[1]
|
Wilde, D.W., Massey, K.D., Walker, G.K., Vollmer, A. and Grekin, R.J. (2000) High-Fat Diet Elevates Blood Pressure and Cerebrovascular Muscle Ca2+ Current. Hypertension, 35, 832-837. https://doi.org/10.1161/01.HYP.35.3.832
|
[2]
|
Zhang, M., Lv, X.Y., Li, J., Xu, Z.G. and Chen, L. (2008) The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. Journal of Diabetes Research, 2008, Article ID: 704045. https://doi.org/10.1155/2008/704045
|
[3]
|
Shen, W., Wolf, P.G., Carbonero, F., Zhong, W., Reid, T., Gaskins, H.R. and McIntosh, M.K. (2014) Intestinal and Systemic Inflammatory Responses Are Positively Associated with Sulfidogenic Bacteria Abundance in High-Fat-Fed Male C57BL/6J Mice. The Journal of Nutrition, 144, 1181-1187. https://doi.org/10.3945/jn.114.194332
|
[4]
|
Qin, J., Li, Y., Cai, Z., et al. (2012) A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature, 490, 55-60.
|
[5]
|
Kashtanova, D.A., Tkacheva, O.N., Doudinskaya, E.N., et al. (2018) Gut Microbiota in Patients with Dif-ferent Metabolic Statuses: Moscow Study. Microorganisms, 6, Article No. 98. https://doi.org/10.3390/microorganisms6040098
|
[6]
|
Takagi, T., Naito, Y., Kashiwagi, S., et al. (2020) Changes in the Gut Microbiota Are Associated with Hypertension, Hyperlipidemia, and Type 2 Diabetes Mellitus in Japanese Sub-jects. Nutrients, 12, Article No. 2996.
https://doi.org/10.3390/nu12102996
|
[7]
|
Liu, Y., Wang, M., Li, W., et al. (2023) Differences in Gut Microbiota and Its Metabolic Function among Different Fasting Plasma Glucose Groups in Mongolian Population of China. BMC Microbiology, 23, Article No. 102.
https://doi.org/10.1186/s12866-023-02852-7
|
[8]
|
Goodrich, J.K., Waters, J.L., Poole, A.C., et al. (2014) Human Genetics Shape the Gut Microbiome. Cell, 159, 789-799.
https://doi.org/10.1016/j.cell.2014.09.053
|
[9]
|
Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D. and Gordon, J.I. (2005) Obesity Alters Gut Microbial Ecology. Proceedings of the National Academy of Sciences, 102, 11070-11075.
https://doi.org/10.1073/pnas.0504978102
|
[10]
|
De Wit, N.J., Bosch-Vermeulen, H., de Groot, P.J., et al. (2008) The Role of the Small Intestine in the Development of Dietary Fat-Induced Obesity and Insulin Resistance in C57BL/6J Mice. BMC Medical Genomics, 1, Article No. 14.
https://doi.org/10.1186/1755-8794-1-14
|
[11]
|
Mahmood, A., Faisal, M.N., Khan, J.A., et al. (2023) Association of a High-Fat Diet with I-FABP as a Biomarker of Intestinal Barrier Dysfunction Driven by Metabolic Changes in Wistar Rats. Lipids in Health and Disease, 22, Article No. 68. https://doi.org/10.1186/s12944-023-01837-9
|
[12]
|
Wang, Y., Yan, W., Lu, Y., et al. (2023) Intestinal Reg4 Deficiency Confers Susceptibility to High-Fat Diet-Induced Liver Ste-atosis by Increasing Intestinal Fat Absorption in Mice. JHEP Reports, 5, Article ID: 100700.
https://doi.org/10.1016/j.jhepr.2023.100700
|
[13]
|
Ding, S., Chi, M.M., Scull, B.P., et al. (2010) High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse. PLOS ONE, 5, e12191.
https://doi.org/10.1371/journal.pone.0012191
|
[14]
|
Huh, J.Y., Park, J., Kim, J.I., Park, Y.J., Lee, Y.K. and Kim, J.B. (2017) Deletion of CD1d in Adipocytes Aggravates Adipose Tissue Inflammation and Insulin Resistance in Obesity. Diabetes, 66, 835-847.
https://doi.org/10.2337/db16-1122
|
[15]
|
Khan, A.U.H., Allende-Vega, N., Gitenay, D., Gerbal-Chaloin, S., et al. (2017) The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis through the ERK5/MEF2 Pathway. Scien-tific Reports, 7, Article No. 10654.
https://doi.org/10.1038/s41598-017-10339-5
|
[16]
|
Karpale, M., Käräjämäki, A.J., Kummu, O., et al. (2021) Activa-tion of Pregnane X Receptor Induces Atherogenic Lipids and PCSK9 by a SREBP2-Mediated Mechanism. British Jour-nal of Pharmacology, 178, 2461-2481.
https://doi.org/10.1111/bph.15433
|
[17]
|
Stanko, R.T., Reynolds, H.R., Lonchar, K.D. and Arch, J.E. (1992) Plasma Lipid Concentrations in Hyperlipidemic Patients Consuming a High-Fat Diet Supplemented with Pyruvate for 6 wk. The American Journal of Clinical Nutrition, 56, 950-954. https://doi.org/10.1093/ajcn/56.5.950
|
[18]
|
Hatem-Vaquero, M., Griera, M., Garcia-Ayuso, D., et al. (2020) Integrin Linked Kinase (ILK) Downregulation as an Early Event during the Development of Metabolic Alterations in a Short-Term High Fat Diet Mice Model. Cellular Physiology & Biochem-istry, 54, 71-87. https://doi.org/10.33594/000000206
|
[19]
|
Bugler-Lamb, A.R., Hasib, A., Weng, X., et al. (2021) Adipocyte Integrin-Linked Kinase Plays a Key Role in the Development of Diet-Induced Adipose Insulin Resistance in Male Mice. Molecular Metabolism, 49, Article ID: 101197.
https://doi.org/10.1016/j.molmet.2021.101197
|
[20]
|
Williams, A.S., Trefts, E., Lantier, L., et al. (2017) Integ-rin-Linked Kinase Is Necessary for the Development of Diet-Induced Hepatic Insulin Resistance. Diabetes, 66, 325-334. https://doi.org/10.2337/db16-0484
|
[21]
|
Bhat, A.A., Uppada, S., Achkar, I.W., et al. (2019) Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Frontiers in Physiology, 9, Article No. 1942.
https://doi.org/10.3389/fphys.2018.01942
|
[22]
|
Fu, P., Liang, G.J., Khot, S.S., Phan, R. and Bach, L.A. (2010) Crosstalk between MAP Kinase Pathways Is Involved in IGF-Independent, IGFBP-6-Induced Rh30 Rhabdomyosar-coma Cell Migration. Journal of Cellular Physiology, 224, 636-643. https://doi.org/10.1002/jcp.22156
|
[23]
|
Vishweswaraiah, S., George, L., Purushothaman, N. and Ganguly, K. (2018) A Candidate Gene Identification Strategy Utilizing Mouse to Human Big-Data Mining: “3R-Tenet” in COPD Genetic Research. Respiratory Research, 19, Article No. 92. https://doi.org/10.1186/s12931-018-0795-y
|
[24]
|
Teratani, T., Tomita, K., Suzuki, T., et al. (2012) A High-Cholesterol Diet Exacerbates Liver Fibrosis in Mice via Accumulation of Free Cholesterol in Hepatic Stellate Cells. Gastroenterology, 142, 152-164.
https://doi.org/10.1053/j.gastro.2011.09.049
|
[25]
|
Yang, X.F., Qiu, Y.Q., Wang, L., Gao, K.G. and Jiang, Z.Y. (2018) A High-Fat Diet Increases Body Fat Mass and Up-Regulates Expression of Genes Related to Adipogenesis and Inflammation in a Genetically Lean Pig. Journal of Zhejiang University-Science B, 19, 884-894. https://doi.org/10.1631/jzus.B1700507
|
[26]
|
Molli, P.R., Li, D.Q., Murray, B.W., Rayala, S.K. and Kumar, R. (2009) PAK Signaling in Oncogenesis. Oncogene, 28, 2545-2555. https://doi.org/10.1038/onc.2009.119
|
[27]
|
Romanatto, T., Roman, E.A., Arruda, A.P., et al. (2016) Deletion of Tumor Necrosis Factor-α Receptor 1 (TNFR1) Protects against Diet-Induced Obesity by Means of Increased Thermo-genesis. The Journal of Biological Chemistry, 291, 26934. https://doi.org/10.1074/jbc.A109.030874
|
[28]
|
Brumer, R.P., Corrêa-Velloso, J.C., Thomas, S.J., Sandiford, O.A., Thomas, A.P. and Bartlett, P.J. (2023) Short-Term High-Fat Diet Feeding of Mice Suppresses Catecholamine Stimulated Ca2+ Signaling in Hepatocytes and Intact Liver. The Journal of Physiology, 601, 1383-1405. https://doi.org/10.1113/JP283691
|
[29]
|
Jung, H., Kim, H.S., Kim, J.Y., et al. (2019) DNA Methylation Loss Promotes Immune Evasion of Tumors with High Mutation and Copy Number Load. Nature Communications, 10, Article No. 4278.
https://doi.org/10.1038/s41467-019-12159-9
|
[30]
|
Andrich, D.E., Melbouci, L., Ou, Y., et al. (2019) A Short-Term High-Fat Diet Alters Glutathione Levels and IL-6 Gene Expression in Oxidative Skeletal Muscles of Young Rats. Fron-tiers in Physiology, 10, Article No. 372.
https://doi.org/10.3389/fphys.2019.00372
|
[31]
|
Ketterer, B., Meyer, D.J. and Tan, K.H. (1988) The Role of Gluta-thione Transferase in the Detoxication and Repair of Lipid and DNA Hydroperoxides. In: Simic, M.G., Taylor, K.A., Ward, J.F. and Sonntag, C., Eds., Oxygen Radicals in Biology and Medicine, Springer, Berlin, 669-674. https://doi.org/10.1007/978-1-4684-5568-7_105
|
[32]
|
Włodarczyk, M. and Nowicka, G. (2019) Obesity, DNA Damage, and Development of Obesity-Related Diseases. International Journal of Molecular Sciences, 20, Article No. 1146. https://doi.org/10.3390/ijms20051146
|
[33]
|
Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J. and Wu, G. (2013) Glycine Metabolism in Animals and Humans: Implications for Nutrition and Health. Amino Acids, 45, 463-477. https://doi.org/10.1007/s00726-013-1493-1
|
[34]
|
蔡佩菁, 施亚凡, 陈星光, 张智闵, 郭家芬. 高脂饲料对于仓鼠肠道总菌相组成的影响[J]. 台湾营养学会杂志, 2019, 43(4): 100.
|