二硫化锡薄膜的生长及掺杂研究
Growth and Doping of Tin Disulfide Thin Films
DOI: 10.12677/MS.2023.136054, PDF, HTML, XML, 下载: 257  浏览: 1,534 
作者: 许书逸, 林高翔, 周颖慧*:厦门大学物理系,福建 厦门
关键词: 二硫化锡气相外延掺杂 Tin Disulfide Vapor Phase Epitaxy Doping
摘要: 二硫化锡是近年来备受关注的二维半导体材料之一,因其优异的电学和光电性能以及元素储备丰富且对环境友好等优点,在电子、光电以及能源转换等领域展现出极大的应用潜力。目前,高质量薄层二硫化锡的可控制备仍是研究中备受关注的重要课题。本文采用气相外延方法探索二硫化锡薄膜的外延生长和掺杂调控,结合多种表征测试技术,研究其生长过程和结构特性,实现了材料的逐层生长。进一步地在生长过程中引入铟掺杂,由于晶格有序度的降低,二硫化锡的拉曼特征峰展宽且强度减弱,X射线光电子能谱分析发现,铟的掺入使得体系费米能级下移,实现了p型掺杂。研究结果为二硫化锡的可控生长以及掺杂提供了参考。
Abstract: Tin disulfide (SnS2) is one of the widely con-cerned two-dimensional semiconductor materials in recent years, which exhibits excellent electri-cal and optoelectronic properties, as well as advantages such as abundant elemental reserves and environmental friendliness, and therefore shows great potential for applications in electronics, op-toelectronics, and energy conversion. The controllable fabrication of few-layer SnS2 with high quali-ty remains an important research topic so far. In this study, the growth and doping of SnS2 thin films have been performed by vapor phase epitaxy. Combining various characterization techniques, the growth mode and structural properties of SnS2 have been investigated. Furthermore, indium (In) doping has been introduced during the growth process, which led to a broadening and weakening of the Raman peaks of SnS2 due to the reduced lattice order. X-ray photoelectron spectroscopy studies reveal that the introduction of In results in the shift down of the Fermi level and produces p-type doping in SnS2. The research findings provide valuable insights for the controllable growth and structural properties of the intrinsic and doped tin disulfide.
文章引用:许书逸, 林高翔, 周颖慧. 二硫化锡薄膜的生长及掺杂研究[J]. 材料科学, 2023, 13(6): 511-517. https://doi.org/10.12677/MS.2023.136054

1. 引言

近年来,金属硫族化合物等二维层状半导体因其独特的物理性质,成为电子以及光电等领域中备受关注的材料体系 [1] - [6] 。二硫化锡(SnS2)是一种IV-VI主族元素化合物半导体,相比于MoS2等过渡金属硫族化合物,具有元素储量丰富、清洁环保、成本更低等优点,在工业化应用中更具优势。SnS2具有与MoS2相似的晶体结构,由S-Sn-S分子层通过范德华相互作用堆叠而成,层中每个锡原子与六个硫原子形成八面体配位,晶格常数约为0.36 nm [7] [8] [9] 。SnS2是间接带隙半导体,同大多数金属硫族化合物一样,其禁带宽度随着层厚的减少而增大,体材料带隙约为2.2 eV,单层时带隙增加到2.4 eV左右 [10] 。实验研究表明,基于SnS2制作的场效应晶体管可以实现107的电流开关比,载流子迁移率可以达到230 cm2∙V1∙s1,制成的光电探测器件也表现出高响应度、高探测率和快速的响应时间,这些优异的特性使得SnS2在电子和光电器件等方面具有广阔的应用前景 [11] - [16] 。二维半导体材料的结构特性可以通过掺杂等方式有效调控,进一步拓展了其在未来器件中的应用潜力 [17] [18] [19] [20] 。由于本征S空位的存在,SnS2表现出n型的导电特性,若在材料中引入In等元素掺杂,可以改变其能带结构和导电类型,使其从本征的n型转变为p型半导体。这样的特性调控有利于SnS2在基础研究和器件应用方面的拓展,因而近年来这方面的研究愈发受到关注 [21] [22] [23] [24] [25] 。目前,高质量薄层的SnS2及其掺杂的可控制备仍是研究中备受关注的重要课题。文献报道中常用的制备方法包括化学气相沉积、气相运输以及机械剥离等,在制备过程中会涉及较为复杂的反应过程,或对材料的尺寸和层数难以控制,对其生长机理和结构特性也有待深入研究。在本文工作中,我们借鉴材料生长中精确可控的分子束外延方法,利用自主设计的气相外延生长系统,选用高纯金属和硫粉作为生长源材料,研究二硫化锡的外延生长和掺杂制备。通过各个组分和衬底温度的精确控制,实现了二硫化锡的逐层生长以及In元素掺杂。结合拉曼光谱、原子力显微镜以及X射线光电子能谱等技术对所制备的材料进行表征分析,研究其生长行为和结构特性。

2. 实验方法

本文利用气相外延生长系统进行二硫化锡薄膜的生长和掺杂制备,系统中设有可独立操控的旋转式样品加热台,配备多套K-Cell真空蒸发源炉,便于对衬底和各个源材料分别进行精确控制。选用云母作为生长衬底,高纯金属Sn和In以及S粉作为生长源材料,分别置入不同的真空蒸发源炉中,经过充分除气预热后,设置Sn源温度为570℃,加热硫源使腔内气压保持在5 × 103 Pa,到达预设的温度并稳定后,打开束源炉挡板,使得源材料沉积至衬底进行外延生长。此外,为了引入In掺杂,在生长过程中同时加热In源,并通过调控源炉温度,制备得到不同掺杂浓度的In-SnS2薄膜。生长完成后,从真空腔内取出样品,利用拉曼光谱、原子力显微镜(Atomic Force Microscopy, AFM)以及X射线光电子能谱(X-ray Photoelectron Spectroscopy, XPS)等技术对样品的结构特性进行表征分析。

3. 结果与讨论

图1(a)是基于所制备样品测得的拉曼谱线,其中在318 cm1附近可以观察到明显的特征峰,对应于SnS2垂直于晶格平面的A1g振动模,同时在207 cm1附近存在一个较弱的拉曼峰,可对应于SnS2的面内振动Eg声子模 [26] ,表明所制备的二硫化锡薄膜具有较好的结晶质量。此外,利用紫外–可见分光光度计测试了样品的光吸收,测试波长范围为300~800 nm。为消除衬底的影响,分别收集生长前后样品的吸收谱线,并以云母衬底的谱线作为背景扣除,得到所生长的SnS2薄膜的吸收谱。基于公式 ( α h v ) n = A ( h v E g ) 可以计算材料的光学带隙Eg,式中α为吸收系数,hv是光子能量,由于SnS2是间接带隙半导体,式中指数n取值为1/2。将吸收谱转换后得到 ( α h ν ) 1 / 2 随光子能量hv的变化关系曲线,如图1(b)所示。根据图线的物理意义,其切线与横轴的交点即是SnS2的禁带宽度,约为2.2 eV,与文献中所报道二硫化锡的带隙值相符 [10] 。

Figure 1. (a) Raman spectrum and (b) ( α h ν ) 1 / 2 ~hν curve of the grown SnS2 film

图1. 所制备SnS2薄膜的(a)拉曼光谱和(b) ( α h ν ) 1 / 2 ~hν曲线

为了研究二硫化锡薄膜的形成过程,我们通过调控生长时间,跟踪薄膜的初期生长。利用原子力显微镜对三个不同生长时长条件下所制备的样品进行表征,结果如图2所示。可以看到,进行5分钟生长后,样品表面上形成的晶畴连接构成了亚单层的薄膜,通过高线分析测得其厚度为0.66 ± 0.1 nm,对应于单层SnS2的高度。而生长10分钟后,云母衬底表面已基本被覆盖,并开始在生成的第一层二硫化锡上继续生长第二层,通过图2(b)插图中的放大区域可以看到,第二层的SnS2呈现出三角形状,这与其晶体结构特征相符。从高度轮廓线可以清楚地看到所形成的双层结构,上下两层高度差别不大,约为0.63 ± 0.1 nm。当生长时长增加至15分钟,通过AFM测量薄膜厚度约为1.41 nm,相当于两层SnS2的高度。可见,基于实验中的生长条件控制,SnS2以层状模式生长,即在第一层生长达到饱和后,开始第二层的生长。这种层状的生长模式有利于形成平整有序的SnS2薄膜,有利于实现对其生长过程的调控和后续的应用研究。

Figure 2. AFM images and line profiles of the SnS2 films prepared with different growth time

图2. 不同生长时长条件下所制备SnS2薄膜的AFM图像及其高线分析

Figure 3. Raman spectra of the grown SnS2 and In-SnS2 films

图3. 所制备的SnS2和In-SnS2薄膜的拉曼谱线

进一步地,为了实现在二硫化锡中引入In掺杂,我们在薄膜生长过程中同时加热In蒸发源,分别控制源炉的加热温度为410℃和430℃,制备得到样品P2和P3。为了研究掺杂前后材料结构特性的变化,利用拉曼光谱和X射线光电子能谱等方法对所制备的样品进行表征分析。图3是基于各个样品测量得到的拉曼谱线,其中样品P1为未掺杂的二硫化锡。三条谱线均可以在318 cm1附近观察到明显的特征峰,对应于SnS2的A1g振动模,但其峰宽表现出明显的差异。通过谱线拟合计算该谱峰的半高宽度,未掺杂的二硫化锡样品P1的A1g峰半高宽约为8.8 cm1,而掺入In元素后,A1g峰明显展宽,在样品P2和P3中其半高宽分别为16.1 cm1和17.4 cm1,其强度和峰形的对称程度也有所降低,这主要是由于In元素的引入使得SnS2晶格的有序性受到破坏,并在其中产生局部应力而造成的。

Figure 4. XPS spectra collected from the grown SnS2 and In-SnS2 films

图4. 所制备的SnS2和In-SnS2薄膜的XPS图谱

利用X射线光电子能谱对样品表面的元素成分和电子结构进行分析,获得如图4所示的XPS谱线。对于所制备的In-SnS2样品,均可以观察到In 3d轨道的特征峰,如图4(a)所示,证明了In元素的存在。在样品P2和P3中,In 3d5/2轨道结合能分别为445.0 eV和444.8 eV,高于文献报道的In2S3相应的结合能 [27] ,表明样品中In具有高于+3的化学价态,推测是In在SnS2中形成了替位掺杂。图4(b)是各样品Sn 3d轨道对应XPS图谱,其中二硫化锡的Sn 3d5/2和3d3/2峰位分别为486.9 eV和495.4 eV,两个谱峰之间存在着约8.5 eV的能量差,与文献报道的Sn4+相吻合 [21] 。进行In掺杂后,Sn 3d轨道结合能表现出红移的趋势,谱峰位于486.6 eV和495.1 eV。从图4(c)中S 2p轨道的XPS分析发现,对于未掺杂的SnS2样品P1,其XPS谱线可以拟合为位于161.8 eV和163.0 eV的两个谱峰,分别对应于S的2p3/2和2p1/2轨道 [28] 。当掺入In元素后,其峰位向较低能量位置偏移,且偏移程度随着掺杂浓度的增加而增大,但基本保持着1.2 eV的能量差。通过XPS分析可知,掺杂后二硫化锡中Sn 3d和S 2p轨道结合能的峰位红移了0.2~0.3 eV,表明In的掺入使得体系费米能级下移,实现了p型掺杂。

4. 总结

本文采用气相外延生长方法研究二硫化锡薄膜的生长及掺杂调控,结合拉曼光谱、原子力显微镜和X射线光电子能谱进行表征,分析表明所制备的SnS2薄膜具有较好的结晶质量,其禁带宽度约为2.2 eV。通过跟踪薄膜的初期生长过程,阐明其层状生长模式。进一步地在生长过程中引入In掺杂,制备得到In-SnS2,In元素的引入造成二硫化锡的晶格畸变,拉曼A1g峰展宽且强度减弱。此外,掺杂后Sn 3d和S 2p的轨道结合能发生红移,表明体系的费米能级下移,形成了p型掺杂。研究结果为理解二硫化锡的生长机制以及高质量薄膜的可控制备和掺杂调控提供了参考。

NOTES

*通讯作者。

参考文献

[1] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V. and Kis, A. (2017) 2D Transition Metal Dichalcogenides. Nature Reviews Materials, 2, Article No. 17033.
https://doi.org/10.1038/natrevmats.2017.33
[2] Han, G.G.D., Tu, K.H., Niroui, F., Xu, W., Zhou, S., Wang, X., Bulović, V., Ross, C.A., Warner, J.H. and Grossman, J.C. (2017) Photo-luminescent Arrays of Nanopatterned Monolayer MoS2. Advanced Functional Materials, 27, Article ID: 1703688.
https://doi.org/10.1002/adfm.201703688
[3] Cong, C.X., Shang, J.Z., Wang, Y.L. and Yu, T. (2018) Optical Properties of 2D Semiconductor WS2. Advanced Optical Materials, 6, Article ID: 1700767.
https://doi.org/10.1002/adom.201700767
[4] Cheng, Q.L., Pang, J.B., Sun, D.H., Wang, J.G., Zhang, S., Liu, F., Chen, Y.K., Yang, R.Q., Liang, N., Lu, X.H., Ji, Y.C., Wang, J., Zhang, C.C., Sang, Y.H., Liu, H. and Zhou, W.J. (2020) WSe2 2D p-Type Semiconductor-Based Electronic Devices for Information Technology: Design, Preparation, and Applications. InfoMat, 2, 656-697.
https://doi.org/10.1002/inf2.12093
[5] Li, H., Huang, J.K., Shi, Y. and Li, L.J. (2019) Toward the Growth of High Mobility 2D Transition Metal Dichalcogenide Semiconductors. Advanced Materials Interfaces, 6, Article ID: 1900220.
https://doi.org/10.1002/admi.201900220
[6] Hu, Z., Ding, Y., Hu, X., Zhou, W., Yu, X. and Zhang, S. (2019) Recent Progress in 2D Group IV-VI Monochalcogenides: Synthesis, Properties and Applications. Nanotechnol-ogy, 30, Article ID: 252001.
https://doi.org/10.1088/1361-6528/ab07d9
[7] Voznyi, A., Kosyak, V., Opanasyuk, A., Tirkusova, N., Grase, L., Medvids, A. and Mezinskis, G. (2016) Structural and Electrical Properties of SnS2 Thin Films. Materials Chemistry and Physics, 173, 52-61.
https://doi.org/10.1016/j.matchemphys.2016.01.036
[8] Zhang, H.D., Balaji, Y., Mehta, A.N., Heyns, M., Cay-max, M., Radu, I., Vandervorst, W. and Delabie, A. (2018) Formation Mechanism of 2D SnS2 and SnS by Chemical Vapor Deposition Using SnCl4 and H2S. Journal of Materials Chemistry C, 6, 6172-6178.
https://doi.org/10.1039/C8TC01821A
[9] Qin, Y., Chen, S. and Bai, Y. (2022) Adsorption and Sensing Perfor-mance toward Methanol Vapor on SnS/SnS2 In-Plane Heterostructures. ACS Applied Electronic Materials, 4, 158-167.
https://doi.org/10.1021/acsaelm.1c00911
[10] Gonzalez, J.M. and Oleynik, I.I. (2016) Layer-Dependent Properties of SnS2 and SnSe2 Two-Dimensional Materials. Physical Review B, 94, Article ID: 125443.
[11] Huang, Y., Sutter, E., Sadowski, J.T., Cotlet, M., Monti, O.L.A., Racke, D.A., Neupane, M.R., Wickramaratne, D., Lake, R.K., Parkinson, B.A. and Sutter, P. (2014) Tin Disulfide—An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Prop-erties and Device Characteristics. ACS Nano, 8, 10743-10755.
https://doi.org/10.1021/nn504481r
[12] Jia, X.S., Tang, C.C., Pan, R.H., Long, Y.Z., Gu, C.Z. and Li, J.J. (2018) Thickness-Dependently Enhanced Photodetection Performance of Vertically Grown SnS2 Nanoflakes with Large Size and High Production. ACS Applied Materials & Interfaces, 10, 18073-18081.
https://doi.org/10.1021/acsami.8b03194
[13] Chen, Y. and Zhang, M. (2021) Large-Area Growth of SnS2 Nanosheets by Chemical Vapor Deposition for High Performance Photodetectors. RSC Advances, 11, 29960-29964.
https://doi.org/10.1039/D1RA05779K
[14] Tian, H., Meng, X., Yang, J., Fan, C., Yuan, S., An, X., Sun, C., Zhang, Y., Wang, M., Zheng, H., Wei, Z. and Li, E. (2020) Visible Phototransistors Based on Vertical Nanolayered Het-erostructures of SnS/SnS2 p-n and SnSe2/SnS2 n-n Nanoflakes. ACS Applied Nano Materials, 3, 6847-6854.
https://doi.org/10.1021/acsanm.0c01213
[15] Aji, A.S., Izumoto, M., Suenaga, K., Yamamoto, K., Nakashima, H. and Ago, H. (2018) Two-Step Synthesis and Characterization of Vertically Stacked SnS-WS2 and SnS-MoS2 p-n Het-erojunctions. Physical Chemistry Chemical Physics, 20, 889-897.
https://doi.org/10.1039/C7CP06823A
[16] Ahn, J.H., Lee, M.J., Heo, H., Sung, J.H., Kim, K., Hwang, H. and Jo, M.H. (2015) Deterministic Two-Dimensional Poly-morphism Growth of Hexagonal n-Type SnS2 and Orthorhombic p-Type SnS Crystals. Nano Letters, 15, 3703-3708.
https://doi.org/10.1021/acs.nanolett.5b00079
[17] Suh, J., Park, T.E., Lin, D.Y., Fu, D., Park, J., Jung, H.J., Chen, Y., Ko, C., Jang, C., Sun, Y., Sinclair, R., Chang, J., Tongay, S. and Wu, J. (2014) Doping against the Native Propensity of MoS2: Degenerate Hole Doping by Cation Substitution. Nano Letters, 14, 6976-6982.
https://doi.org/10.1021/nl503251h
[18] Li, B., Huang, L., Zhong, M., Huo, N., Li, Y., Yang, S., Fan, C., Yang, J., Hu, W., Wei, Z. and Li, J. (2015) Synthesis and Transport Properties of Large-Scale Alloy Co0.16Mo0.84S2 Bilayer Nanosheets. ACS Nano, 9, 1257-1262.
https://doi.org/10.1021/nn505048y
[19] Liu, J., Zhong, M., Liu, X., Sun, G., Chen, P., Zhang, Z., Li, J., Ma, H., Zhao, B., Wu, R., Dang, W., Yang, X., Dai, C., Tang, X., Fan, C., Chen, Z., Miao, L., Liu, X., Liu, Y., Li, B. and Duan, X. (2018) Two-Dimensional Plumbum-Doped Tin Diselenide Monolayer Transistor with High On/Off Ratio. Nano-technology, 29, Article ID: 474002.
https://doi.org/10.1088/1361-6528/aadf5a
[20] Feng, Q., Mao, N., Wu, J., Xu, H., Wang, C., Zhang, J. and Xie, L. (2015) Growth of MoS2(1–x)Se2x (x = 0.41-1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. ACS Nano, 9, 7450-7455.
https://doi.org/10.1021/acsnano.5b02506
[21] Li, Z., Shu, W., Li, Q., Xu, W., Zhang, Z., Li, J., Wang, Y., Liu, Y., Yang, J., Chen, K., Duan, X., Wei, Z. and Li, B. (2021) Nondegenerate P-Type In-Doped SnS2 Monolayer Transistor. Advanced Electronic Materials, 7, Article ID: 2001168.
https://doi.org/10.1002/aelm.202001168
[22] Yuan, S., Fan, C., Tian, H., Zhang, Y., Zhang, Z., Zhong, M., Liu, H., Wang, M. and Li, E. (2020) Enhanced Photoresponse of In-dium-Doped Tin Disulfide Nanosheets. ACS Applied Materials & Interfaces, 12, 2607-2614.
https://doi.org/10.1021/acsami.9b16321
[23] Li, B., Xing, T., Zhong, M. Huang, L., Lei, N., Zhang, J., Li, J. and Wei, Z. (2017) A Two-Dimensional Fe-doped SnS2 Magnetic Semiconductor. Nature Communications, 8, Article No. 1958.
https://doi.org/10.1038/s41467-017-02077-z
[24] Yu, D., Liu, Y., Sun, L., Wu, P. and Zhou, W. (2016) Density Functional Study on the Hole Doping of Single-Layer SnS2 with Metal Element X (X = Li, Mg and Al). Physi-cal Chemistry Chemical Physics, 18, 318-324.
https://doi.org/10.1039/C5CP05069C
[25] He, H.B., Zhao, J.W., Huang, P.R., Sheng, R.F., Yu, Q.Z., He, Y.Y. and Cheng, N. (2022) Performance Improvement in Monolayered SnS2 Double-Gate Field-Effect Transistors via Point Defect Engineering. Physical Chemistry Chemical Physics, 24, 21094-21104.
https://doi.org/10.1039/D2CP03427A
[26] Wang, C.R., Tang, K.B., Yang, Q. and Qian, Y.T. (2002) Raman Scat-tering, Far Infrared Spectrum and Photoluminescence of SnS2 Nanocrystallites. Chemical Physics Letters, 357, 371-375.
https://doi.org/10.1016/S0009-2614(02)00495-5
[27] Zhao, Y., Yu, D., Lu, J., Tao, L., Chen, Z., Yang, Y., Wei, A., Tao, L., Liu, J., Zheng, Z., Hao, M. and Xu, J.B. (2019) Thickness-Dependent Optical Properties and In-Plane Ani-sotropic Raman Response of the 2D β-In2S3. Advanced Optical Materials, 7, Article ID: 1901085.
https://doi.org/10.1002/adom.201901085
[28] Zhang, Q., Ying, H., Li, X., Xiang, R., Zheng, Y., Wang, H., Su, J., Xu, M., Zheng, X., Maruyama, S. and Zhang, X. (2021) Controlled Doping Engineering in 2D MoS2 Crystals toward Performance Augmentation of Optoelectronic Devices. ACS Applied Materials & Interfaces, 13, 31861-31869.
https://doi.org/10.1021/acsami.1c07286