脑小血管病影像学表现与血管性认知功能障碍相关性的研究进展
Research Progress on the Correlation between Imaging Manifestations of Cerebral Small Vessel Disease and Vascular Cognitive Impairment
DOI: 10.12677/ACM.2023.1371554, PDF, HTML, XML, 下载: 156  浏览: 321 
作者: 戚雷雷*:延安大学医学院研究生院,陕西 延安;高学军:延安大学附属医院神经内科,陕西 延安
关键词: 脑小血管病认知功能障碍磁共振成像总负荷评分Cerebral Small Vessel Disease Cognitive Dysfunction Magnetic Resonance Imaging Total SVD Score
摘要: 脑小血管病(small vessel disease, SVD)是目前神经科广泛使用的名词术语,其是指由各种病因引起的脑内小动脉及其远端分支、微动脉、毛细血管、微静脉和小静脉所导致的一系列临床、影像、病理综合征,是神经内科极为复杂且表现形式多样、发病隐匿的一大类脑血管综合征。SVD多发于60岁以上中老年人群,发病率高达70%以上,可造成一系列生活质量问题,如认知功能障碍、二便障碍、步态不稳等,且显著增加卒中、血管性痴呆和阿尔茨海默病(Alzheimer’s disease, AD)的发生风险,是迫切需要解决的临床问题。其中认知功能损害表现不突出但高发,直接影响SVD患者的生活质量。研究发现,脑小血管病患者整体认知功能会受到损害,更为突出的体现在语言、抽象思维、视空间及执行功能等方面。为更早期、高效且准确的诊断SVD相关认知功能障碍,许多学者研究了SVD影像学表现与认知功能下降的关系,本文对血管性认知功能障碍与SVD影像学标志以及总负荷评分的相关性展开综述。
Abstract: Small vessel disease (SVD) is a widely used term in neurology, which refers to a series of clinical, imaging, and pathological syndromes caused by various causes of small arteries and their distal branches, arterioles, capillaries, venules, and venules in the brain. It is a large class of cerebrovas-cular syndromes that are extremely complex and have diverse manifestations, and the onset is hidden in neurology. SVD mostly occurs in people over 60 years old, and the incidence rate of SVD in middle-aged and elderly people is more than 70%, which can cause a series of problems such as cognitive dysfunction, dysuria, gait instability, and significantly increase the risk of stroke, vascular dementia, and Alzheimer’s disease (AD), which is an urgent clinical problem to be solved. Among them, cognitive impairment is not prominent but highly prevalent, which directly affects the quality of life of SVD patients. Research has found that patients with cerebrovascular disease suffer from overall cognitive impairment, particularly in terms of language, abstract thinking, visual space, and executive function. In order to diagnose SVD related cognitive impairment more early, efficiently, and accurately, many scholars have studied the relationship between SVD imaging manifestations and cognitive decline. This article reviews the correlation between vascular cognitive impairment and SVD imaging markers as well as overall burden.
文章引用:戚雷雷, 高学军. 脑小血管病影像学表现与血管性认知功能障碍相关性的研究进展[J]. 临床医学进展, 2023, 13(7): 11130-11136. https://doi.org/10.12677/ACM.2023.1371554

1. 血管性认知功能障碍(VCI)

1983年Loeb等首先提出了血管性痴呆(VaD)的概念,泛指脑血管病后出现的痴呆 [1] 。而1993年Hachinski等人提出了血管性认知功能障碍(VCI)的定义,其中包括血管性痴呆、伴血管病变的阿尔茨海默病和非痴呆的血管性认知功能损害等 [2] 。此后VCI渐成为描述脑血管相关疾病导致的认知下降的主要名词从而替代了血管性痴呆,随着对VCI认识的加深,VCI的概念变得更为广泛,即由脑血管病变及其危险因素导致的由轻度到重度认知功能损害的一系列综合征 [3] [4] 。随着全世界人口老龄化的日益加剧,认知功能障碍渐成为影响老年人生活质量的严重健康问题 [5] ,预计到2030年全球认知功能障碍患者可能达6600万人,而2050年或将增至1.15亿人 [6] 。研究表明,VCI逐渐成为仅次于阿尔茨海默病(Alzheimer’s disease, AD)之后导致痴呆的第二大病因,而我国65岁以上人群中VCI的患病率高达1.5% [7] 。SVD主要影响的是患者信息处理速度和执行功能,然而记忆和语言能力则相对完好 [8] 。

2. SVD影像学标志与VCI的关系

在过去数十年里,借助颅脑影像学检查,学者们发现脑小血管病(SVD)相关的脑损害相当广泛并多样化。目前脑小血管病(SVD)主要是影像学概念,随着影像技术的快速发展,脑小血管病的概念也与时俱进,2012年脑小血管病国际工作组提出脑小血管病影像学标志物包括:脑白质高信号(WMH)、新发的皮质下小梗死灶及血管源性腔隙、血管周围间隙、脑微出血以及脑萎缩 [9] 。

2.1. 脑白质高信号(WMH)与VCI的关系

脑白质高信号(Wgite matter hyperintensity, WMH)又称脑白质病变(Leukoaraiosis, LA)。该影像学术语最早由神经病学专家Hachinski提出,影像学表现为T2或T2 Flair高信号,T1加权成像上无明显的低信号,主要见于老年人 [10] 。临床上将WMH分为脑室周围WMH和深部WMH,有研究发现产生这种影像学变化的原因主要是脑小血管受损,而并非是以往所认为的脱髓鞘病变、感染以及毒性或代谢相关因素 [11] 。有学者通过对非痴呆老年参与者队列的研究发现脑白质高信号量与执行功能、记忆和运动速度间呈负相关。WMH与轻度认知功能障碍(MCI)密切相关,主要表现在记忆延迟、注意力不集中、执行功能受损等方面,其中以注意力,执行功能以及处理速度最为显著 [12] 。国外一项针对健康人群的脑白质高信号病变研究发现,位于额叶近脑室的白质高信号可能会影响执行功能,而颞叶旁近侧脑室后角的白质高信号影响记忆力,靠近皮质脊髓束的白质高信号则影响运动速度表现 [13] 。杜静、卢东等学者针对脑小血管病后早期认知功能损害的相关研究发现:深部皮质下白质高信号主要与注意–执行功能和视空间功能显著相关,而脑室周围白质高信号则与各项认知功能均有明显的相关性 [14] 。

2.2. 腔隙性脑梗死与VCI的关系。

腔隙性脑梗死定义为由穿孔性小动脉异常引起的脑实质小梗死灶,临床上腔隙性脑梗死患者可能有症状或无症状 [15] 。新发的皮质下梗死多位于内囊后肢、豆状核、半卵圆中心、丘脑前外侧、脑干和小脑,影像学上表现为近期发生的小梗死,T2、FLAIR、DWI序列中呈现为高信号 [16] ,腔隙性脑梗死引起认知功能障碍发病机制可能是腔隙性脑梗死破坏了额叶–皮质下环路引起信息处理速度、记忆与执行功能受损,从而导致患者认知功能出现障碍 [17] 。然而有国外学者通过一项纳入912例腔隙性卒中患者和425例对照的研究发现,在38.8%的腔隙患者中检测到VCI,13.4%的对照组检测到VCI。当腔隙性脑梗死和白质高信号在同一回归模型中,只有脑白质高信号与VCI显著相关(OR = 1.46 (95%CI = 1.24~1.72),P < 0.001) [18] 。

2.3. 扩大的血管周围间隙与VCI的关系。

扩大的血管周围间隙(PvS)指穿支血管由蛛网膜下腔进入脑实质时软脑膜内陷包饶在小血管周围形成的充满液体的间隙腔,围绕穿支动脉、小动脉、静脉和小静脉,其内主要含有淀粉样蛋白P、内氨酰氨基肽酶S和N、载脂蛋白E、蛋白多糖、免疫球蛋白G、白蛋白等成分 [19] 。PVS主要发生于基底节区、皮质下、脑干等部位,影像学表现为T1WI和T2FLAIR序列低信号,直径一般<3 mm,T2年序列高信号 [20] 。克劳福德等国外学者通过对414名年龄在72~92岁的社区老人为期8年的观察性研究发现重度PVS的病理学改变是认知功能下降和痴呆可能增加的标志物 [21] 。国外有大型PVS与处理速度下降的关联且与其他SVD标记无关的报道,但与语言记忆或执行功能无关 [24] 。然而相反的最近的2项荟萃分析报告了PVS严重程度与认知受损无关 [22] [23] 。

2.4. 脑微出血(CMBs)与VCI的关系

脑微出血是神经影像名词,是指磁敏感序列(SWI)或T2WI序列上质地均一、圆形、边界清楚、直径2~5 mm且周围无水肿的信号缺失区 [25] 。脑微出血与认知功能的相关性的研究最早是2004年Mesker等进行的,他们发现脑微出血组存在执行功能障碍的患者所占比例是对照组中的2倍 [26] 。2017年有国内学者通过对2602名受试者随访5.2年研究发现CMBs数量 ≥ 3个,不论位置,均与痴呆和血管性痴呆相关 [27] 。有国内学者通过对208例受试者的研究发现存在深部及幕下微出血灶的患者认知平均水平普遍低于无CMBs者,特别是在记忆、视空间与执行功能受损明显。而在皮质以及皮质下CMBs弥散分布的患者,其认知平均水平普遍低于无CMBs者,特别是在视空间与执行、记忆、注意力、言语、定向力等方面差异更明显 [28] 。

2.5. 脑萎缩与VCI的关系

脑萎缩指与SVD并存的脑容积减少,与颅内的局部损伤无关 [29] ,其影像学主要表现为皮质、灰质、海马等萎缩 [30] 。周成、关晓军通过对94例受试者进行为期28个月的随访后发现颞叶早期萎缩和额叶进行性萎缩可能是发生多域认知障碍的生物标志物 [31] 。2012年SVD国际工作组将脑萎缩纳入脑小血管病影像学标志物后,其相关评分的应用尚广泛,目前并未将其纳入SVD影像学总体负荷评估,尚需进一步研究。

3. SVD影像学总负荷评分与VCI的关系

3.1. SVD影像学总负荷评分

在颅脑MRI上,与SVD密切相关的4个特征标志物:腔隙性脑梗死、脑白质高信号(WMH)、脑微出血(CMB)和扩大的血管周围间隙(PVS) [32] [33] ,马斯特里赫特等通过对SVD磁共振成像存在的不同MRI特征求和,对SVD患者进行了总体负荷的估计,得出0至4的“总SVD评分”。SVD影像学总负荷评分方法:以下表现记为1分:① ≥1个腔隙;② Fazekas评分中深部WMH评分 > 2分和(或)脑室旁WMH评分为3分;③ >1个深部或幕下CMB;④ 基底节区中重度(2~4级) PVS [9] [34] 。虽然许多研究报告萎缩与SVD之间存在关联,但也可见于正常衰老,总评分与萎缩的关联可能更多地适用于老年人群或SVD的不同阶段,目前没有充分的理由将其纳入SVD总评分 [35] [36] [37] 。Julie Staals等国外学者通过对461名受试者的多变量分析发现年龄(比值比[OR] 1.10,95%置信区间[CI] 1.08~1.12)、男性(OR 1.58, 95%CI 1.10~2.29)、高血压(OR 1.50, 95%CI 1.02~2.20)、吸烟(OR 2.81, 95%CI 1.59~3.63)和腔隙性卒中亚型(OR 2.45, 95%CI 1.70~3.54)与SVD总评分显著且独立相关。SVD总分可以以简单务实的方式更完整地估计SVD对大脑的全面影响 [38] 。

3.2. SVD影像学总负荷评分与VCI的关系

关于SVD影像学总负荷评分与认知功能障碍之间关系近年来的相关研究较多,Hanna Jokinen等使用基于自动图谱和神经网络分割的方法分析了560名老年人的磁共振成像扫描,并对其进行了3年的神经心理学检查和7年的日常生活工具活动评估,发现认知功能结局的最强预测指标是白质高信号、灰质和海马体的总量(整体认知功能、处理速度、执行功能和记忆力为P < 0.001,功能不良结局为P < 0.001)。腔隙大小、扩大的血管周围间隙和新发的皮质下梗死与部分结局指标显著相关,但其贡献相对较弱。基于以上标志物综合测量的总评分强烈预测认知功能(P < 0.001)。最终得到通过图像分割工具量化的小血管疾病相关大脑影像学变化的总负荷是长期认知能力下降和功能障碍的有力预测指标,脑白质高信号、腔隙性脑梗死、灰质和海马体积的综合测量可用作与血管认知障碍相关的影像学标志物的结论 [39] 。还有研究报告说,SVD影像学特征的综合测量对中风后认知表现的贡献大于孤立单个测量 [40] 。

Marios K. Georgakis等在一项针对666名缺血性和出血性卒中患者的前瞻性多中心研究中量化了基于磁共振成像(MRI)的SVD标志物(腔隙、白质高信号、微出血、血管周围间隙),并探讨了与6个月和12个月认知(15项神经心理学测试)和功能(改良Rankin量表)结局的关联,发现总体SVD评分(范围0~4)与认知障碍相关;SVD的存在和严重程度与卒中后12个月更差的认知和功能结局有关,通过SVD总负荷评分评估SVD严重程度可能有助于卒中患者认知功能相关的预后 [41] 。有学者对157名年龄在85至50岁之间首次出现腔隙性梗死的患者(n = 85)进行前瞻性分析。进行脑磁共振成像以识别SVD表现,用于计算总SVD评分或修改的SVD评分。神经心理学评估测量了认知功能。Spearman相关性分析表明,总SVD分数和修改后的SVD分数与整体认知以及执行和视觉空间领域的功能有关。在调整年龄、性别、教育和血管危险因素后,这些关联在线性回归中仍然显著 [42] 。

综上所述,国内外学者对于脑小血管病与认知功能障碍的相关性做了大量研究,不乏有通过单个孤立标志物来进行研究者,综合发现相对于单个影像学标志物,总负荷评分则更为全面,发现SVD总负荷评分与认知功能障碍有一定相关性,通过对总体负荷评分的研究可以为认知功能障碍的早期预防及识别提供价值。但随着医学科学的发展,通过总体负荷进行脑小血管病与认知功能障碍的关系的研究又面临新的挑战,对于认知功能障碍评估量表的选择过于简易,SVD总体负荷评分各标志物权重的分配以及脑萎缩是否纳入总评分等又将是新的研究话题。

NOTES

*通讯作者。

参考文献

[1] Loeb, C. and Gandolfo, C. (1983) Diagnostic Evaluation of Degenerative and Vascular Dementia. Stroke, 14, 399-401.
https://doi.org/10.1161/01.STR.14.3.399
[2] Hachinski, V.C. and Bowler, J.V. (1993) Vascular Dementia. Neu-rology, 43, 2159-2161.
https://doi.org/10.1212/WNL.43.10.2159-a
[3] Hachinski, V., Iadecola, C., Petersen, R.C., et al. (2006) National Institute of Neurological Disorders and Stroke-Ca- nadian Stroke Network Vascular Cognitive Impairment Harmoniza-tion Standards. Stroke, 37, 2220-2241.
https://doi.org/10.1161/01.STR.0000237236.88823.47
[4] Gorelick, P.B., Scuderi, A., Black, S.E., et al. (2011) Vascular Contributions to Cognitive Impairment and Dementia: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 42, 2672-2713.
https://doi.org/10.1161/STROKEAHA.111.634279
[5] Dichgans, M. and Leys, D. (2017) Vascular Cognitive Impairment. Circulation Research, 120, 573-591.
https://doi.org/10.1161/CIRCRESAHA.116.308426
[6] Wortmann, M. (2012) Dementia: A Global Health Prior-ity-Highlights from an ADI and World Health Organization Report. Alzheimer’s Research & Therapy, 4, Article No. 40.
https://doi.org/10.1186/alzrt143
[7] Jia, J., Wang, F., Wei, C., et al. (2014) The Prevalence of Dementia in Urban and Rural Areas of China. Alzheimer’s & Dementia, 10, 1-9.
https://doi.org/10.1016/j.jalz.2013.01.012
[8] Hamilton, O.K.L., Backhouse, E.V., Janssen, E., et al. (2021) Cog-nitive Impairment in Sporadic Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. Alzheimer’s & Dementia, 17, 665-685.
https://doi.org/10.1002/alz.12221
[9] Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838.
https://doi.org/10.1016/S1474-4422(13)70124-8
[10] Vandijk, E.J., Prins, N.D., Vrooman, H.A., et al. (2008) Progression of Cerebral Small Vessel Disease in Relation to Risk Factors and Cognitive Consequences: Rotterdam Scan Study. Stroke, 39, 2712-2719.
https://doi.org/10.1161/STROKEAHA.107.513176
[11] Lin, J., Wang, D.L., Lan, L.F., et al. (2017) Multiple Fac-tors Involved in the Pathogenesis of White Matter Lesions. BioMed Research International, 2017, Article ID: 9372050.
https://doi.org/10.1155/2017/9372050
[12] Mi, T., Zhao, E., Zheng, X.Y., et al. (2015) Leukoaraiosis with Mild Cognitive Impairment. Neurological Research, 37, 410-414.
https://doi.org/10.1179/1743132815Y.0000000028
[13] Lampe, L., Kharabian-Masouleh, S., Kynast, J., et al. (2019) Lesion Location Matters: The Relationships between White Matter Hyperintensities on Cognition in the Healthy Elderly. Journal of Cerebral Blood Flow & Metabolism, 39, 36-43.
https://doi.org/10.1177/0271678X17740501
[14] 杜静, 卢东, 赵薇, 等. 白质高信号与脑小血管病卒中后早期认知损害的关联[J]. 神经病学与神经康复学杂志, 2018, 14(4): 205-211.
[15] Dhamoon, M.S., McClure, L.A., White, C.L., Lakshminarayan, K., Benavente, O.R., Elkind, M.S. and SPS3 Investigators (2015) Long-Term Disability after Lacunar Stroke: Secondary Prevention of Small Subcortical Strokes. Neurology, 84, 1002-1008.
https://doi.org/10.1212/WNL.0000000000001331
[16] Rudilosso, S., Mena, L., Esteller, D., et al. (2021) Higher Cerebral Small Vessel Disease Burden in Patients with White Matter Recent Small Subcortical Infarcts. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105824.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105824
[17] Teng, Z., Dong, Y., Zhang, D., An, J. and Lv, P. (2017) Cerebral Small Vessel Disease and Post-Stroke Cognitive Impairment. International Journal of Neuroscience, 127, 824-830.
https://doi.org/10.1080/00207454.2016.1261291
[18] Ohlmeier, L., Nannoni, S., Pallucca, C., Brown, R.B., Loubiere, L., Markus, H.S. and DNA Lacunar 2 Investigators (2023) Prevalence of, and Risk Factors for, Cognitive Impairment in Lacunar Stroke. International Journal of Stroke, 18, 62-69.
https://doi.org/10.1177/17474930211064965
[19] Salzman, K.L., Osborn, A.G., House, P., Jinkins, J.R., Ditch-field, A., Cooper, J.A. and Weller, R.O. (2005) Giant Tumefactive Perivascular Spaces. American Journal of Neuroradi-ology, 26, 298-305.
[20] 应云清, 王轶卿, 夏忆玮, 等. 脑小血管病影像学标志物与认知功能障碍相关性分析: 基于上海社区老年人队列[J]. 中国现代神经疾病杂志, 2021, 21(10): 843-852.
[21] Kochan, N.A., Makkar, S., Dawes, L., Trollor, J., Draper, B., Brodaty, H. and Sachdev, P.S. (2021) Association of Dilated Perivascular Spaces with Cognitive Decline and Incident Dementia. Neurology, 96, e1501-e1511.
https://doi.org/10.1212/WNL.0000000000011537
[22] Hilal, S., Tan, C.S., Adams, H.H.H., et al. (2018) Enlarged Perivascular Spaces and Cognition: A Meta-Analysis of 5 Population-Based Studies. Neurology, 91, e832-e842.
https://doi.org/10.1212/WNL.0000000000006079
[23] Francis, F., Ballerini, L. and Wardlaw, J.M. (2019) Peri-vascular Spaces and Their Associations with Risk Factors, Clinical Disorders and Neuroimaging Features: A Systematic Review and Meta-Analysis. International Journal of Stroke, 14, 359-371.
https://doi.org/10.1177/1747493019830321
[24] Ding, J., Sigurethsson, S., Jonsson, P.V., et al. (2017) Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia: The Age, Gene/Environment Susceptibility-Reykjavik Study. JAMA Neurology, 74, 1105-1112.
https://doi.org/10.1001/jamaneurol.2017.1397
[25] Rosenblum, W.I. (1999) Small Chronic Hemorrhages and Is-chemic Lesions in Association with Spontaneous Intracerebral Hematomas. Stroke, 30, 2761-2762.
[26] Mesker, D.J., Poels, M.M., Ikram, M.A., et al. (2011) Lobar Distribution of Cerebral Microbleeds: The Rotterdam Scan Study. Ar-chives of Neurology, 68, 656-659.
https://doi.org/10.1001/archneurol.2011.93
[27] 中华医学会老年医学分会老年神经病学组, 脑小血管病认知功能障碍诊疗指南中国撰写专家组. 脑小血管病相关认知功能障碍中国诊疗指南(2019) [J]. 中华老年医学杂志, 2019, 38(4): 345-354.
[28] 董仁. 不同部位脑微出血与认知障碍相关性研究[D]: [硕士学位论文]. 兰州: 西北民族大学, 2020.
https://doi.org/10.27408/d.cnki.gxmzc.2020.000423
[29] De Guio, F., Duering, M., Fazekas, F., De Leeuw, F., Greenberg, S.M., Pantoni, L., Aghetti, A., Smith, E.E., Wardlaw, J. and Jouvent, E. (2020) Brain Atrophy in Cerebral Small Vessel Diseases: Extent, Consequences, Technical Limitations and Perspectives: The HARNESS Initiative. Jour-nal of Cerebral Blood Flow & Metabolism, 40, 231-245.
https://doi.org/10.1177/0271678X19888967
[30] Newby, D., Winchester, L., Sproviero, W., et al. (2021) Associa-tions between Brain Volumes and Cognitive Tests with Hypertensive Burden in UK Biobank. Journal of Alzheimer’s Disease, 84, 1373-1389.
https://doi.org/10.3233/JAD-210512
[31] Zhou, C., Guan, X.J., Guo, T., Zeng, Q.L., Gao, T., Huang, P.Y., Xuan, M., Gu, Q.Q., Xu, X.J. and Zhang, M.M. (2020) Progressive Brain Atrophy in Parkinson’s Disease Patients Who Con-vert to Mild Cognitive Impairment. CNS Neuroscience & Therapeutics, 26, 117-125.
https://doi.org/10.1111/cns.13188
[32] Wardlaw, J., Smith, C. and Dichgans, M. (2013) Mechanisms of Sporadic Cerebral Small Vessel Disease: Insights from Neuroimaging. The Lancet Neurology, 12, 483-497.
https://doi.org/10.1016/S1474-4422(13)70060-7
[33] Pantoni, L. (2010) Cerebral Small Vessel Disease: From Pathogenesis and Clinical Characteristics to Therapeutic Challenges. The Lancet Neurology, 9, 689-701.
https://doi.org/10.1016/S1474-4422(10)70104-6
[34] Klarenbeek, P., van Oostenbrugge, R.J., Rouhl, R.P., Knottnerus, I.L. and Staals, J. (2013) Ambulatory Blood Pressure in Patients with Lacunar Stroke: Association with Total MRI Burden of Cerebral Small Vessel Disease. Stroke, 44, 2995-2999.
https://doi.org/10.1161/STROKEAHA.113.002545
[35] Appelman, A.P., Exalto, L.G., Van der Graaf, Y., Biessels, G.J., Mali, W.P. and Geerlings, M.I. (2009) White Matter Lesions and Brain Atrophy: More than Shared Risk Factors? A Systematic Review. Cerebrovascular Diseases, 28, 227-242.
https://doi.org/10.1159/000226774
[36] Aribisala, B.S., Valdés Hernández, M.C., Royle, N.A., et al. (2013) Brain Atrophy Associations with White Matter Lesions in the Ageing Brain: The Lothian Birth Cohort 1936. European Radi-ology, 23, 1084-1092.
https://doi.org/10.1007/s00330-012-2677-x
[37] Jouvent, E., Viswanathan, A. and Chabriat, H. (2010) Cerebral Atrophy in Cerebrovascular Disorders. Journal of Neuroimaging, 20, 213-218.
https://doi.org/10.1111/j.1552-6569.2009.00370.x
[38] Staals, J., Makin, S.D., Doubal, F.N., Dennis, M.S. and Wardlaw, J.M. (2014) Stroke Subtype, Vascular Risk Factors, and Total MRI Brain Small-Vessel Disease Burden. Neurology, 83, 1228-1234.
https://doi.org/10.1212/WNL.0000000000000837
[39] Jokinen, H., Koikkalainen, J., Laakso, H.M., Melkas, S., Nieminen, T., Brander, A., et al. (2020) Global Burden of Small Vessel Disease-Related Brain Changes on MRI Predicts Cognitive and Functional Decline. Stroke, 51, 170-178.
https://doi.org/10.1161/STROKEAHA.119.026170
[40] Dickie, D.A., Valdés Hernández, M.D.C., Makin, S.D., Staals, J., Wiseman, S.J., Bastin, M.E., et al. (2018) The Brain Health Index: Towards a Combined Measure of Neuro-vascular and Neurodegenerative Structural Brain Injury. International Journal of Stroke, 13, 849-856.
https://doi.org/10.1177/1747493018770222
[41] Georgakis, M.K., Fang, R., Düring, M., Wollenweber, F.A., Bode, F.J., Stösser, S., et al. (2023) Cerebral Small Vessel Disease Burden and Cognitive and Functional Outcomes after Stroke: A Multicenter Prospective Cohort Study. Alzheimer’s & Dementia, 19, 1152-1163.
https://doi.org/10.1002/alz.12744
[42] Zhi, N., Zhang, L., Wang, Y., Bai, S., Geng, J., Yu, L., Cao, W., Zhuang, L., Zhou, Y. and Guan, Y. (2021) Modified Cerebral Small Vessel Disease Score Is Associated with Vascular Cognitive Impairment after Lacunar Stroke. Aging (Albany NY), 13, 9510-9521.
https://doi.org/10.18632/aging.202438