成骨不全的基因学研究进展
Research Advances in Genetic on Osteogenesis Imperfecta
DOI: 10.12677/ACM.2023.1361318, PDF, HTML, XML, 下载: 182  浏览: 235 
作者: 袁嘉欣, 时瀛洲:山东大学齐鲁医学院,山东 济南 ;舒 梦:山东大学第二医院疼痛科,山东 济南;王姗姗:山东第一医科大学临床医学院,山东 济南;徐 潮:山东省立医院内分泌与代谢病科,山东 济南
关键词: 成骨不全基因突变胶原蛋白骨矿化成骨细胞Osteogenesis Imperfecta Gene Mutation Collagen Bone Mineralization Osteoblasts
摘要: 成骨不全症(OI)是一种罕见的遗传性结缔组织疾病,其严重程度广泛,以骨骼畸形和增加的骨脆性为主要特征。其他症状可能会包括侏儒症、脊柱侧弯、牙质发生不全症、耳聋和巩膜泛蓝变色的影响。它以前被认为是由细胞外基质的主要蛋白质I型胶原的缺陷引起的,现在也被认为是一种胶原相关的疾病,由胶原折叠、翻译后修饰和加工缺陷、成骨细胞分化异常和骨矿化引起,OI类型的遗传方式包括常染色体显性和隐性以及X连锁隐性。最常见的OI是由两种I型胶原基因突变(COL1A1, COL1A2)引起的。停止突变通常导致胶原蛋白量减少,导致轻度表型,而错义突变主要引起胶原蛋白的结构改变,导致更严重的表型。在过去的十年中,已经发现了许多其他的致病基因,它们参与了胶原蛋白的生物合成、修饰和分泌、成骨细胞的分化和功能,以及骨稳态的维持。本文章提供了对OI致病基因研究的最新进展。从基因突变对胶原折叠、翻译后修饰和加工、成骨细胞分化和骨矿化等不同过程的影响,综述了20余个与OI相关的致病基因。
Abstract: Osteogenesis imperfecta (OI) is a rare hereditary connective tissue disorder that has a wide range of severity and is characterized by bone deformities and increased bone fragility. Other symptoms may include dwarfism, scoliosis, dental insufficiency, deafness, and the effect of bluish discoloration of the sclera. Previously thought to be caused by a defect in type I collagen, the main protein of the extracellular matrix, it is now also recognized as a collagen-related disease caused by defects in col-lagen folding, post-translational modification and processing, abnormal osteoblastic differentiation and bone mineralization. OI types are inherited in ways that include autosomal dominant and re-cessive as well as X-linked recessive. The most common OI is caused by mutations in two types of collagen I genes (COL1A1 and COL1A2). Stopping mutations usually results in reduced collagen volume, resulting in a mild phenotype, whereas mis-sense mutations mainly cause structural changes in collagen, resulting in a more severe phenotype. Over the past decade, many other dis-ease-causing genes have been identified that are involved in the biosynthesis, modification and se-cretion of collagen, differentiation and function of osteoblasts, and maintenance of bone homeosta-sis. This article provides the latest progress in the study of OI pathogenic genes. In this paper, more than 20 pathogenic genes related to OI are reviewed from the effects of gene mutations on different processes such as collagen folding, post-translational modification and processing, osteoblast dif-ferentiation and bone mineralization.
文章引用:袁嘉欣, 舒梦, 时瀛洲, 王姗姗, 徐潮. 成骨不全的基因学研究进展[J]. 临床医学进展, 2023, 13(6): 9417-9425. https://doi.org/10.12677/ACM.2023.1361318

1. 成骨不全(OI)简介

成骨不全症(OI)是一种遗传的系统性骨骼和结缔组织疾病,其特征是骨脆性,轻微暴力下反复骨折,严重时可导致骨骼畸形、蓝巩膜、听力丧失和身材矮小、基底动脉内陷和心脏/呼吸缺陷的各种组合。患者的表型有很大的不同,有的患者在青春期之前只有几次骨折,如OI的I型;有的患者在出生后的头几天/几周内死亡,原因是肋骨骨折和肺发育不全,如II型。除了增加骨折风险外,患者还会受到不成比例的侏儒症的影响,有些患者在第二个十年 [1] 会出现严重的后凸。脊柱和胸部的这种变形可导致肺功能不全和器官 [2] 受压。

Sillence分类中描述的经典OI类型I到IV是主要由COL1A1或COL1A2基因的结构或数量缺陷引起的遗传性疾病,COL1A1或COL1A2基因分别编码I型胶原的α1(I)和α2(I)链。OI I型、IV型和III型的临床结果分别从轻度到中度到重度。

据估计目前OI发病率为1:20,000,在美国,约1万名活产婴儿中就有一例成骨不全,但全世界的发病率各不相同。在英国,有3400例报告病例。在丹麦,出生时的流行率为每10万人21.8人,人口流行率为每10万人10.6人。拉丁美洲先天性畸形合作研究(ECLAMC) 1978年至1983年的数据库显示,成骨不全症的流行率为每1万例出生0.4例。有趣的是,在黑人人群中III型OI的发病率更高,其中III型OI的最低人群频率估计为0.6,而I型OI的最低人群频率为0.1 [3] ,I型和III型OI的比例为7比1 [4] [5] 。

I型胶原蛋白是由两条α1(I)链和一条α2(I)链组成的三聚体分子。螺旋结构域I型胶原主要由Gly-X-Y重复序列组成,其中X和Y常被脯氨酸和羟脯氨酸残基分别占据 [6] 。典型成骨不全最常见的原因是由于I型胶原螺旋结构域的甘氨酸取代 [7] ,这可能影响螺旋组装。在胶原合成过程中,新生的I型前胶原分子被转运到内质网中,在内质网中它们受到各种翻译后修饰(例如赖氨酸和脯氨酸羟基化) [8] ,这对于胶原的合成、运输和稳定性至关重要。这些修饰随后被赖氨酸氧化酶用作底物,将特定赖氨酸残基转化为赖氨酸吡啶啉(LP)或羟赖氨酸残基转化为羟赖氨酸吡啶啉(HP),从而产生胶原间交联。胶原蛋白的翻译后修饰可以影响胶原蛋白端肽和螺旋结构域之间共价交联的形成,从而控制其拉伸性能 [8] [9] [10] [11] 。

2. OI的致病基因

随着医学技术发展,至今已发现OI的20余种致病基因,如下表1

Table 1. Pathogenic genes associated with OI

表1. OI的相关致病基因

2.1. 胶原蛋白结构与加工缺陷

COL1A1、COL1A2:COL1A1和COL1A2基因的杂合突变是导致成骨不全的最常见原因。定性COL-1缺陷是由COL1A1或COL1A2的错义突变引起的,主要在COL1A1的螺旋部分发生氨基酸替换 [12] [13] [14] 。COL1A1、COL1A2是编码I型胶原蛋白的两个基因 [15] 。胶原蛋白是结缔组织细胞外基质中的主要蛋白质,经过多次翻译后修饰。侧翼前肽被特定的蛋白酶去除,然后分子自发组装变成组织中的胶原纤维,并通过交联进一步稳定。影响前肽切割位点的突变导致具有独特表型的成骨不全症。COL1A1或COL1A2的突变导致定量或定性的蛋白质缺陷。单倍不足和零突变引起的数量缺陷,包括引入过早终止密码子的突变、剪接突变或帧移位突变,这些突变都会导致剩余转录物的随后降解。

2.2. 骨矿化缺损

1) IFITM5:干扰素诱导的跨膜蛋白5 (IFITM5)是一种成骨细胞特异性的膜蛋白,已被证明是体外矿化的正调控因子 [16] 。2012年,两组研究报告了OI-V患者IFITM5的5'非翻译区(5'-UTR)存在单一复发杂合突变(c-14c > T) [17] [18] 。随后,许多小组报道了OI-V患者中IFITM5 c.-14C > T突变 [6] [19] [20] [21] [22] [23] ,该突变现在被认为是常染色体显性OI-V的原因。

2) SERPINF1:SERPINF1编码色素上皮衍生因子(PEDF)。PEDF属于丝氨酸蛋白酶抑制剂Serpin家族,但不具有蛋白酶抑制活性。它是一种有效的抗血管生成因子,在多种细胞中表达,包括生长板中的软骨细胞、成骨细胞和间充质干细胞在骨中,PEDF在许多层面上起着维持骨平衡和调节类骨矿化的作用。该因子诱导骨保护素的表达,骨保护素是一种通过阻断RANKL来抑制破骨细胞生成的生理抑制。因此,SERPINF1的突变通过促进RANKL与破骨细胞RANK受体结合而增加破骨细胞数量和骨吸收。

2.3. 胶原蛋白修饰中的缺陷

1) CRTAP:胶原分子中特定脯氨酸残基的脯氨酸羟基化是由三种不同的脯氨酸-3-羟化酶异构体进行的。由P3H1 (脯氨酸-3-羟化酶1)、CRTAP (软骨相关蛋白)和PPIB (肽基脯氨酸–顺式–反式异构酶B或亲环蛋白B)按1:1:1组成的复合物负责α1链上脯氨酸-986的羟基化 [24] 。P3H1是具有催化活性的组分,而CRTAP是一种辅助蛋白,但没有催化结构域 [25] 。

2) TMEM38B:TMEM38B编码一价阳离子通道TRIC-B,形成与肌醇三磷酸介导的钙释放同步的三聚体内质网状膜阳离子通道。这种内质网膜积分钾通道是排空细胞内钙储存所必需的,并在细胞分化中发挥作用。细胞内钙释放紊乱导致内质网中各种酶对胶原修饰的不正确调节。这会导致内质网应激和胶原蛋白分泌减少 [24] [25] [26] 。

3) LERPE1:编码P3H1 (脯氨酸-3-羟化酶1)与CRTAP (软骨相关蛋白)和PPIB (肽基脯氨酸–顺式–反式异构酶B或亲环蛋白B)组成的复合物。CRTAP中的无效突变导致VII型OI [10] ,而LEPRE1的无效突变导致VIII型,这两种突变都可能是严重到致命的,并导致整个胶原螺旋区过度修饰 [27] [28] [29] 。

4) PPIB:编码CyPB,与P3H1 (脯氨酸-3-羟化酶1)和CRTAP (软骨相关蛋白)组成复合物负责α1链上脯氨酸-986的羟基化。在羟基化过程中,PPIB确保胶原–脯氨酸–肽键的顺–反异构化,并与分子伴侣FKBP10一起防止前胶原链过早组装成原纤维。亲环蛋白b也可以与赖基羟基化酶1 (LH1)相互作用,从而影响胶原链的赖基羟基化和分子间交联 [30] 。

2.4. 胶原折叠和交联的缺陷

1) SERPINH1:热休克蛋白属于分子伴侣家族,可以阻止蛋白质折叠聚集,但也参与胶原链与上层纤维结构的关联。该基因编码伴侣蛋白HSP47 (热休克蛋白47),基因突变导致蛋白质的错误折叠和/或不稳定。这导致胶原蛋白分泌延迟,胶原结构改变或部分保留在细胞内。

2) PLOD2:编码蛋白赖基羟化酶2 (LH2),与赖基羟化酶1 (LH1)类似,在胶原分子中羟化赖氨酸残基。蛋白质的羟基化使共价交联在分子内,因此可以改善抗拉强度 [24] 。

3) FKBP10:FKBP10 (FKBP65)作为亲免疫蛋白的一员,对免疫抑制药物FK506具有较高的结合亲和力。该药物用于治疗器官移植后的患者和治疗自身免疫性疾病的患者。根据人类基因突变数据库(HGMD),在FKBP10基因中发现了大约23种不同的致病突变,其中包括错义/无义(30%)、剪接位点(4%)、小缺失(13%)、小插入(34%)、小缺失(8%)和总缺失(8%) [31] 。FK506结合蛋白(FKBPs-65-kDa fk506结合蛋白),如FKBP10是内质网(ER)定位的肽基脯氨酸顺/反式异构酶(PPIases),在I型前胶原折叠和转运分泌蛋白中起胶原伴侣蛋白的作用 [32] [33] [34] [35] [36] 。

4) KDELR2:KDELR蛋白家族通过调节高尔基体和内质网之间的蛋白质运输,在细胞器间通讯中发挥重要作用 [37] 。KDELR2相关成骨不全是由于hsp47 (热休克蛋白47)无法结合KDELR2,导致hsp47无法与1型胶原分离。在具有致病性双等位基因kdelr2变异的个体中,hsp47结合的细胞外胶原不能形成胶原纤维 [38] [39] 。

2.5. 前胶原蛋白加工

BMP1:BMP1基因编码负责c-前肽细胞外切割的蛋白酶BMP1 (骨形态发生蛋白1),其突变导致蛋白水解切割不足,表型变化从轻微到严重不等。在这些患者的细胞中,前胶原加工和生成成熟胶原原纤维的能力受到限制。这导致胶原基质矿化增加,骨量增加 [40] 。

2.6. 成骨细胞功能与分化

1) SPARC:在细胞内,SPARC可以作为胶原生物合成过程中的分子伴侣。因此,在患者细胞中观察到轻微的胶原蛋白过度修饰和延迟分泌。在细胞外,SPARC介导细胞外基质与细胞之间的相互作用,并通过与胶原蛋白和羟基磷灰石结合促进细胞外基质的矿化。因此,SPARC在维持骨量和质量方面发挥了多种作用 [24] 。

2) MBTPS2:是一个X连锁基因,编码一种膜结合的锌金属蛋白酶(S2P),该蛋白酶与多种细胞内信号级联反应相关,包括调节膜内蛋白水解(RIP)转录因子CR3L1、ATF6和SEREBP的表达 [24] 。在MBTPS2基因突变的患者中,α1 (I)链和α2 (I)链的赖氨酸羟基化减少,胶原交联改变,骨组织强度受损 [10] 。

3) CREB3L1:CREB3L1编码一个转录因子(CR3L1,以前称为OASIS)。在内质网胁迫下,含有转录因子的CR3L1的n端片段被两个顺序作用的金属蛋白酶(S1P, S2P)释放,以诱导未折叠蛋白反应(UPR)基因的表达。突变导致骨组织中胶原蛋白的生成减少,而患者的皮肤细胞中胶原蛋白的生成则不会减少。部分伴有骨基质成分改变和高矿化。这是由于在蛋白水解后,OASIS的n端结构域易位到细胞核中并激活COL1A1启动子 [41] ,该启动子区不存在于相应的皮肤特异性COL1A1启动子区。

4) WNT1:WNT是一个分泌糖蛋白家族,诱导WNT信号通路,其与跨膜受体LRP5、LRP6和Frizzled的结合启动了一个复杂的细胞内信号通路。WNT结合后使第二信使β-catenin稳定并易位到细胞核并在那里诱导调控成骨细胞分化和功能的基因的表达。在严重成骨不全患者中长发生WNT1的纯合子无义、错义、移码或剪接突变。突变破坏了体外成骨细胞的典型通路激活 [42] [43] [44] [45] 。尽管骨矿化正常,但WNT1突变患者的骨重塑减少,表明骨形成和骨吸收之间存在不平衡。

5) TENT5A:TENT5A是一种胞质多聚(a)聚合酶,在调节骨矿化中发挥重要作用。成骨细胞分化过程中,TENT5A被诱导,编码Col1a1、Col1a2和其他参与成骨分泌蛋白的聚腺苷酸mRNA的表达增加 [46] 。

6) SP7:编码成骨细胞特异性转录因子SP7,并启动前成骨细胞向成骨细胞和成骨细胞的分化 [47] ,是Wnt通路的靶基因,导致反复骨折的骨骼相当轻微的不稳 [48] 。这些患者表现出骨孔隙度增加,这可能是由于成骨细胞骨形成和骨吸收之间的平衡受损导致骨小梁骨重塑增加 [49] 。

2.7. 未分类的

1) FAM46A:FAM46A是核苷酸转移酶折叠蛋白超家族成员之一,但其确切功能目前尚不清楚。然而,有证据表明FAM46A在骨骼发育中有相应的作用。

2) CCDC134:CCDC134编码一种广泛表达的分泌蛋白,参与一些丝裂原活化蛋白激酶(MAPK)信号通路的调节。近些年的研究显示CCDC134突变与患者成骨细胞中Erk1/2磷酸化增加、OPN mRNA和COL1A1表达减少以及矿化减少有关 [50] 。

3) MESD:MESD (中胚层发育基因,以前称为asMESDC2)是低密度脂蛋白相关受体(LRP5和LRP6)的伴侣。MESD突变被认为是破坏了WNT信号通路而引起骨畸形 [51] [52] 。MESD是I型胶原的直接伴侣,内质网MESD的丢失导致I型胶原聚集。聚集型I型胶原不能从细胞分泌,导致诱导严重的蛋白质毒性。受干扰的WNT信号和整体蛋白质毒性表现为细胞周期阻滞、细胞与细胞外基质的附着受损以及先证者成纤维细胞的膜动力学降低 [51] [52] [53] [54] 。

3. 结语

成骨不全是一种罕见病,具有复杂的遗传模式。近年来,随着技术的发展,已有二十余种致病基因已被发现,但仍有许多基因的致病机制不明。但随着现代下一代测序技术(NGS)的引入,OI的遗传学研究将会被继续推进。目前,考虑到OI的临床和遗传方面的新知识,正在尝试开发针对该疾病的靶向治疗方法,但仍有许多相互矛盾的结果,治疗该疾病的问题的解决方案远未完成。

参考文献

[1] Anissipour, A.K., et al. (2014) Behavior of Scoliosis during Growth in Children with Osteogenesis Imperfecta. The Journal of Bone & Joint Surgery, 96, 237-243.
https://doi.org/10.2106/JBJS.L.01596
[2] Karbowski, A., Schwit-alle, M. and Eckardt, A. (1999) [Scoliosis in Patients with Osteogenesis Imperfecta: A Federal Nation-Wide Cross-Sectional Study]. Zeitschrift für Orthopädie und Unfallchirurgie, 137, 219-222.
https://doi.org/10.1055/s-2008-1037397
[3] Martin, E. and Shapiro, J.R. (2007) Osteogenesis Imperfecta: Epide-miology and Pathophysiology. Current Osteoporosis Reports, 5, 91-97.
https://doi.org/10.1007/s11914-007-0023-z
[4] Beighton, P. and Versfeld, G.A. (1985) On the Paradoxically High Relative Prevalence of Osteogenesis Imperfecta Type III in the Black Population of South Africa. Clinical Genetics, 27, 398-401.
https://doi.org/10.1111/j.1399-0004.1985.tb02282.x
[5] Viljoen, D. and Beighton, P. (1987) Osteogenesis Imper-fecta Type III: An Ancient Mutation in Africa? American Journal of Medical Genetics, 227, 907-912.
https://doi.org/10.1002/ajmg.1320270417
[6] Takagi, M., Sato, S., Hara, K., Tani, C., Miyazaki, O., Nishimura, G. and Hasegawa, T. (2013) A Recurrent Mutation in the 5’-UTR of IFITM5 Causes Osteogenesis Imperfecta Type V. American Journal of Medical Genetics Part A, 161, 1980-198255.
https://doi.org/10.1002/ajmg.a.36025
[7] Hoyer-Kuhn, H., Netzer, C. and Semler, O. (2015) Osteogenesis Imper-fecta: Pathophysiology and Treatment. Wiener Medizinische Wochenschrift, 165, 278-284.
https://doi.org/10.1007/s10354-015-0361-x
[8] Hollister, D.W. (1987) Molecular Basis of Osteogenesis Imper-fecta. In: Current Problems in Dermatology, Vol. 17, Karger International, Basel, 76-94.
https://doi.org/10.1159/000413476
[9] Bianchi, L., Gagliardi, A., Maruelli, S., et al. (2015) Altered Cytoskeletal Organization Characterized Lethal but Not Surviving Brtl+/- Mice: Insight on Phenotypic Variability in Osteogenesis Im-perfecta. Human Molecular Genetics, 24, 6118-6133.
https://doi.org/10.1093/hmg/ddv328
[10] Zaripova, A.R. and Khusainova, R.I. (2020) Modern Classification and Molecular-Genetic Aspects of Osteogenesis Imperfecta. Vavi-lovskii Zhurnal Genetiki i Selektsii, 24, 219-227.
https://doi.org/10.18699/VJ20.614
[11] Jovanovic, M., Guter-man-Ram, G. and Marini, J.C. (2022) Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Clas-sical and Rare OI Types. Endocrine Reviews, 43, 61-90.
https://doi.org/10.1210/endrev/bnab017
[12] Byers, P.H. (2002) Killing the Messenger: New Insights Intononsense-Mediated mRNA Decay. Journal of Clinical Investigation, 109, 3-6.
https://doi.org/10.1172/JCI0214841
[13] Glorieux, F.H. (2008) Osteogenesis Imperfecta. Best Practice & Research Clinical Rheumatology, 22, 85-100.
https://doi.org/10.1016/j.berh.2007.12.012
[14] Cheung, M.S., Arponen, H., Roughley, P., Azouz, M.E., Glorieux, F.H., Waltimo-Siren, J. and Rauch, F. (2011) Cranial Base Abnormalities Inosteogenesis Imperfecta: Phenotypic and Genotypic Determinants. Journal of Bone and Mineral Research, 26, 405-413.
https://doi.org/10.1002/jbmr.220
[15] Rossi, V., Lee, B. and Marom, R. (2019) Osteogenesis Imperfecta: Ad-vancements in Genetics and Treatment. Current Opinion in Pediatrics, 31, 708-715.
https://doi.org/10.1097/MOP.0000000000000813
[16] Hanagata, N. (2016) IFITM5 Mutations and Osteogenesis Imperfecta. Journal of Bone and Mineral Metabolism, 34, 123-131.
https://doi.org/10.1007/s00774-015-0667-1
[17] Cho, T.J., Lee, K.E., Lee, S.K., Song, S.J., Kim, K.J., Jeon, D., Lee, G., Kim, H.N., Lee, H.R., Eom, H.H., Lee, Z.H., Kim, O.H., Park, W.Y., Park, S.S., Ikegawa, S., Yoo, W.J., Choi, I.H. and Kim, J.W. (2012) A Single Recurrent Mutation in the 5’-UTR of IFITM5 Causes Osteogenesis Imperfecta Type V. The American Journal of Human Genetics, 91, 343-334.
https://doi.org/10.1016/j.ajhg.2012.06.005
[18] Semler, O., Garbes, L., Keupp, K., Swan, D., Zimmermann, K., Becker, J., Iden, S., Wirth, B., Eysel, P., Koerber, F., Schoenau, E., Bohlander, S.K., Wollnik, B. and Netzer, C. (2012) A Mutation in the 5’-UTR of IFITM5 Creates an In-Frame Start Codon and Causes Autosomal-Dominant Osteogenesis Imperfecta Type V with Hyperplastic Callus. The American Journal of Human Genetics, 91, 349-335.
https://doi.org/10.1016/j.ajhg.2012.06.011
[19] Campeau, P.M. and Lee, B.H. (2013) Phenotyic Variability of Osteogenesis Imperfect Type V Caused by an IFITM5 Mutation. Journal of Bone and Mineral Research, 28, 1523-1530.
https://doi.org/10.1002/jbmr.1891
[20] Balasubramanian, M., Parker, M.J., Dalton, A., Giunta, C., Lindert, U., Peres, L.C., Wagner, B.E., Arundel, P., Offiah, A. and Bishop, N.J. (2013) Geno-type-Phenotype Study in Type V Osteogenesis Imperfecta. Clinical Dysmorphology, 22, 93-101.
https://doi.org/10.1097/MCD.0b013e32836032f0
[21] Zhang, Z., Li, M., He, J.W., Fu, W.Z., Zhang, C.Q. and Zhang, Z.L. (2013) Phenotype and Genotype Analysis of Chinese Patients with Osteogenesis Imperfect Type V. PLOS ONE, 8, e7233756.
https://doi.org/10.1371/journal.pone.0072337
[22] Grover, M., Campeau, P.M., Lietman, C.D., Lu, J.T., Gibbs, R.A., Schles-inger, A.E. and Lee, B.H. (2013) Osteogenesis Imperfecta Type without Features of Type V Caused by a Mutation in the IFITM5 Gene. Journal of Bone and Mineral Research, 28, 2333-2337.
https://doi.org/10.1002/jbmr.1983
[23] Kim, O.H., Jin, D.K., Kosaki, K., Kim, J.W., Cho, S.Y., Yoo, W.J., Choi, I.H., Nishimura, G., Ikegawa, S. and Cho, T.J. (2013) Osteogenesis Imperfect Type V: Clinical and Radiographic Mani-festations in Mutation Confirmed Patients. American Journal of Medical Genetics Part A, 161, 1972-197958.
https://doi.org/10.1002/ajmg.a.36024
[24] Etich, J., Leßmeier, L., Rehberg, M., Sill, H., Zaucke, F., Netzer, C. and Semler, O. (2020) Osteogenesis Imperfecta-Pathophysiology and Therapeutic Options. Molecular and Cellular Pediat-rics, 7, Article No. 9.
https://doi.org/10.1186/s40348-020-00101-9
[25] Forlino, A. and Marini, J.C. (2016) Osteogenesis Imperfecta. The Lancet, 387, 1657-1671.
https://doi.org/10.1016/S0140-6736(15)00728-X
[26] Kang, H., Aryal, A.C.S. and Marini, J.C. (2017) Osteogen-esis Imperfecta: New Genesreveal Novel Mechanisms in Bone Dysplasia. Translational Research, 181, 27-48.
https://doi.org/10.1016/j.trsl.2016.11.005
[27] Morello, R., Bertin, T.K., Chen, Y., et al. (2006) CRTAP Is Re-quired for Prolyl 3-Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta. Cell, 127, 291-304.
https://doi.org/10.1016/j.cell.2006.08.039
[28] Barnes, A.M., Chang, W., Morello, R., et al. (2006) Deficiency of Cartilage-Associated Protein in Recessive Lethal Osteogenesis Imperfecta. The New England Journal of Medicine, 355, 2757-2764.
https://doi.org/10.1056/NEJMoa063804
[29] Cabral, W.A., Chang, W., Barnes, A.M., et al. (2007) Prolyl 3-Hydroxylase 1 Deficiency Causes a Recessive Metabolic Bone Disorder Resembling Lethal/Severe Osteogenesis Im-perfecta. Nature Genetics, 39, 359-365.
https://doi.org/10.1038/ng1968
[30] Cabral, W.A., Perdivara, I., Weis, M., Terajima, M., Blissett, A.R., Chang, W., et al. (2014) Abnormal Type I Collagen Post-Translational Modification and Crosslinking ina Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta. PLOS Genetics, 10, e1004465.
https://doi.org/10.1371/journal.pgen.1004465
[31] Seyedhassani, S.M., Hashemi-Gorji, F., Yavari, M., Harazi, F. and Yassaee, V.R. (2016) Novel FKBP10 Mutation in a Patient with Osteogenesis Imperfecta Type XI. Fetal and Pedi-atric Pathology, 35, 353-358.
https://doi.org/10.1080/15513815.2016.1191567
[32] Lietman, C.D., Rajagopal, A., Homan, E.P., Munivez, E., Jiang, M.M., Bertin, T.K., Chen, Y., Hicks, J., Weis, M., Eyre, D., Lee, B. and Krakow, D. (2014) Connective Tissue Alterations in Fkbp10-/- Mice. Human Molecular Genetics, 23, 4822-4831.
https://doi.org/10.1093/hmg/ddu197
[33] Patterson, C.E., Abrams, W.R., Wolter, N.E., Rosenbloom, J. and Davis, E.C. (2005) Developmental Regulation and Coordinate Reexpression of FKBP65 with Extracellular Matrix Proteins after Lung Injury Suggesta Specialized Function for this Endoplasmic Reticulum Immunophilin. Cell Stress and Chaperones, 10, 285-295.
[34] Steinlein, O.K., Aichinger, E., Trucks, H. and Sander, T. (2011) Mutations in FKBP10 Can Cause a Severe form Ofisolated Osteogenesis Imperfecta. BMC Medical Genetics, 12, Article No. 152.
https://doi.org/10.1186/1471-2350-12-152
[35] Moravej, H., Karamifar, H., Karamizadeh, Z., Amirhakimi, G., Atashi, S. and Nasirabadi, S. (2015) Bruck Syndrome—A Rare Syndrome of Bone Fragility and Joint Contracture and Novel Homozygous FKBP10 Mutation. Endokrynologia Polska, 66, 170-174.
https://doi.org/10.5603/EP.2015.0024
[36] Barnes, A.M., Duncan, G., Weis, M., Paton, W., Cabral, W.A., Mertz, E.L., Makareeva, E., Gambello, M.J., Lacbawan, F.L., Leikin, S., Fertala, A., Eyre, D.R., Bale, S.J. and Marini, J.C. (2013) Kuskokwim Syndrome, a Recessive Congenital Contracture Disorder, Extends the Phenotype of FKBP10 Muta-tions. Human Mutation, 34, 1279-1288.
https://doi.org/10.1002/humu.22362
[37] Capitani, M. and Sallese, M. (2009) The KDEL Receptor: New Functions for an Old Protein. FEBS Letters, 583, 3863-3871.
https://doi.org/10.1016/j.febslet.2009.10.053
[38] Efthymiou, S., Herman, I., Rahman, F., Anwar, N., Maroofian, R., Yip, J., Mitani, T., Calame, D.G., Hunter, J.V., Sutton, V.R., Yilmaz Gulec, E., Duan, R., Fatih, J.M., Marafi, D., Pehlivan, D., Jhangiani, S.N., Gibbs, R.A., Posey, J.E., SYNAPS Study Group, Maqbool, S., Lupski, J.R. and Houlden, H. (2021) Two Novel Bi-Allelic KDELR2 Missense Variants Causeos-teogenesis Imperfecta with Neurodevelopmental Features. American Journal of Medical Genetics Part A, 185, 2241-2249.
https://doi.org/10.1002/ajmg.a.62221
[39] van Dijk, F.S., Semler, O., Etich, J., Köhler, A., Jimenez-Estrada, J.A., Bravenboer, N., Claeys, L., Riesebos, E., Gegic, S., Piersma, S.R., Jimenez, C.R., Waisfisz, Q., Flores, C.L., Nevado, J., Harsevoort, A.J., Janus, G.J.M., Franken, A.A.M., van der Sar, A.M., Meijers-Heijboer, H., Heath, K.E., Lapunzina, P., Nikkels, P.G.J., Santen, G.W.E., Nüchel, J., Plomann, M., Wagener, R., Rehberg, M., Hoyer-Kuhn, H., Eekhoff, E.M.W., Pals, G., Mörgelin, M., Newstead, S., Wilson, B.T., Ruiz-Perez, V.L., Maugeri, A., Netzer, C., Zaucke, F. and Micha, D. (2020) Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. The American Journal of Human Genetics, 107, 989-999.
https://doi.org/10.1016/j.ajhg.2020.09.009
[40] Martínez-Glez, V., Valencia, M., Caparrós-Martín, J.A., Aglan, M., Temtamy, S., Tenorio, J., et al. (2012) Identification of a Mutation Causing Deficient BMP1/mTLD Proteolytic Activity in Autosomal Recessive Osteogenesis Imperfecta. Human Mutation, 33, 343-350.
https://doi.org/10.1002/humu.21647
[41] Murakami, T., Saito, A., Hino, S., et al. (2009) Signalling Mediated by the Endoplasmic Reticulum Stress Transducer OASIS Is Involved in Bone Formation. Nature Cell Biology, 11, 1205-1211.
https://doi.org/10.1038/ncb1963
[42] Faqeih, E., Shaheen, R. and Alkuraya, F.S. (2013) WNT1 Muta-tion with Recessive Osteogenesis Imperfecta and Profound Neurological Phenotype. Journal of Medical Genetics, 50, 491-492.
https://doi.org/10.1136/jmedgenet-2013-101750
[43] Laine, C.M., Joeng, K.S., Campeau, P.M., et al. (2013) WNT1 Mutations in Early-Onset Osteoporosis and Osteogenesis Imperfecta. The New England Journal of Medicine, 368, 1809-1916.
https://doi.org/10.1056/NEJMoa1215458
[44] Pyott, S.M., Tran, T.T., Leistritz, D.F., et al. (2013) WNT1 Mutations in Families Affected by Moderately Severe and Progressive recessive Osteogenesis Imperfecta. Amer-ican Journal of Human Genetics, 92, 590-597.
https://doi.org/10.1016/j.ajhg.2013.02.009
[45] Keupp, K., Beleggia, F., Kayserili, H., et al. (2013) Mutations in WNT1 Cause Different Forms of Bone Fragility. American Journal of Human Genetics, 92, 565-574.
https://doi.org/10.1016/j.ajhg.2013.02.010
[46] Gewartowska, O., Aranaz-Novaliches, G., Krawczyk, P.S., Mroczek, S., Kusio-Kobiałka, M., Tarkowski, B., Spoutil, F., Benada, O., Kofroňová, O., Szwedziak, P., Cysewski, D., Gruchota, J., Szpila, M., Chlebowski, A., Sedlacek, R., Prochazka, J. and Dziembowski, A. (2021) Cytoplasmic Poly-adenylation by TENT5A Is Required for Proper Bone Formation. Cell Reports, 35, Article ID: 109015.
https://doi.org/10.1016/j.celrep.2021.109015
[47] Hojo, H. and Ohba, S. (2022) Sp7 Action in the Skeleton: Its Mode of Action, Functions and Relevance to Skeletal Diseases. International Journal of Molecular Sciences, 23, Article 5647.
https://doi.org/10.3390/ijms23105647
[48] Wang, J.S., Tokavanich, N. and Wein, M.N. (2023) SP7: From Bone Development to Skeletal Disease. Current Osteoporosis Reports, 21, 241-252.
https://doi.org/10.1007/s11914-023-00778-7
[49] Lapunzina, P., Aglan, M., Temtamy, S., Caparros-Martin, J.A., Valencia, M., Leton, R., et al. (2010) Identification of a Frameshift Mutation in Osterix in a Patientwith Recessive Oste-ogenesis Imperfecta. American Journal of Human Genetics, 87, 110-114.
https://doi.org/10.1016/j.ajhg.2010.05.016
[50] Al-Jallad, H., Palomo, T., Roughley, P., Glorieux, F.H., McKee, M.D., Moffatt, P. and Rauch, F. (2015) The Effect of SERPINF1 In-Frame Mutations in Osteogenesis Imperfecta Type VI. Bone, 76, 115-120.
https://doi.org/10.1016/j.bone.2015.04.008
[51] Ghosh, D.K., Udupa, P., Shrikondawar, A.N., Bhavani, G.S., Shah, H., Ranjan, A. and Girisha, K.M. (2023) Mutant MESD Links Cellular Stress to Type I Collagen Aggregation in Osteogenesis Imperfecta Type XX. Matrix Biology, 115, 81-106.
https://doi.org/10.1016/j.matbio.2022.12.001
[52] Moosa, S., Yamamoto, G.L., Garbes, L., Keupp, K., Bele-za-Meireles, A., Moreno, C.A., Valadares, E.R., de Sousa, S.B., Maia, S., Saraiva, J., Honjo, R.S., Kim, C.A., Cabral de Menezes, H., Lausch, E., Lorini, P.V., Jr Lamounier, A., Carniero, T.C.B., Giunta, C., Rohrbach, M., Janner, M., Semler, O., Beleggia, F., Li, Y., Yigit, G., Reintjes, N., Altmüller, J., Nürnberg, P., Cavalcanti, D.P., Zabel, B., Warman, M.L., Bertola, D.R., Wollnik, B. and Netzer, C. (2019) Autosomal-Recessive Mutations in MESD Cause Osteogenesis Imper-fecta. American Journal of Human Genetics, 105, 836-843.
https://doi.org/10.1016/j.ajhg.2019.08.008
[53] Dubail, J., Brunelle, P., Baujat, G., Huber, C., Doyard, M., Michot, C., Chavassieux, P., Khairouni, A., Topouchian, V., Monnot, S., Koumakis, E. and Cormier-Daire, V. (2020) Homozygous Loss-of-Function Mutations in CCDC134 Are Responsi-ble for a Severe Form of Osteognesis Imperfecta. Journal of Bone and Mineral Research, 35, 1470-1480.
https://doi.org/10.1002/jbmr.4011
[54] Stürznickel, J., Jähn-Rickert, K., Zustin, J., et al. (2021) Compound Heter-ozygous Frameshift Mutations in MESD Cause a Lethal Syndrome Suggestive of Osteogenesis Imperfecta Type XX. Journal of Bone and Mineral Research, 36, 1077-1087.
https://doi.org/10.1002/jbmr.4277