2SO4 [30] 中采用气体扩散电极(GDE)电池时,在TiO2/RuO2复合材料中引入V2O5增加了对CH3OH的电流密度和选择性。V5+/4+氧化还原对不会产生电子形成双键;因此,对HCHO和HCOOH的选择性增加了。Park的小组报告了使用Co3O4/ZrO2纳米复合材料 [50] 、Co3O4掺杂的ZrO2纳米管 [52] 和ZrO2/NiCo2O4纳米线 [54] (使用典型的单细胞反应器)将CH4部分氧化为氧合物。在第一个3 h,Co3O4/ZrO2纳米复合材料形成乙醛作为主要中间体,最终在12 h后,在0.5 M Na2CO3里转化为1-和2-丙醇作为主要产物(图6(a))。电化学生成的碳酸盐自由基引发了CH4的脱氢反应和·CH3与乙醛的加成反应生成C3产物。因此,ZrO2的作用被指定为吸附碳酸盐的促进剂。在对照实验中,无论CH4净化与否,原始Co3O4的LSV曲线都没有增加。随着ZrO2含量的增加,电流密度先增大后减小,因此设计高效电催化剂时应考虑ZrO2与Co3O4的最佳配比(图6(b))。通过将Co3O4纳米颗粒嵌入到ZrO2纳米管 [52] 或ZrO2/NiCo2O4准固溶体纳米线 [54] 的表面形貌控制,进一步提高了CH4的电催化性能,改善了CH4的传质问题。

Figure 5. Activation ((a) Free energies of the OH*, O*, and OOH* formation steps in OER as functions of ΔEOH*EO*. (b) The energy barrier of C-H bond ΔEa,TS; TS means transition state) as a function of ΔEOH*EO*. (c) Free energy diagram of stable products in methane oxidation at different electrode potentials (1.40, 1.80, and 2.40 VRHE). Inset: schematic diagram of the electrocatalytic conversion of CH4 on TaHf2C2O2 and blue arrows mean the energetically favorable route. Band filling of oxygen and carbon adsorbed on (d) TaHf2C2O2 and (e) metal Pt [48]

图5. 活化度(OER中OH*、O*和OOH*形成步骤的(a) 自由能作为ΔEOH*EO*的函数。(b) C-H键ΔEa,TS;TS表示过渡态)作为ΔEOH*EO*的函数。(c) 不同电极电位(1.40、1.80、2.40 VRHE)下甲烷氧化过程中稳定产物的自由能图。插图:甲烷在TaHf2C2O2上的电催化转化示意图,蓝色箭头表示能量有利的路线。吸附在(d) TaHf2C2O2和(e)金属Pt上的氧和碳的带填充 [48]

本文研究了在NiO/Ni和Rh/ZnO催化剂上电催化CH4转化为C2H5OH的过程。在电压为1.37~1.43 VRHE的NiO/Ni电极上生成C2H5OH,在0.1 M NaOH中选择性约为81%~89% [51] 。将CH3OH的生成作为副产物计算在内,估计对含氧化合物的选择性超过90%。C2H5OH和CH3OH的产率随外加电位的升高先升高后降低(图6(c))。DFT计算结果表明,C2H5OH的生成条件优于CH3OH,该反应路径为CH4* → CH3* + H*;CH3* → CH2* + H*;CH2* + OH* → CH2OH*;CH3* + CH2OH* → CH3CH2OH* (图6(d))。在0.1 M KOH、2.2 VRHE条件下,Rh/ZnO纳米片对C2H5OH的转化率、法拉第效率和选择性分别为789 μmol∙gcat−1∙h−1、22.5%和85% [53] 。表明ZnO纳米片上的Rh纳米颗粒促进了CH4的吸附和活性氧的形成。操作性分析是了解CH4活化和转化的实时过程的有力工具。Hahn等人利用衰减的总反射–表面增强红外吸收光谱(ATR-SEIRAS)研究了CH4在Pt催化剂上的室温活化,证实CH4在氧化过程中形成了中间体-CHO(醛)和-COOH(酸) [55] 。利用原位线性电位扫描–傅里叶变换红外光谱(LPS-FTIRS)检测了中间体。加上CO2 (2345 cm−1)、CO (2020 cm−1)和H2O (1650 cm−1)峰,由于-CO部分形成了醛类和酮类物质,形成了一个宽峰(1750 cm−1)。在1.46 V下,Pt电极表面测得-CHO (1719 cm−1)和-COOH (2027 cm−1)的中间峰。采用原位ATR-傅里叶变换红外光谱(ATR-FTIR)研究了CH4在Pt/C、Pt/C-ATO、Pd/C和Pd/C-ATO电催化剂上的电化学氧化 [56] 。本文在0.05~1.2 V的电位范围内观察到中间体-CHO和CO,它们显然是产生CO2的中间体。

Figure 6. (a) Production efficiencies of 1-propanol, 2-propanol, and acetaldehyde with the reaction time for ZrO2/Co3O4. (b) LSV curves of ZrO2/Co3O4 with a different amount of ZrO2 loaded [56] . (c) Yields of ethanol and methanol produced over NiO/Ni catalysts with different NiO contents with increasing potential. (d) Energy profiles for CH4 oxidation to CH3OH and C2H5OH at the NiO(200)/Ni(111) interface [51]

图6. (a) 1-丙醇、2-丙醇和乙醛对ZrO2/Co3O4反应时间的生产效率。(b) 不同二氧化锆加载量下ZrO2/ Co3O4的LSV曲线 [56] (c)不同一氧化镍含量的NiO/Ni催化剂的乙醇和甲醇产率增加。(d) 在一氧化镍(200)/Ni(111)界面上,甲烷氧化为甲醇和乙醇的能量图谱 [51]

引入相对过量的氧化剂及其对具有高氧化能力的ROS的活化可能会损坏电化学电池中的膜。因此,氧还原反应(ORR)催化剂应促进4 e转移(O2 + 4 H+ + 4 e → 2 H2O)和抑制2 e转移(O2 + 2 H+ + 2 e→ H2O2),以用于质子交换膜燃料电池(PEMFC) [57] 。虽然除了一篇关于质子交换膜燃料电池(PEMFC)中H2O2阴极活化生产CH3OH的论文外,没有其他研究报道 [58] ,但是最近的研究工作为电催化转化CH4生产和处理反应物种的可行性提供了深刻的见解 [59] 。由四面体Ni2+和八面体Co3+组成的Co2NiO4和由八面体Ni2+和四面体Co3+组成的CoNi2O4的钴镍混合尖晶石(图7(a))有利于生成活性氯(*Cl),促进了施加电位下CH3Cl的生成。表面吸附的*Cl作为析氯反应(CIER) [60] 的中间体,促进了C-H键的裂解,气态CH3Cl从电解液中释放,避免了过度氧化。在0.5 M Na2SO4电解质中,由于能量势垒较高,LSV曲线中的电流密度相当低,只析出CO2 (图7(b))。然而,当存在过量的Cl (5.4 M NaCl)时,在2.3 V下的电流密度上升到19.5 mA∙cm−2,并且在OER辅助下形成了CIER辅助的通道。原位EPR实验证实了*Cl和随后的·Cl的形成,同时观察到DMPO-Cl·、DMPO-OH·和DMPO-OCl·(图7(c))。CH4向CH3Cl的转化需要较高的过电位才能生成活性氧原子(Ni-O*);因此,液态氧化合物的过度氧化 [61] 是不可避免的(图7(d))。

Figure 7. (a) Co-Ni mixed spinel structures consisting of CoNi2O4 (left) and Co2NiO4 (right). (b) LSV curve (upper) and partial current density for products in 0.5 M Na2SO4 and saturated NaCl (lower). (c) In situ EPR spectrum collected using DMPO as a radical capture reagent in electrocatalysis. (d) Different mechanism of CH4 oxidation in terms of ClER (upper) and OER (lower) [64]

图7. (a) 由CoNi2O4 (左)和Co2NiO4 (右)组成的Co-Ni混合尖晶石结构。(b) 在0.5 M Na2SO4和饱和NaCl中的产品的LSV曲线(上)和部分电流密度(下)。(c) 在电催化中使用DMPO作为自由基捕获试剂收集的原位EPR谱。(d) 就ClER (上)和OER (下)而言,CH4氧化的不同机制 [64]

尽管在过去的几十年里,已经报道了很多关于甲烷电化学氧化的实验研究,但数量有限文献的报告可以清楚地了解反应机理。本综述总结了文献中关于甲烷部分电化学氧化的文献,以确定有助于产物产率和选择性的参数(表1)。可为开发更有效的催化剂材料和反应器,将甲烷氧化为增值化学品提供了途径。

Table 1. Summary of the reported studies on the electrochemical partial oxidation of methane under mild conditions

表1. 关于甲烷在温和条件下电化学部分氧化的研究总结

4. 结论与展望

CH4在温和条件下的电催化部分氧化生成含氧化合物尚处于相当早期的阶段,迄今为止开展的研究非常有限。适当的电催化剂和电化学电池的设计要考虑到诸如电极配置、膜、电解液、周围环境等因素 [62] ,这对于提高CH4的转化率及其对所需产品的选择性是至关重要的。通常,在低电流密度下实现高选择性,并且随着电流密度的升高,由于不仅目标产物的过度氧化,而且与OER的竞争反应,选择性显著降低。为了克服OER的竞争优势,迫切需要开发水氧化时吉布斯自由能高,而CH4活化时吉布斯自由能低的催化剂。过渡金属氧化物上的活性M-O位点促进了CH4的脱氢 [63] ,CH4结合能高而马德隆势能低的催化剂具有更高的性能。在质子受体存在的情况下,脱质子途径也驱动C-H键的激活。因此,能够同时激发脱氢和脱质子反应的材料将有利于CH4的转化,更精确的活性位点控制是优化选择性的关键。为了更好地理解反应机理,需要实时光谱来监测(i) 过渡金属基催化剂的氧化状态和电子结构,(ii) 表面原子和缺陷的重新取向,(iii) 电极表面pH值和与微环境中限制的电解质离子的相互作用,(iv) 过渡物种和中间体的形成,以及它们与DFT计算的相关性。通过制造MEAs或通过堆叠调节电池,可以扩大器件的尺寸;因此,生产率提高以满足工业的需求。开发能够将所需产物从阳极输送到阴极室的膜,以及可以通过溶剂化帮助稳定含氧化合物的电解质工程,可以有效地延缓过氧化过程。正如在光催化和电催化中提出的那样,相同的策略可以有效地优化PEC电池的性能。

基金项目

本工作由国家自然科学基金青年项目(22102106)、国家级大学生创新创业训练计划资助项目(202210166012)、沈阳师范大学大学生创新创业训练计划资助项目(X202210166247)资助。

NOTES

*通讯作者。

参考文献

[1] Liu, C.-J., Xue, B., Eliasson, B., et al. (2001) Methane Conversion to Higher Hydrocarbons in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharge Plasmas. Plasma Chemistry and Plasma Processing, 21, 301-310.
https://doi.org/10.1023/A:1011098824117
[2] Zhang, Y.-P., Li, Y., Wang, Y., Liu, C.-J. and Eliasson, B. (2003) Plasma Methane Conversion in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharges. Fuel Processing Technology, 83, 101-109.
https://doi.org/10.1016/S0378-3820(03)00061-4
[3] Dissanayake, D., Rosynek, M.P., Kharas, K.C.C. and Luns-ford, J.H. (1991) Partial Oxidation of Methane to Carbon Monoxide and Hydrogen over a Ni/Al2O3 Catalyst. Journal of Catalysis, 132, 117-127.
https://doi.org/10.1016/0021-9517(91)90252-Y
[4] Horn, R. and Schlögl, R. (2015) Methane Activation by Het-erogeneous Catalysis. Catalysis Letters, 145, 23-39.
https://doi.org/10.1007/s10562-014-1417-z
[5] Voge, H.H. (1936) Relation of the States of the Carbon Atom to Its Valence in Methane. The Journal of Chemical Physics, 4, 581-591.
https://doi.org/10.1063/1.1749910
[6] Wang, M., Tan, X., Motuzas, J., Li, J. and Liu, S. (2021) Hydrogen Pro-duction by Methane Steam Reforming Using Metallic Nickel Hollow Fiber Membranes. Journal of Membrane Science, 620, Article ID: 118909.
https://doi.org/10.1016/j.memsci.2020.118909
[7] Angeli, S.D., Monteleone, G., Giaconia, A. and Lemonidou, A.A. (2014) State-of-the-Art Catalysts for CH4 Steam Reforming at Low Temperature. International Journal of Hydro-gen Energy, 39, 1979-1997.
https://doi.org/10.1016/j.ijhydene.2013.12.001
[8] Brown, M.J. and Parkyns, N.D. (1991) Progress in the Partial Oxidation of Methane to Methanol and Formaldehyde. Catalysis Today, 8, 305-335.
https://doi.org/10.1016/0920-5861(91)80056-F
[9] O’Reilly, M.E., Kim, R.S., Oh, S., et al. (2017) Electrochemi-cal Reoxidation Enables Continuous Methane-to-Methanol Catalysis with Aqueous Pt Salts. ACS Central Science, 3, 1174-1179.
[10] Gunsalus, N.J., Koppaka, A., Park, S.H., et al. (2017) Homogeneous Functionalization of Methane. Chemical Reviews, 117, 8521-8573.
https://doi.org/10.1021/acs.chemrev.6b00739
[11] Cavaliere, V.N. and Mindi-ola, D.J. (2012) Methane: A New Frontier in Organometallic Chemistry. Chemical Science, 3, 3356-3365.
https://doi.org/10.1039/c2sc20530k
[12] Duan, Z. and Mao, S. (2006) A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids from 273 to 523 K and from 1 to 2000 Bar. Geochimica et Cosmochimica Acta, 70, 3369-3386.
https://doi.org/10.1016/j.gca.2006.03.018
[13] Liang, Z., Li, T., Kim, M., Asthagiri, A. and Weaver, J.F. (2017) Low-Temperature Activation of Methane on the IrO2 (110) Surface. Science, 356, 299-303.
https://doi.org/10.1126/science.aam9147
[14] Moon, G.-H., Kim, S., Cho, Y.-J., et al. (2017) Synergistic Combi-nation of Bandgap-Modified Carbon Nitride and WO3 for Visible Light-Induced Oxidation of Arsenite Accelerated by In-Situ Fenton Reaction. Applied Catalysis B: Environmental, 218, 819-824.
https://doi.org/10.1016/j.apcatb.2017.07.021
[15] Hou, Y., Wang, F., Qin, C., et al. (2022) A Self-Healing Elec-trocatalytic System via Electrohydrodynamics Induced Evolution in Liquid Metal. Nature Communications, 13, Article No. 7625.
https://doi.org/10.1038/s41467-022-35416-w
[16] Liu, L.-Y., Xie, G.-J., Xing, D.-F., et al. (2020) Biological Conversion of Methane to Polyhydroxyalkanoates: Current Advances, Challenges, and Perspectives. Environmental Sci-ence and Ecotechnology, 2, Article ID: 100029.
https://doi.org/10.1016/j.ese.2020.100029
[17] Henares, M., Ferrero, P., San-Valero, P., Martínez-Soria, V. and Izquierdo, M. (2018) Performance of a Polypropylene Membrane Contactor for the Recovery of Dissolved Methane from Anaerobic Effluents: Mass Transfer Evaluation, Long-Term Operation and Cleaning Strategies. Journal of Membrane Science, 563, 926-937.
https://doi.org/10.1016/j.memsci.2018.06.045
[18] Fornaciari, J.C., Primc, D., Kawashima, K., et al. (2020) A Perspective on the Electrochemical Oxidation of Methane to Methanol in Membrane Electrode Assemblies. ACS Energy Letters, 5, 2954-2963.
https://doi.org/10.1021/acsenergylett.0c01508
[19] Liu, K., Smith, W.A. and Burdyny, T. (2019) Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO2 Reduction. ACS Energy Letters, 4, 639-643.
https://doi.org/10.1021/acsenergylett.9b00137
[20] Yuan, S., Li, Y., Peng, J., et al. (2020) Conversion of Methane into Liquid Fuels—Bridging Thermal Catalysis with Electrocatalysis. Advanced Energy Materials, 10, Article ID: 2002154.
https://doi.org/10.1002/aenm.202002154
[21] Promoppatum, P. and Viswanathan, V. (2016) Identifying Material and Device Targets for a Flare Gas Recovery System Utilizing Electrochemical Conversion of Methane to Methanol. ACS Sustainable Chemistry & Engineering, 4, 1736-1745.
https://doi.org/10.1021/acssuschemeng.5b01714
[22] Petrik, N.G. and Kimmel, G.A. (2011) Electron- and Hole-Mediated Reactions in UV-Irradiated O2 Adsorbed on Reduced Rutile TiO2 (110). The Journal of Physical Chem-istry C, 115, 152-164.
https://doi.org/10.1021/jp108909p
[23] Wu, S., Žurauskas, J., Domański, M., et al. (2021) Hole-Mediated Photoredox Catalysis: Tris(p-Substituted) Biarylaminium Radical Cations as Tunable, Precomplexing and Potent Photooxidants. Organic Chemistry Frontiers, 8, 1132-1142.
https://doi.org/10.1039/D0QO01609H
[24] Di Valentin, C. (2016) A Mechanism for the Hole-Mediated Water Photooxidation on TiO2 (101) Surfaces. Journal of Physics: Condensed Matter, 28, Article ID: 074002.
https://doi.org/10.1088/0953-8984/28/7/074002
[25] Qiao, M. and Titirici, M.M. (2018) Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. Chemistry—A European Journal, 24, 18374-18384.
https://doi.org/10.1002/chem.201804610
[26] Wagner, A., Sahm, C.D. and Reisner, E. (2020) Towards Molecular Understanding of Local Chemical Environment Effects in Electro- and Photocatalytic CO2 Reduction. Nature Catalysis, 3, 775-786.
https://doi.org/10.1038/s41929-020-00512-x
[27] Moon, G.-H., Yu, M., Chan, C.K. and Tüysüz, H. (2019) High-ly Active Cobalt-Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. An-gewandte Chemie, 131, 3529-3533.
https://doi.org/10.1002/ange.201813052
[28] Yu, M., Moon, G., Bill, E. and Tüysüz, H. (2019) Optimizing Ni-Fe Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Applied Energy Materials, 2, 1199-1209.
https://doi.org/10.1021/acsaem.8b01769
[29] Moon, G.-H., Wang, Y., Kim, S., Budiyanto, E. and Tüysüz, H. (2022) Preparation of Practical High-Performance Electrodes for Acidic and Alkaline Media Water Electrolysis. ChemSusChem, 15, e202102114.
https://doi.org/10.1002/cssc.202102114
[30] Rocha, R.S., Reis, R.M., Lanza, M.R.V. and Bertazzoli, R. (2013) Electrosynthesis of Methanol from Methane: The Role of V2O5 in the Reaction Selectivity for Methanol of a TiO2/RuO2/V2O5 Gas Diffusion Electrode. Electrochimica Acta, 87, 606-610.
https://doi.org/10.1016/j.electacta.2012.09.113
[31] Kim, R.S. and Surendranath, Y. (2019) Electrochemical Reoxi-dation Enables Continuous Methane-to-Methanol Catalysis with Aqueous Pt Salts. ACS Central Science, 5, 1179-1186.
https://doi.org/10.1021/acscentsci.9b00273
[32] Ma, J., Mao, K., Low, J., et al. (2021) Efficient Photoelectrochem-ical Conversion of Methane into Ethylene Glycol by WO3 Nanobar Arrays. Angewandte Chemie, 133, 9443-9447.
https://doi.org/10.1002/ange.202101701
[33] Jang, J., Shen, K. and Morales-Guio, C.G. (2019) Electrochemical Direct Partial Oxidation of Methane to Methanol. Joule, 3, 2589-2593.
https://doi.org/10.1016/j.joule.2019.10.004
[34] Wang, Q., Kan, M., Han, Q. and Zheng, G. (2021) Electrochemical Methane Conversion. Small Structures, 2, Article ID: 2100037.
https://doi.org/10.1002/sstr.202100037
[35] Xie, S., Lin, S., Zhang, Q., Tian, Z. and Wang, Y. (2018) Selective Electrocatalytic Conversion of Methane to Fuels and Chemicals. Journal of Energy Chemistry, 27, 1629-1636.
https://doi.org/10.1016/j.jechem.2018.03.015
[36] Sher, M.S.A., Oh, C., Park, H., et al. (2020) Catalytic Oxidation of Methane to Oxygenated Products: Recent Advancements and Prospects for Electrocatalytic and Photocatalytic Conversion at Low Temperatures. Advanced Science, 7, Article ID: 2001946.
https://doi.org/10.1002/advs.202001946
[37] Baltrusaitis, J., Jansen, I. and Schuttlefield Christus, J.D. (2014) Renewable Energy Based Catalytic CH4 Conversion to Fuels. Catalysis Science & Technology, 4, 2397-2411.
https://doi.org/10.1039/c4cy00294f
[38] Shi, T., Sridhar, D., Zeng, L. and Chen, A. (2022) Recent Advances in Catalyst Design for the Electrochemical and Photoelectrochemical Conversion of Methane to Value-Added Products. Electrochemistry Communications, 135, Article ID: 107220.
https://doi.org/10.1016/j.elecom.2022.107220
[39] Zhang, Y., Li, J. and Kornienko, N. (2021) Towards Atomic Precision in HMF and Methane Oxidation Electrocatalysts. Chemical Communications, 57, 4230-4238.
https://doi.org/10.1039/D1CC01155C
[40] Yin, H., Dou, Y., Chen, S., et al. (2020) 2D Electrocatalysts for Con-verting Earth-Abundant Simple Molecules into Value-Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 32, Article ID: 1904870.
https://doi.org/10.1002/adma.201904870
[41] de Souza, R.F.B., Florio, D.Z., Antolini, E., Antolini, E. and Neto, A.O. (2022) Partial Methane Oxidation in Fuel Cell-Type Reactors for Co-Generation of Energy and Chemicals: A Short Review. Catalysts, 12, Article No. 217.
https://doi.org/10.3390/catal12020217
[42] Richard, D., Huang, Y.-C. and Morales-Guio, C.G. (2021) Recent Ad-vances in the Electrochemical Production of Chemicals from Methane. Current Opinion in Electrochemistry, 30, Article ID: 100793.
https://doi.org/10.1016/j.coelec.2021.100793
[43] Abdelkader Mohamed, A.G., Zahra Naqviab, S.A. and Wang, Y. (2021) Advances and Fundamental Understanding of Electrocatalytic Methane Oxidation. ChemCatChem, 13, 787-805.
https://doi.org/10.1002/cctc.202001412
[44] Luo, J.H., Hong, Z.S., Chao, T.H. and Cheng, M.J. (2019) Quantum Mechanical Screening of Metal-N4-Functionalized Graphenes for Electrochemical Anodic Oxidation of Light Alkanes to Oxygenates. The Journal of Physical Chemistry C, 123, 19033-19044.
https://doi.org/10.1021/acs.jpcc.9b04803
[45] Tomita, A., Nakajima, J. and Hibino, T. (2008) Direct Oxidation of Methane to Methanol at Low Temperature and Pressure in an Electrochemical Fuel Cell. Angewandte Chemie Interna-tional Edition, 46, 1462-1464.
https://doi.org/10.1002/anie.200703928
[46] Van Vleck, J.H. (1933) On the Theory of the Structure of CH4 and Related Molecules. Part I. The Journal of Chemical Physics, 1, 177-182.
https://doi.org/10.1063/1.1749270
[47] Prajapati, A., Collins, B.A., Goodpaster, J.D. and Singh, M.R. (2021) Fundamental Insight into Electrochemical Oxidation of Methane towards Methanol on transition Metal Oxides. Proceed-ings of the National Academy of Sciences of the United States of America, 118, e2023233118.
https://doi.org/10.1073/pnas.2023233118
[48] Kang, Y., Li, Z., Lv, X., et al. (2021) Active Oxygen Promoted Electrochemical Conversion of Methane on Two-Dimensional Carbide (MXenes): From Stability, Reactivity and Selec-tivity. Journal of Catalysis, 393, 20-29.
https://doi.org/10.1016/j.jcat.2020.11.008
[49] Boyd, M.J., Latimer, A.A., Dickens, C.F., et al. (2019) Elec-tro-Oxidation of Methane on Platinum under Ambient Conditions. ACS Catalysis, 9, 7578-7587.
https://doi.org/10.1021/acscatal.9b01207
[50] Lee, B. and Hibino, T. (2011) Efficient and Selective Formation of Methanol from Methane in a Fuel Cell-Type Reactor. Journal of Catalysis, 279, 233-240.
https://doi.org/10.1016/j.jcat.2010.12.020
[51] Song, Y., Zhao, Y., Nan, G., et al. (2020) Electrocatalytic Oxidation of Methane to Ethanol via NiO/Ni Interface. Applied Catalysis B: Environmental, 270, Article ID: 118888.
https://doi.org/10.1016/j.apcatb.2020.118888
[52] Oh, C., Kim, J., Hwang, Y.J., Ma, M. and Park, J.H. (2021) Electrocatalytic methane oxidation on Co3O4-incorporated ZrO2 nanotube powder. Applied Catalysis B: Environmental, 283, Article ID: 119653.
https://doi.org/10.1016/j.apcatb.2020.119653
[53] Xie, Z., Chen, M., Chen, Y., et al. (2021) Electrocatalytic Me-thane Oxidation to Ethanol via Rh/ZnO Nanosheets. The Journal of Physical Chemistry C, 125, 13324-13330.
https://doi.org/10.1021/acs.jpcc.1c03416
[54] Ma, M., Oh, C., Kim, J., Moon, J.H. and Park, J.H. (2019) Electro-chemical CH4 Oxidation into Acids and Ketones on ZrO2: NiCo2O4 Quasi-Solid Solution Nanowire Catalyst. Applied Catalysis B: Environmental, 259, Article ID: 118095.
https://doi.org/10.1016/j.apcatb.2019.118095
[55] Hahn, F. and Melendres, C .A. (2001) Anodic Oxidation of Methane at Noble Metal Electrodes: an “in Situ” Surface Enhanced Infrared Spectroelectrochemical Study. Electrochimica Acta, 46, 3525-3534.
https://doi.org/10.1016/S0013-4686(01)00649-1
[56] Nandenha, J., Fontes, E.H., Piasentin, R.M., Fonseca, F.C. and Neto, A.O. (2018) Direct Oxidation of Methane at Low Temperature Using Pt/C, Pd/C, Pt/C-ATO and Pd/C-ATO Electrocatalysts Prepared by Sodium Borohydride Reduction Process. Journal of Fuel Chemistry and Technology, 46, 1137-1145.
https://doi.org/10.1016/S1872-5813(18)30046-X
[57] Ren, X., Wang, Y., Liu, A., et al. (2020) Current Progress and Performance Improvement of Pt/C Catalysts for Fuel Cells. Journal of Materials Chemistry A, 8, 24284-24306.
https://doi.org/10.1039/D0TA08312G
[58] Nandenha, J., Piasentin, R.M., Silva, L.M.G., et al. (2019) Partial Oxi-dation of Methane and Generation of Electricity Using a PEMFC. Ionics, 25, 5077-5082.
https://doi.org/10.1007/s11581-019-03186-z
[59] Wang, Q., Li, T., Yang, C., et al. (2021) Electrocatalytic Methane Oxidation Greatly Promoted by Chlorine Intermediates. Angewandte Chemie International Edition, 60, 17398-17403.
https://doi.org/10.1002/anie.202105523
[60] Exner, K.S., Anton, J., Jacob, T. and Over, H. (2014) Controlling Se-lectivity in the Chlorine Evolution Reaction over RuO2-Based Catalysts. Angewandte Chemie, 126, 11212-11215.
https://doi.org/10.1002/ange.201406112
[61] Feng, N., Lin, H., Song, H., et al. (2021) Efficient and Selective Photocatalytic CH4 Conversion to CH3OH with O2 by Controlling Overoxidation on TiO2. Nature Communications, 12, Article No. 4652.
https://doi.org/10.1038/s41467-021-24912-0
[62] Perry, S.C., de León, C.P. and Walsh, F.C. (2020) The Design, Performance and Continuing Development of Electrochemical Reactors for Clean Electrosynthesis. Journal of the Elec-trochemical Society, 167, Article ID: 155525.
https://doi.org/10.1149/1945-7111/abc58e
[63] Xu, Y. and Lin, L. (1999) Recent Advances in Methane Dehy-dro-Aromatization over Transition Metal Ion-Modified Zeolite Catalysts Under Non-Oxidative Conditions. Applied Ca-talysis A: General, 188, 53-67.
https://doi.org/10.1016/S0926-860X(99)00210-0
[64] Lin, X.-Y., Li, J.-Y., Qi, M.-Y., Tang, Z.-R. and Xu, Y.-J. (2021) Methane Conversion over Artificial Photocatalysts. Catalysis Communications, 159, Article ID: 106346.
https://doi.org/10.1016/j.catcom.2021.106346
[65] Spinner, N. and Mustain, W.E. (2013) Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature. ECS Transactions, 53, 1-20.
https://doi.org/10.1149/05323.0001ecst
[66] Li, W., He, D., Hu, G., et al. (2018) Selective CO Production by Photoelectrochemical Methane Oxidation on TiO2. ACS Central Science, 4, 631-637.
https://doi.org/10.1021/acscentsci.8b00130
[67] O’Reilly, M.E., Kim, R.S., Oh, S. and Surendranath, Y. (2017) Catalytic Methane Monofunctionalization by an Electrogenerated High-Valent Pd Intermediate. ACS Central Science, 3, 1174-1179.
https://doi.org/10.1021/acscentsci.7b00342
[68] Ma, M., Jin, B.J., Li, P., et al. (2017) Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature. Advanced Science, 4, Article ID: 1700379.
https://doi.org/10.1002/advs.201700379
[69] Rocha, R.S., Camargo, L.M., Lanza, M.R.V. and Bertazzoli, R. (2010) A Feasibility Study of the Electro-Recycling of Greenhouse Gases: Design and Characterization of a (TiO2/RuO2)/PTFE Gas Diffusion Electrode for the Electrosynthesis of Methanol from Methane. Electrocatalysis, 1, 224-229.
https://doi.org/10.1007/s12678-010-0029-7
[70] Frese Jr., K.W. (1991) Partial Electrochemical Oxidation of Me-thane under Mild Conditions. Langmuir, 7, 13-15.
https://doi.org/10.1021/la00049a004
[71] Omasta, T.J., Rigdon, W.A., Lewis, C.A., Stanis, R.J., Liu, R., Fan, C.Q. and Mustain, W.E. (2015) Two Pathways for Near Room Temperature Electrochemical Conversion of Methane to Methanol. ECS Transactions, 66, 129-136.
https://doi.org/10.1149/06608.0129ecst
[72] Morejudo, S.H., Zanón, R., Escolástico, S., et al. (2016) Direct Con-version of Methane to Aromatics in a Catalytic Co-Ionic Membrane Reactor. Science, 353, 563-566.
https://doi.org/10.1126/science.aag0274