低维Busemann-Petty测度问题的同伦形式
An Isomorphic Version of the LowerDimensional Busemann-PettyProblems for Measures
DOI: 10.12677/PM.2023.136178, PDF, HTML, 下载: 123  浏览: 1,592  国家自然科学基金支持
作者: 朱先阳:铜仁学院大数据学院,贵州 铜仁
关键词: 同伦形式截面体测度Radon变换Isomorphic Version Intersection Body Measures Radon Transform
摘要: 低维Busemann-Petty测度问题是指: 对其有适当密度函数的Borel测度µ及n-维欧氏空间的两个中心对称凸体K和L来说,若它们被任意的n-i-维子空间所截,所得的n-i–维截面体的测度满足µ(K∩ξ)≤µ(L∩ξ),其中ξ∈G(n,i)(1≤i ≤n),那么其n-维凸体K和L的测度µ(K)≤µ(L)是否成立?在己有文献中,获得了与Rubin及Zhang关于低维Busemann-Petty问题的n-维体积形式相一致的结论。本文证明了这个结论的同伦形式,即在上述条件下,对任意的1≤i≤n,有µ(K)≤ni/2µ(L)成立。
Abstract: The lower dimensional Busemann-Petty (LDBP) problem for arbitrary measures asks: For a given Borel measure µ with appropriate density and two origin-symmetric convex bodies K and L, does the assumption that µ(K∩ξ)≤µ(L∩ξ) holds for any ξ∈G(n,i)(1≤i ≤n) imply that µ(K)≤µ(L)? It was proved that the problem has the same answer as Rubin and Zhang's solutions to the LDBP problem for volumes. In this paper we show an isomorphic version of this result. Namely, if the above conditions hold, then µ(K)≤ni/2µ(L) for any 1≤i≤n.
文章引用:朱先阳. 低维Busemann-Petty测度问题的同伦形式[J]. 理论数学, 2023, 13(6): 1744-1752. https://doi.org/10.12677/PM.2023.136178

参考文献

[1] Zvavitch, A. (2005) The Busemann-Petty Problem for Arbitrary Measures. Mathematische Annalen, 331, 867-887.
https://doi.org/10.1007/s00208-004-0611-5
[2] Koldobsky, A. (2000) A Functional Analytic Approach to Intersection Bodies. Geometric and Functional Analysis, 10, 1507-1526.
https://doi.org/10.1007/PL00001659
[3] Koldobsky, A. and Zvavitch, A. (2015) An Isomorphic Version of the Busemann-Petty Problem for Arbitrary Measures. Geometriae Dedicata, 174, 261-277.
https://doi.org/10.1007/s10711-014-0016-x
[4] Zymonopoulou, M. (2008) The Complex Busemann-Petty Problem for Arbitrary Measures. Archiv der Mathematik, 91, 436-449.
https://doi.org/10.1007/s00013-008-2863-x
[5] Rubin, B. and Zhang, G. (2004) Generalizations of the Busemann-Petty Problem for Sections of Convex Bodies. Journal of Functional Analysis, 213, 473-501.
https://doi.org/10.1016/j.jfa.2003.10.008
[6] Rubin, B. (2006) The Lower Dimensional Busemann-Petty Problem with Weights. Mathemati- ka, 53, 235-245.
https://doi.org/10.1112/S0025579300000115
[7] Zhang, G. (1996) Sections of Convex Bodies. American Journal of Mathematics, 118, 319-340.
https://doi.org/10.1353/ajm.1996.0021
[8] Bourgain, J. and Zhang, G. (1998) On a Generalization of the Busemann-Petty Problem. In: Ball, K. and Milman, V., Eds., Convex Geometric Analysis, MSRI Publications, Vol. 34, Cambridge University Press, New York, 65-76.
[9] Koldobsky, A. (2000) A Functional Analytic Approach to Intersection Bodies. Geometric and Functional Analysis, 10, 1507-1526.
https://doi.org/10.1007/PL00001659
[10] Milman, E. (2005) Generalized Intersection Bodies. Journal of Functional Analysis, 240, 530- 567.
https://doi.org/10.1016/j.jfa.2006.04.004
[11] Busemann, H. and Petty, C.H. (1956) Problems on Convex Bodies. Mathematica Scandinavica, 4, 88-94.
https://doi.org/10.7146/math.scand.a-10457
[12] Ball, K. (1988) Some Remarks on the Geometry of Convex Sets. In: Lindenstrauss, J. and Milman, V., Eds., Geometric Aspects of Functional Analysis 1986-1987, Lecture Notes in Mathematics, Vol. 1317, Springer, Berlin, 224-231.
https://doi.org/10.1007/BFb0081743
[13] Barthe, F., Fradelizi, M. and Maurey, B. (1999) A Short Solution to the Busemann-Petty Problem. Positivity, 3, 95-100.
https://doi.org/10.1023/A:1009777119957
[14] Bourgain, J. (1991) On the Busemann-Petty Problem for Perturbations of the Ball. Geometric and Functional Analysis, 1, 1-13.
https://doi.org/10.1007/BF01895416
[15] Gardner, R.J. (1994) A Positive Answer to the Busemann-Petty Problem in Three Dimensions. Annals of Mathematics, 140, 435-447.
https://doi.org/10.2307/2118606
[16] Gardner, R.J., Koldobsky, A. and Schlumprecht, T. (1999) An Analytic Solution to the Busemann-Petty Problem on Sections of Convex Bodies. Annals of Mathematics, 149, 691-703.
https://doi.org/10.2307/120978
[17] Giannopoulos, A. (1990) A Note on a Problem of H. Busemann and C.M. Petty Concerning Sections of Symmetric Convex Bodies. Mathematika, 37, 239-244.
https://doi.org/10.1112/S002557930001295X
[18] Larman, D.G. and Rogers, C.A. (1975) The Existence of a Centrally Symmetric Convex Body with Central Cross-Sections That Are Unexpectedly Small. Mathematika, 22, 164-175.
https://doi.org/10.1112/S0025579300006033
[19] Lutwak, E. (1988) Intersection Bodies and Dual Mixed Volumes. Advances in Mathematics, 71, 232-261.
https://doi.org/10.1016/0001-8708(88)90077-1
[20] Papadimitrakis, M. (1992) On the Busemann-Petty Problem about Convex, Centrally Sym- metric Bodies in Rn. Mathematika, 39, 258-266.
https://doi.org/10.1112/S0025579300014996
[21] Zhang, G. (1994) Centered Bodies and Dual Mixed Volumes. Transactions of the AMS, 345, 777-801.
https://doi.org/10.1090/S0002-9947-1994-1254193-9
[22] Zhang, G. (1999) A Positive Answer to the Busemann-Petty Problem in R4. Annals of Math- ematics, 149, 535-543.
https://doi.org/10.2307/120974
[23] Giannopoulos, A. and Koldobsky, A. (2016) Variants of the Busemann-Petty Problem and of the Shephard Problem. arXiv:1601.02231
[24] Koldobsky, A. and Yaskin, V. (2008) The Interface between Convex Geometry and Harmonic Analysis. In: CBMS Regional Conference Series in Mathematics, Vol. 108, American Mathe- matical Society, Providence, RI.
https://doi.org/10.1090/cbms/108
[25] Rubin, B. (2008) Intersection Bodies and Generalized Cosine Transforms. Advances in Math- ematics, 218, 696-727.
https://doi.org/10.1016/j.aim.2008.01.011
[26] Yaskin, V. (2006) A Solution to the Lower Dimensional Busemann-Petty Problem in the Hyper- bolic Space. Journal of Geometric Analysis, 16, 735-745.
https://doi.org/10.1007/BF02922139
[27] Zymonopoulou, M. (2008) The Complex Busemann-Petty Problem for Arbitrary Measures. Archiv der Mathematik, 91, 436-449.
https://doi.org/10.1007/s00013-008-2863-x
[28] Grinberg, E. and Zhang, G. (1999) Convolutions, Transforms and Convex Bodies. Proceedings of the London Mathematical Society, 78, 77-115.
https://doi.org/10.1112/S0024611599001653
[29] Helgason, S. (1984) Groups and Geometric Analysis. Academic Press, Cambridge MA.
[30] Helgason, S. (1999) The Radon Transform. 2nd Edition, Birkhauser, Boston.
https://doi.org/10.1007/978-1-4757-1463-0
[31] Rubin, B. (2002) Inversion Formulas for the Spherical Radon Transform and the Generalized Cosine Transform. Advances in Applied Mathematics, 29, 471-497.
https://doi.org/10.1016/S0196-8858(02)00028-3