水系锌离子电池三维负极材料研究进展
Research Progress of Three-Dimensional Anode Materials for Aqueous Zinc Ion Batteries
DOI: 10.12677/JAPC.2023.122004, PDF, HTML, XML, 下载: 272  浏览: 665 
作者: 来 森, 许铭冬, 王佳帆, 唐凌枫, 叶宸硕:浙江理工大学机械工程学院,浙江 杭州
关键词: 锌离子电池阳极材料三维Zinc Ion Battery Anode Material 3D
摘要: 锌离子电池因其资源丰富、成本低廉、环境友好等优点近年来逐渐得到发展。因此,ZIB受到了研究人员的极大关注,被认为是下一代便携式储能系统。但锌枝晶和一系列副反应导致锌枝晶整体性能差,制约了锌枝晶的发展。构建三维锌阳极是提高其电化学性能的有效途径。本文综述了不同结构的锌阳极,包括三维骨架单层网络、三维离子筛夹层、梯度电极设计和预制锌负极沉积界面。三维锌阳极具有较高的比表面积,较高的比表面积为锌离子提供了更多的成核位点,促使锌离子均匀沉积。并且由于电流密度降低,成核过电位也会降低;三维结构为锌离子的运输提供了通道,有利于锌离子通量的均匀,也可以限制锌的沉积行为,从而减少阳极的体积变化。希望能为锌阳极的发展指明方向。
Abstract: Zinc ion battery has been developed gradually in recent years due to its advantages of rich resources, low cost and environmental friendliness. Therefore, ZIB has received great attention from researchers and is considered as the next generation of portable energy storage system. However, zinc dendrites and a series of side reactions lead to poor overall performance of zinc dendrites, which restricts the development of zinc dendrites. The construction of three-dimensional zinc anode is an effective way to improve its electrochemical performance. In this paper, zinc anodes with different structures are reviewed, including three-dimensional skeleton monolayer network, three-dimensional ion sieve interlayer, gradient electrode design and prefabricated zinc anode deposition interface. Three-dimensional zinc anode has a high specific surface area, which provides more nucleation sites for zinc ions and promotes the uniform deposition of zinc ions. And because of the decrease of current density, the nucleation overpotential will also decrease; the three-dimensional structure provides a channel for the transportation of zinc ions, which is conducive to the uniformity of zinc ion flux, and can also limit the deposition behavior of zinc, thus reducing the volume change of the anode. It is hoped to point out the direction for the development of zinc anode.
文章引用:来森, 许铭冬, 王佳帆, 唐凌枫, 叶宸硕. 水系锌离子电池三维负极材料研究进展[J]. 物理化学进展, 2023, 12(2): 27-36. https://doi.org/10.12677/JAPC.2023.122004

1. 引言

近年来,随着石油、煤油等不可再生资源的限制以及环境污染问题的出现,国家实施了可持续发展战略和环境保护政策。电池作为高效的电化学储能装置,已被广泛应用于各个领域,如电网的电力储能、电动汽车和移动通信等。锂离子电池(LIBs)因其较高的能量密度和良好的循环性能而在电池领域内占据主要地位。然而,LIBs受到锂资源有限、成本高和环境影响的困扰,导致锂离子电池在实践中的应用发展受到限制。锌离子电池(ZIB)可以有效地解决这些问题,特别是在水系电解质中 [1] [2] [3] 。1988年,水基可充电锌锰电池使用中性和弱酸性电解质。随后,锌基电池处于持续的开发中。直到2011年,Kang和他的同事首次提出了“ZIB”的概念 [4] 。水系电池由于其极高的安全性和环境友好性而极具发展潜力。

在所有水中稳定的金属中,锌是最活跃的,并且具有最低的工作电位。此外,锌作为阳极材料有着许多吸引人的优点。首先,它有着很好的电化学特性,例如它在水系电解质中具有可充电性,适当的低电化学电位(与标准析氢电位[SHE] −0.762 V相比),高理论容量(820 mAh∙g−1或5855 mAh∙cm−3),以及与水的适度反应性。另外,它的成本极低,在地球上有很高的自然丰度。此外,还有锌金属本身的特点,如六边形密堆晶格结构,相对高的导电性。因此,锌被认为是一种有前途的水基ZIBs阳极。但是,锌阳极中的枝晶和副反应问题,如腐蚀、钝化和析氢等问题都有待解决,严重地阻碍了实际应用。

水系ZIB由锌阳极、水系电解液和阴极组成。为了提高ZIB的性能,人们做了很多努力,包括阳极材料的改性。目前,锌阳极材料的改性包括二维和三维两种主要形式。三维锌阳极主要包括纯锌阳极和非纯锌阳极,此外还有通过增加三维夹层来调节金属锌阳极的表面电场和离子分布状态,以及各种无阳极ZIB。与平面锌箔相比,三维锌阳极可以通过防止枝晶的生长来提高电池的电化学性能,包括比容量、稳定性、循环寿命、阳极利用率等。三维锌阳极的机理与平面锌箔相同,不同的是沉积位置,锌离子不仅可以在三维结构表面电镀,还可以通过孔隙沉积到结构内部。一方面,三维锌阳极具有较高的比表面积,较高的比表面积为锌离子提供了更多的成核位点,促使锌离子均匀沉积。并且由于电流密度降低,成核过电位也会降低。另一方面,三维结构为锌离子的运输提供了通道,有利于锌离子通量的均匀,也可以限制锌的沉积行为,从而减少阳极的体积变化。尽管使用三维锌阳极可以在一定程度上缓解锌枝晶, 但它们仍是不可避免的。因此,有必要对三维锌阳极进行回顾,进一步探讨综合解决方案。与以往报道的关于锌阳极的综述不同,本文以三维阳极为重点,首次对三维锌阳极中出现的新型三维构建方式进行了系统的综述,总结了三维锌阳极的现有问题,提出了未来三维锌阳极综合设计的观点,希望能为储能电池的发展提供一条有研究价值的道路。因此本综述将介绍以下几个方面(图1)。

Figure 1. Three-dimensional anode excellent work timeline in recent years. The first picture above is 3D sponge zinc anode [5] . The second picture is Zn/SS anode [6] . The third picture is three-dimensional nickel zinc anode [7] . The first picture below is GF@Zn Anode [8] . The second picture is DCP-Zn anode [9] . The third picture is gradient foam nickel anode [10]

图1. 近年来三维阳极优秀工作时间轴。上图第一张图片是3D海绵锌阳极 [5] 。第二张图片是Zn/SS阳极 [6] 。第三张图片是三维镍锌阳极 [7] 。下图第一张图片是GF@Zn阳极 [8] 。第二张图片是DCP-Zn阳极 [9] 。第三张图片是梯度泡沫镍阳极 [10]

2. 三维骨架单层网络

复杂的多层三维电流收集器存在分层沉积的麻烦,这意味这枝晶容易在集流器顶部生长,虽然很多研究者提出了自下而上的沉积方法,但也增加了工艺难度,难以实现。因此具有三维股骨架特性的单层网络结构避免了这一难题,如不锈钢网(SSM) [11] 、铜网(CM) [12] 、孔状镍纳米管膜(HNNM) [13] 和碳布(CC) [14] 等。由于不同的基底材料对锌的亲和能力不同,在实际电镀过程中不能达到理想的效果。因此研究人员提供了多种改性策略来改善锌枝晶的形成,延长循环寿命 [15] 。

Zhao等人通过在不锈钢网(Cu-Sn@SSM)上建立了低成核势垒的Cu-Sn合金层 [16] ,通过简单的共沉积策略消除枝晶的形成,如图2所示。Cu-Sn合金易于与Zn符合,转变成Cu-Zn合金和Sn金属,从而实现了离子分布的均匀化和Zn沉积的致密化。因此,Cu-Sn@SSM支架在10 mA∙cm−2的高电流密度下具有1 mV的极低成核电位,具有显著的库仑效率(2000多次循环99.4%)。这种高质量的锌网(Zn@Cu-Sn@SSM)提高了镀锌的均匀性,有效抑制了副反应。在Zn@Cu-Sn@SSM对称电池中,在10mA∙cm−2下,容量为3 mAh∙cm−2,寿命超过1050小时。值得注意的是,当与NVO阴极配对时,在2 A/g的速度下,电池在1000次循环后的容量为162 mAh/g (与明显的容量衰减相比,Zn@SSM的对应产品只有400次循环)。有趣的是,Cu-Sn合金与Zn复合时能自发转化为Cu-Zn合金和金属Sn,使Zn沉积层致密化。这种Cu-Sn合金骨架可以容纳大量的Zn作为高利用率的Zn网。Zn均匀地沉积在Cu-Sn合金上,每根纤维上都覆盖了Zn层。结构在镀锌过程中得到了很好的保存,仅增加了纤维的厚度,而没有填充缝隙。此外,制备的Zn@Cu-Sn@SSM具有良好的抑氢性能和耐腐蚀性能。因此,在改性电极上没有出现明显的气泡和枝晶。

Figure 2. a) Schematic diagram of zinc deposition on stainless steel mesh (SSM). b) The schematic diagram of zinc deposition after copper-tin alloy is established on the stainless steel mesh. c) Cu-Sn@SSM Long cycle curve

图2. a) 在不锈钢网(SSM)上锌沉积示意图。b) 在不锈钢网上建立铜锡合金后锌沉积示意图。c) Cu-Sn@SSM长循环曲线

此外,Zhang等通过阳极氧化和空气退火制备了CuO纳米线修饰的铜网 [17] 。多结构的亲锌铜网具有均匀的锌离子沉积行为,可以同时调节离子和电场的分布。随后进行镀锌以获得无枝晶锌阳极(CM@CuO@Zn)。对制备的对称电池CM@CuO@Zn在电流密度为1 mA∙cm−2的情况下可以稳定工作340 h,并且具有较低的电压迟滞(20 mV)。而CM@Zn相对较差(60 h),电压响应快速增加的原因是形成了大量的“死锌”,不利于稳定运行。循环后,锌在框架中的生长基本可以受到限制。由于CuO本身具有较好的锌亲和力,通过增强锌的吸附能力促进锌的均匀成核。在锌成核过程中,CuO纳米线被还原为Cu纳米线。铜纳米线形成导电网络,有利于电子的传输。提高了锌涂层的均匀性,限制了锌在3D框架中的生长。

3. 三维离子筛夹层

然而,关于锌沉积过程中的解溶剂化过程的报道很少。通常情况下,电解质中的水分子主要可以分为两部分。一种是自由水分子,存在于本体电解质中 [18] 。另一种是溶剂化水,在Zn2+离子转移沉积之前,解溶剂化过程中不可避免地会释放一些双电层(EDL)内的活性水分子。这种电化学腐蚀会使锌阳极明显恶化,并伴随枝晶的形成、形貌的改变和副产物的生成。近年来,金属有机框架(MOFs) [19] 和共价有机框架(COF) [20] 被开发用于帮助解溶剂化过程和降低水分子的反应性。得益于MOFs和COF涂层对水分子的腐蚀作用,Zn阳极的电镀/剥离行为在寿命和电沉积形态方面得到了极大的增强。然而,MOFs和COF涂层的高成本限制了锌阳极的广泛应用。

Li等从物理功能和化学功能两方面提出了以双功能氮掺杂碳网络为中间层的无枝晶锌阳极 [21] 。采用聚丙烯腈静电纺丝和高温煅烧工艺制备了双功能氮掺杂碳网络夹层(NCL),如图3所示。根据实验和理论研究,无枝晶锌阳极的产生主要有两个原因:1、物理效应上,位于阳极和隔板之间的NCL可以平衡Zn表面的界面静电场,引导Zn离子均匀沉积;2、在化学作用上,NCL中锚定在碳上的吡啶和吡咯氮活性位可以重建[Zn(H2O)6]2+的典型溶剂化结构。利用双功能中间层的物理和化学作用,成功地抑制了Zn枝晶和副反应。最后得到了长期高效的NCL-Zn/NCL-Zn对称电池。双功能NCL的引入也明显优化了全MnO2/NCL-Zn电池的性能。

Figure 3. Principle and long cycle performance of dual-functional nitrogen mixed carbon network as an intermediate layer to regulate zinc deposition

图3. 双功能氮参杂碳网络作为中间层调节锌沉积的原理及长循环性能

Zhou等提出了一种ZnO多孔片组装的筛状界面 [22] ,以调节Zn2+的通量和输运,从而显著稳定锌阳极。通过碱式硫酸锌纳米片的自模板热分解合成ZnO片,形成独特的多孔结构,成本低,操作简单,更易于大规模生产,并作为锌阳极的保护层,有效限制锌枝晶的生长。此外,由于ZnO多孔片的疏水特性,锌阳极的腐蚀行为显著减轻。因此,锌阳极在不同电解质体系(如ZnSO4和Zn(CF3SO3)2电解质)中的稳定性得到了极大的优化。在ZnO多孔片的保护下,无论在ZnSO4还是Zn(CF3SO3)2电解质体系中,Zn|Zn对称电池都实现了超过1000 h的长周期寿命。更重要的是,ZIB的循环寿命大大提高,在5 A g−1在电流密度为1 A g−1

4. 梯度电极设计

近期报道了具有多通道晶格结构和超亲水表面的Ni-Zn电极 [23] ,有效地改善了电场分布,诱导了均匀的Zn沉积尽管采用了3D设计,但在长期循环后,电极顶部Zn枝晶的生长仍然会带来短路问题。具有梯度孔隙率的电极也被证明可以有效地促进离子传输和影响沉积行为,从而提高循环稳定性。结合梯度孔隙度和梯度颗粒尺寸的双梯度石墨电极比单梯度或无梯度设计的电极具有更强的速率能力对于锌阳极,在三维框架上由底部导电层和顶部绝缘层组成的梯度氟化合金电极上,在3 mA∙cm−2和700 h下观察到高可逆镀锌条带行为。在另一项工作中,采用底部泡沫Cu、中间泡沫Ni和顶部NiO涂层制备了梯度Zn阳极 [24] [25] [26] ,使Zn/Zn2+反应抗力从底部到顶部递增。梯度锌阳极有效地避免了顶部表面枝晶的生长,并在3 mA∙cm−2下稳定循环250 h。虽然这种梯度设计提高了循环稳定性,但循环试验的电流密度通常较低(<5 mA∙cm−2),这限制了实际应用。此外,以往的研究大多集中在一两个功能梯度上,这可能表明影响Zn沉积行为的能力有限。因此,在高电流密度下,设计和制备能有效抑制Zn枝晶生长、提高循环性能的多梯度Zn阳极具有重要意义。

Gao等报道了一种三梯度电极设计 [10] ,如图4所示,它很好地集成了梯度导电性、亲锌性和孔隙率,用于无枝晶锌阳极。三梯度设计协同引入了更高的Zn2+离子通量,优化了电极底部的局部电荷输运动力学,从而促进了Zn2+离子从电极中迁移从上到下,实现了锌金属自下而上的沉积行为。这样不仅实现了可控均匀的锌沉积,而且防止了顶部枝晶生长可能造成的短路。我们进一步通过机械轧制三种具有预先设计的导电性、亲锌性和孔隙率的泡沫来构建三梯度电极,该电极在5 mA∙cm−2/2.5mAh∙cm−2和10 mA∙cm−2/1mAh∙cm−2条件下分别稳定循环400小时和250小时,优于无梯度、单梯度和双梯度电极。

Figure 4. Structure and long cycle performance of three gradient electrode

图4. 三梯度电极结构及其长循环性能

5. 预制锌负极沉积界面

Figure 5. Bare zinc foil electrode and Cu@Cu3Zn Schematic diagram of zinc deposition behavior on the surface of network modified zinc foil electrode

图5. 裸锌箔电极和Cu@Cu3Zn网络修饰锌箔电极表面锌沉积行为示意图

Xie等提出了一种合金网络来调节锌沉积界面 [27] ,以实现稳定的无阳极镀锌。通过锌蒸气与铜纳米线之间的高温气固反应合成的Cu-zn合金(记为Cu@Cu3Zn)被组装成三维合金网络,如图5所示。在Zn//碳包覆铜箔(CCF)非对称电池体系、Zn//Zn对称电池体系和Zn3V3O8阴极锌基电池体系中,综合研究了Cu-Zn合金网络对锌沉积界面的调制作用。研究了合金网络在锌沉积界面上的调制机制。结果表明,该合金网络不仅可以通过抑制二维扩散和腐蚀反应来稳定锌沉积界面,还可以通过加速锌脱溶和成核过程来增强锌镀/剥出动力学。在此基础上,利用Zn3V3O8阴极和合金网络修饰的CCF集流器构建了具有良好循环稳定性的无阳极ZIB。

6. 结论

综上所述,ZIBs具有经济效益、安全、环保和固有的特点,是最有发展前景的储能装置。它已经经历了从碱性电解质到中性/弱酸性电解质的转型。但库仑效率低,可逆性差,限制了其在下一代电池中的应用。本文全面综述了ZIBs所面临的挑战,包括枝晶生长、析氢和腐蚀以及钝化。具有多孔特性的d结构负极材料(碳基板材料、金属基板材料和其他基板材料)有利于Zn均匀沉积 [28] [29] [30] [31] [32] ,为沉积的Zn金属提供容纳空间。三维导电网络可以降低局部电流密度,阻碍Zn枝晶的形成。亲锌材料可以作为活性位点诱导均匀的金属生长,降低成核过电位。虽然三维结构设计已经取得了重大进展,但仍有许多挑战需要解决 [33] [34] 。在此,我们对锌阳极的未来发展提出以下策略:

(1) 建立统一的评价标准:为了评价三维结构阳极的性能,需要建立一个系统的阳极表征。锌通常通过电沉积沉积成三维骨架,沉积容量需要仔细讨论,因为沉积锌的量也会影响阳极的性能。同时,大部分工作都是在低面容量和低电流密度下研究锌阳极的性能。虽然在实验室水平的测试中,使用3D框架作为锌沉积衬底可以在低电流密度和实际容量下获得较长的循环寿命,但在实际应用中,大面积容量和高电流密度是评价这些各种保护策略的主要指标。此外,文章中还应提供放电深度(DOD)的关键参数,以客观评价ZIBs的性能。DOD可以反映循环过程中的总能量密度和循环性能 [35] 。因此,提供DOD、面容量、电流密度等指标有助于评价ZIBs的性能。关于电池的储能机制,已经提出了几种机制,但具体的机制尚不清楚。经过研究人员的不断探索,目前已有纯锌的三维结构和不同基底上镀锌的阳极结构,以及通过其他方法获得的其他三维锌阳极结构。而长寿命、高性能的锌阳极一直是人们追求的目标 [36] [37] [38] [39] 。

(2) 寻找合适的3D基底。沉积在基底上的锌的数量是有限的。一种合适的衬底应满足以下条件,活性物质的高负载能力、大比表面积和结构稳定性,如MOFs [40] 、MXenes [41] 、氟化碳(CFx) [42] 、杂化材料 [43] 。此外,优化3D衬底的通道尺寸也同样重要。3D结构的阳极可以为电子传输和Zn沉积提供均匀的电场和多孔通道,但衬底的通道大小会影响电池的能量密度。狭窄的通道不利于电解质的扩散和Zn的沉积。然而,多孔性大的衬底由于机械强度低,在循环过程中容易发生坍塌。因此,优化三维基底的通道尺寸具有重要意义。同时,多元素共掺杂在理论上可以有效地引导Zn均匀成核。

(3) 采用原位表征和理论模拟。这些亲锌材料(如N, C=O,-NH2,Cu,Ag等) [44] 的机理在一些已经发表的文章中没有做具体的分析。先进的原位表征技术(如原位XRD、原位光学显微镜技术和原位透射电镜技术)可以揭示锌与亲锌材料之间的相互作用。此外,在研究三维衬底设计时,还应强调理论模拟的重要性。理论计算可进一步说明三维衬底抑制锌枝晶生长的原理。

参考文献

[1] Guo, N., Huo, W.J., Dong, X.Y., Sun, Z.F., Lu, Y.T., Wu, X.W., Dai, L., Wang, L., Lin, H.C., Liu, H.D., Liang, H.F., He, Z.X. and Zhang, Q.B. (2022) A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 6, Article ID: 2200597.
https://doi.org/10.1002/smtd.202200597
[2] Zheng, S.H., Zhao, W.Y., Chen, J.P., Zhao, X.L., Pan, Z.H., Yang, X.W. and Yang, X.W. (2023) 2D Materials Boost Advanced Zn Anodes: Principles, Advances and Challenges. Nano-Micro letters, 15, Article No. 46.
https://doi.org/10.1007/s40820-023-01021-9
[3] Yang, J.J., Zhao, R., Wang, Y.S., Hu, Z.F., Wang, Y.H., Zhang, A.Q., Wu, C. and Bai, Y. (2023) Insights on Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constructing Techniques, Applicability and Prospective. Advanced Functional Materials, 33, Article ID: 2213510.
https://doi.org/10.1002/adfm.202213510
[4] Li, H.F., Ma, L.T., Han, C.P., Wang, Z.F., Liu, Z.X., Tang, Z.J. and Zhi, C.Y. (2019) Advanced Rechargeable Zinc-Based BATTERIES: Recent progress and Future Perspectives. Nano Energy, 62, 500-587.
https://doi.org/10.1016/j.nanoen.2019.05.059
[5] Parker, J.F., Chervin, C.N., Pala, I.R., Machler, M., Burz, M.F., Long, J.W. and Rolison, D.R. (2017) Rechargeable Nickel-3D Zinc Batteries: An Energy-Dense, Safer Alternative to Lithium-Ion. Science, 356, 415-418.
https://doi.org/10.1126/science.aak9991
[6] Wang, Z., Huang, J.H., Guo, Z.W., Dong, X.L., Liu, Y., Wang, Y.G. and Xia, Y.Y. (2019) A Metal-Organic Framework Host for Highly Reversible Dendrite-Free Zinc Metal Anodes. Joule, 3, 1289-1300.
https://doi.org/10.1016/j.joule.2019.02.012
[7] Zhang, G.H., Zhang, X.N., Liu, H.Z., Li, J.H., Chen, Y.Q. and Duan, H.G. (2021) 3D-Printed Multi-Channel Metal Lattices Enabling Localized Electric-Field Redistribution for Dendrite-Free Aqueous Zn Ion Batteries. Advanced Energy Materials, 11, Article ID: 2003927.
https://doi.org/10.1002/aenm.202003927
[8] Chao, D.L., Zhu, C.R.R., Song, M., Liang, P., Zhang, X., Tiep, N.H., Zhao, H.F., Wang, J., Wang, R.M., Zhang, H. and Fan, H.J. (2018) A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 30, Article ID: 1803181.
https://doi.org/10.1002/adma.201803181
[9] Guo, W.B., Cong, Z.F., Guo, Z.H., Chang, C.Y., Liang, X.Q., Liu, Y.D., Hu, W.G. and Pu, X. (2020) Dendrite-Free Zn Anode with Dual Channel 3D Porous Frameworks for Rechargeable Zn Batteries. Energy Storage Materials, 30, 104-112.
https://doi.org/10.1016/j.ensm.2020.04.038
[10] Gao, Y., Cao, Q.H., Pu, J., Zhao, X., Fu, G.W., Chen, J.P., Wang, Y.X. and Guan, C. (2022) Stable Zn Anodes with Triple Gradients. Advanced Materials, 35, Article ID: 2207573.
https://doi.org/10.1002/adma.202207573
[11] Su, S.Y., Xu, Y., Wang, Y., Wang, X.Y., Shi, L., Wu, D., Zou, P.C., Nairan, A., Lin, Z.Y., Kang, F.Y. and Yang, C. (2019) Holey Nickel Nanotube Reticular Network Scaffold for High-Performance Flexible Rechargeable Zn/MnO2 Batteries. Chemical Engineering Journal, 370, 330-336.
https://doi.org/10.1016/j.cej.2019.03.138
[12] Zhao, Q.W., Liu, W., Chen, Y.J. and Chen, L.B. (2022) Ultra-Stable Zn Metal Batteries with Dendrite-Free Cu-Sn Alloy Induced High-Quality Composite Zn Mesh. Chemical Engineering Journal, 450, Article ID: 137979.
https://doi.org/10.1016/j.cej.2022.137979
[13] Zhang, Q., Luan, J.Y., Huang, X.B., Zhu, L., Tang, Y.G., Ji, X.B. and Wang, H.Y. (2020) Simultaneously Regulating the Ion Distribution and Electric Field to Achieve Dendrite-Free Zn Anode. Small Methods, 16, Article ID: 2000929.
https://doi.org/10.1002/smll.202000929
[14] Li, Y.F., Zhao, D.Y., Cheng, J.J., Lei, Y., Zhang, Z.S., Zhang, W.M. and Zhu, Q.C. (2022) A Bifunctional Nitrogen Doped Carbon Network as the Interlayer for Dendrite-Free Zn Anode. Chemical Engineering Journal, 452, Article ID: 139264.
https://doi.org/10.1016/j.cej.2022.139264
[15] Zhou, Y.J., Xie, S.Y., Li, Y., Zheng, Z.Y. and Dong, L.B. (2023) Sieve-Like Interface Built by ZnO Porous Sheets towards Stable Zinc Anodes. Journal of Colloid and Interface Science, 630, 676-684.
https://doi.org/10.1016/j.jcis.2022.10.141
[16] Liang, G.J., Zhu, J.X., Yan, B.X., Li, Q., Chen, A., Chen, Z., Wang, X.Q., Xiong, B., Fan, J. and Xu, J. (2022) Gradient Fluorinated Alloy to Enable Highly Reversible Zn-Metal Anode Chemistry. Energy & Environmental Science, 15, 1086-1096.
https://doi.org/10.1039/D1EE03749H
[17] Shen, Z.X., Luo, L., Li, C.W., Pu, J., Xie, J.P., Wang, L.T., Huai, Z., Dai, Z.Y., Yao, Y.G. and Hong, G. (2021) Stratified Zinc-Binding Strategy toward Prolonged Cycling and Flexibility of Aqueous Fibrous Zinc Metal Batteries. Advanced Energy Materials, 11, Article ID: 2100214.
https://doi.org/10.1002/aenm.202100214
[18] Zhong, Y.J., Cao, C.C., Tadé, M.O. and Shao, Z.P. (2022) Ionically and Electronically Conductive Phases in a Composite Anode for High-Rate and Stable Lithium Stripping and Plating for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 14, 38786-38794.
https://doi.org/10.1021/acsami.2c09801
[19] Zhong, Y.J., Xu, X.M., Veder, J.P. and Shao, Z.P. (2020) Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. Iscience, 23, Article ID: 100943.
https://doi.org/10.1016/j.isci.2020.100943
[20] Zhong, Y.J., Xu, X.M., Liu, P.Y., Ran, R., Jiang, S.P., Wu, H.W. and Shao, Z.P. (2020) A Function-Separated Design of Electrode for Realizing High-Performance Hybrid Zinc Battery. Advanced Energy Materials, 10, Article ID: 2002992.
https://doi.org/10.1002/aenm.202002992
[21] Xie, S.Y., Li, Y. and Dong, L.B. (2023) Stable Anode-Free Zinc-ion Batteries Enabled by Alloy Network-Modulated Zinc Deposition Interface. Journal of Energy Chemistry, 76, 32-40.
https://doi.org/10.1016/j.jechem.2022.08.040
[22] Jian, Q.P., Wan, Y.H., Sun, J., Wu, M.C. and Zhao, T.S. (2020) A Dendrite-Free Zinc Anode for Rechargeable Aqueous Batteries. Journal of Materials Chemistry A, 8, 20175-20184.
https://doi.org/10.1039/D0TA07348B
[23] Li, Y., Wu, L.S., Dong, C., Wang, X., Dong, Y.F., He, R.H. and Wu, Z.S. (2023) Manipulating Horizontal Zn Deposition with Graphene Interpenetrated Zn Hybrid Foils for Dendrite-Free Aqueous Zinc Ion Batteries. Energy & Environmental Science.
https://doi.org/10.1002/eem2.12423
[24] Chen, G.Y., Sang, Z.Y., Cheng, J.H., Tan, S.D., Yi, Z.H., Zhang, X.Q., Si, W.P., Yin, Y.X., Liang, J. and Hou, F. (2022) Reversible and Homogenous Zinc Deposition Enabled by In-Situ Grown Cu Particles on Expanded Graphite for Dendrite-free and Flexible Zinc Metal Anodes. Energy Storage Materials, 50, 589-597.
https://doi.org/10.1016/j.ensm.2022.05.036
[25] Li, C.P., Shi, X.D., Liang, S.Q., Ma, X.M., Han, M.M., Wu, X.W. and Zhou, J. (2019) Spatially Homogeneous Copper Foam as Surface Dendrite-Free Host for Zinc Metal Anode. Chemical Engineering Journal, 379, Article ID: 122248.
https://doi.org/10.1016/j.cej.2019.122248
[26] Zhu, X., Zhang, H.Y., Wang, Z., Zhang, C.W., Qin, L.G., Chen, D.M., Sun, S.Q., Liu, C.F. and Chen, J. (2021) A Self-Optimized Dual Zinc/Copper-Electrolyte Anodic Interfaces by Mechanical Rolling toward Zinc Ion Batteries with High Capacity and Long Cycle Life. Materials Today Energy, 23, Article ID: 100897.
https://doi.org/10.1016/j.mtener.2021.100897
[27] Shi, X.D., Xu, G.F., Liang, S.Q., Li, C.P., Guo, S., Xie, X.S., Ma, X.M. and Zhou, J. (2019) Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry & Engineering, 7, 17737-17746.
https://doi.org/10.1021/acssuschemeng.9b04085
[28] Zeng, Y.X., Sun, P.X., Pei, Z.H., Jin, Q., Zhang, X.T., Yu, L. and Lou, X.W. (2022) Nitrogen-Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Zn-Metal Anodes. Advanced Materials, 34, Article ID: 2200342.
https://doi.org/10.1002/adma.202200342
[29] Yang, S.N., Li, Y.T., Du, H.X., Liu, Y.Q., Xiang, Y.H., Xiong, L.Z., Wu, X.M. and Wu, X.W. (2022) Copper Nanoparticle-Modified Carbon Nanofiber for Seeded Zinc Deposition Enables Stable Zn Metal Anode. ACS Sustainable Chemistry & Engineering, 10, 12630-12641.
https://doi.org/10.1021/acssuschemeng.2c03328
[30] Yang, J.L., Yang, P.H., Yan, W.Q., Zhao, J.W. and Fan, H.J. (2022) 3D Zincophilic Micro-Scaffold Enables Stable Zn Deposition. Energy Storage Materials, 51, 259-265.
https://doi.org/10.1016/j.ensm.2022.06.050
[31] Zheng, S.J., Zhu, X.B., Ouyang, Y., Chen, K., Chen, A.L., Fan, X.S., Miao, Y.E., Liu, T.X. and Xie, Y. (2022) Metal-Organic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium-Sulfur Batteries. Energy & Fuels, 35, 19154-19163.
https://doi.org/10.1021/acs.energyfuels.1c02081
[32] Kumar, S., Yoon, H., Park, H., Park, G., Suh, S. and Kim, H.J. (2022) A Dendrite-Free Anode for Stable Aqueous Rechargeable Zinc-Ion Batteries. Journal of Industrial and Engineering Chemistry, 108, 321-327.
https://doi.org/10.1016/j.jiec.2022.01.011
[33] Baek, S.H., Cho, Y.J., Park, J.M., Xiong, P.X., Yeon, J.S., Rana, H.H., Park, J.H., Jang, G., Lee, S.J. and Park, H.S. (2022) Electrospun Conductive Carbon Nanofiber Hosts for Stable Zinc Metal Anode. International Journal of Energy Research, 46, 7201-7214.
https://doi.org/10.1002/er.7609
[34] Nie, Y., Wang, F., Zhang, H., Wei, D.H., Zhong, S.Y., Wang, L., Zhang, G.H., Duan, H.G. and Cao, R. (2020) Tunable Confinement of Cu-Zn Bimetallic Oxides in Carbon Nanofiber Networks by Thermal Diffusion for Lithium-Ion Battery. Applied Surface Science, 517, Article ID: 146079.
https://doi.org/10.1016/j.apsusc.2020.146079
[35] Zhang, Z.J., Yang, X., Li, P., Wang, Y., Zhao, X., Safaei, J., Tian, H., Zhou, D., Li, B.H., Kang, F.Y. and Wang, G.X. (2022) Biomimetic Dendrite-Free Multivalent Metal Batteries. Advanced Materials, 34, Article ID: 2206970.
https://doi.org/10.1002/adma.202206970
[36] Meng, H., Ran, Q., Dai, T.Y., Shi, H., Zeng, S.P., Zhu, Y.F., Wen, Z., Zhang, W., Lang, X.Y. and Zheng, W.T. (2022) Surface‑Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High‑Performance Aqueous Zinc‑Ion Battery. Nano-Micro Letters, 14, Article No. 128.
https://doi.org/10.1007/s40820-022-00867-9
[37] Zeng, X., Qian, S.Y., Zhou, J.Q., Hao, B.J., Zhang, L.F., Zhou, Y., Shi, Y., Zhu, C.H., Zhou, X., Lin, J., Cheng, Y., Yan, C.L. and Qian, T. (2023) Sustained-Compensated Interfacial Zincophilic Sites to Assist High-Capacity Aqueous Zn Metal Batteries. Nano Letters, 23, 1135-1143.
https://doi.org/10.1021/acs.nanolett.2c03433
[38] Li, Y., Peng, X.Y., Li, X., Duan, H., Xie, S.Y., Dong, L.B. and Kang, F.Y. (2023) Functional Ultrathin Separators Proactively Stabilizing Zinc Anodes for Zinc-Based Energy Storage. Advanced Materials, Article ID: 2300019.
https://doi.org/10.1002/adma.202300019
[39] Zhang, X.N., Yang, S.C., Huang, Z., Zeng, Z., Zhang, Y. and Wang, Z.H. (2022) Recyclable Nanopaper Separators with Uniform Sub-20nm Nanopores for High-Power and High-Capacity Zinc Metal Anodes. Electrochimica Acta, 430, Article ID: 141081.
https://doi.org/10.1016/j.electacta.2022.141081
[40] Yang, X.P., Wu, W.L., Liu, Y.Z., Lin, Z.R. and Sun, X.Q. (2022) Chitosan Modified Filter Paper Separators with Specific ion Adsorption to Inhibit Side Reactions and Induce Uniform Zn Deposition for Aqueous Zn Batteries. Chemical Engineering Journal, 450, Article ID: 137902.
https://doi.org/10.1016/j.cej.2022.137902
[41] Li, L.B., Peng, J.X., Jia, X.F., Zhu, X.J., Meng, B.C., Yang, K., Chu, D.W., Yang, N.X. and Yu, J. (2022) PBC@Cellulose-Filter Paper Separator Design with Efficient Ion Transport Properties toward Stabilized Zinc-Ion Battery. Electrochimica Acta, 430, Article ID: 141129.
https://doi.org/10.1016/j.electacta.2022.141129
[42] Cui, Y.F., Zhuang, Z.B., Xie, Z.L., Cao, R.F., Hao, Q., Zhang, N., Liu, W.Q., Zhu, Y.H. and Huang, G. (2022) High-Energy and Long-Lived Zn—MnO2 Battery Enabled by a Hydrophobic-Ion-Conducting Membrane. ACS Nano, 16, 20730-20738.
https://doi.org/10.1021/acsnano.2c07792
[43] Guo, N., Huo, W.J., Dong, X.Y., Sun, Z.F., Lu, Y.T., Wu, X.W., Dai, L., Wang, L., Lin, H.C., Liu, H.D., Liang, H.F., He, Z.X. and Zhang, Q.B. (2022) A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 6, Article ID: 2200597.
https://doi.org/10.1002/smtd.202200597
[44] Mao, C.W., Chang, Y.X., Zhao, X.T., Dong, X.Y., Geng, Y.F., Zhang, N., Dai, L., Wu, X.W., Wang, L. and He, Z.X. (2022) Functional Carbon Materials for High-Performance Zn Metal Anodes. Journal of Energy Chemistry, 75, 135-153.
https://doi.org/10.1016/j.jechem.2022.07.034