骨钙素与葡萄糖代谢、能量代谢的研究进展
Advances in the Study of Osteocalcin, Glucose Metabolism and Energy Metabolism
DOI: 10.12677/BP.2023.133020, PDF, HTML, XML, 下载: 152  浏览: 439 
作者: 冯 吉:西安医学院研究生院,陕西 西安;郭 伟*:陕西省人民医院,全科医学科,陕西 西安
关键词: 骨钙素葡萄糖代谢能量代谢 Osteocalcin Glucose Metabolism Energy Metabolism
摘要: 骨钙素(OCN)是一种源自成骨细胞的非胶原蛋白,具有多种激素特征。动物和实验模型表明,骨钙素被释放到血液中,能够对胰腺细胞和脂肪组织产生生物学效应。近些年来,研究者们开始把骨骼作为一个内分泌器官重视起来,发现未完全羧化的骨钙素(ucOC)具有一定的活性,能够在葡萄糖代谢及能量代谢中发挥不可或缺的作用,这使得骨钙素可能在代谢性疾病,如糖尿病、肥胖和代谢综合征中具有潜在的治疗意义。
Abstract: Osteocalcin (OCN) is a non-collagenous protein derived from oste-oblasts with a variety of hormonal characteristics. Animal and experimental models have shown that osteocalcin is released into the bloodstream and is capable of producing biological effects on pancreatic cells and adipose tissue. In recent years, researchers have begun to focus on the skeleton as an endocrine organ, and have found that undercarboxylated osteocalcin (ucOC) is active and able to play an integral role in glucose metabolism and energy metabolism, which makes it potentially therapeutic in metabolic disorders such as diabetes mellitus, obesity, and metabolic syndrome.
文章引用:冯吉, 郭伟. 骨钙素与葡萄糖代谢、能量代谢的研究进展[J]. 生物过程, 2023, 13(3): 142-146. https://doi.org/10.12677/BP.2023.133020

1. 骨钙素的概述

骨骼作为脊椎动物最大的器官之一,是人体运动系统的一部分。近年越来越多的研究发现,骨骼能够参与多种代谢过程,也属于内分泌器官,对葡萄糖代谢及能量代谢有着重要作用 [1] [2] 。

骨重塑是维持骨力学质量(抗骨折)和矿物质平衡所必需的生理过程。它涉及破骨细胞、成骨细胞和骨细胞之间高度协调的作用 [3] 。骨重塑是骨转换的形态学基础,包括骨吸收和骨生成两部分。通过替换旧骨、消除微骨折和调整骨微结构以适应负载程度来提供骨的更新能力 [4] [5] 。这种代谢活动是消耗能量的,使骨重塑成为一个高度依赖于身体能量状态的过程 [6] [7] [8] 。研究证实骨钙素是成骨细胞合成的骨基质的主要非胶原蛋白,通过对β胰腺细胞和脂肪细胞的作用参与调节能量代谢。通过这种方式,来协调这两个过程,为骨重塑过程提供所需的能量 [8] [9] 。

骨钙素是一种49个氨基酸的肽,完全由成骨细胞合成,并以羟基磷灰石晶体的形式储存在骨矿物基质中。在其发现和生化表征时,它被认为是骨形成的标志 [10] 。在人体中能够以羧化形式和未完全羧化的形式存在。在离体胰岛和原代脂肪细胞的体外实验中,首次发现完全羧化的骨钙素是无活性的,而未完全羧化的骨钙素(ucOC)是有活性的 [1] 。随后的研究表明,ucOC在注入野生型小鼠体内时,可以增强胰岛素的产生和敏感性,进一步表明这是一种活性形式的激素 [11] 。骨钙素膜受体GPRC6A在骨骼肌、胰腺β细胞、睾丸、肝脏等不同组织中表达,其鉴定使得骨钙素的激素作用得以进一步确立 [7] 。本文就骨钙素对葡萄糖代谢及能量代谢的相互影响进行阐述。

2. 骨钙素与葡萄糖代谢

研究发现葡萄糖代谢调节的关键作用归因于成骨细胞,其产生成骨细胞特异性蛋白骨钙素,骨中最丰富的非胶原蛋白 [12] 。骨钙素影响糖代谢的证据在Osc -/-小鼠中得到证实。在这些动物中观察到的胰岛素抵抗、高血糖、肥胖和低能量消耗的表型被骨钙素逆转。在体外,ucOC能够刺激胰腺β细胞增殖和胰岛素分泌,并增加脂肪细胞上脂联素的产生,导致胰岛素的敏感性增加。这些作用揭示了胰腺β细胞、脂肪组织和骨骼之间的正反馈机制,胰岛素增强了羧化骨钙素的产生,从而增强了胰岛素的产生和敏感性 [11] [13] 。缺乏骨钙素的小鼠数据支持骨钙素可能具有骨骼外代谢作用的证据,其中观察到内脏脂肪增加,随后出现高血糖和低胰岛素血症,同时β细胞质量和胰岛素含量减少 [14] 。除了促进胰岛素分泌外,骨钙素还增加外周胰岛素敏感性 [15] [16] 。Lee等人 [1] 的研究发现骨钙素可以促进胰腺β细胞的增殖,β细胞和脂肪细胞中的胰岛素和脂联素表达,并且提供了第一个体内证据,证明骨骼对能量代谢施加内分泌调节,因此可能有助于代谢紊乱的发作和严重程度。根据迄今为止可用的实验结果,表明骨钙素和胰岛素之间存在正循环,其中骨钙素刺激胰岛素分泌,而骨钙素的释放通过胰岛素增强。在Bilotta等人 [17] 的研究中,确认并扩展了先前将骨钙素与葡萄糖代谢联系起来的观察结果。他们使用经历糖毒性和胰岛素抵抗的培养MG-63人成骨细胞样细胞研究了成骨分化、骨钙素基因表达和成骨细胞介导的胰岛素分泌。此外,还调查了患者的高血糖和或胰岛素抵抗与骨钙素血清总浓度之间是否存在相关性 [17] 。得到的研究结果进一步支持了产生骨钙素的骨骼与胰腺β细胞之间存在内分泌轴,血清骨钙素和葡萄糖水平呈负相关。这些结果把参与胰岛素信号传导和葡萄糖代谢调节机制的注意力放在了一个新发现的激素——骨钙素上 [18] 。

3. 骨钙素与能量代谢

骨钙素是一种骨源性激素,参与能量代谢的调节,并且是由未羧化的骨钙素正在介导这种激素的代谢功能 [1] 。ucOC通过激活GPRC6A来增加脂质的代谢 [19] 。为了强调骨骼在能量代谢中的重要性,Wei等人 [20] 评估了高脂肪饮食(HFD)喂养小鼠成骨细胞特异性胰岛素受体(IR)过表达或缺失的后果。这些研究结果均表明,骨骼中的胰岛素抵抗通过降低OC活性来影响HFD喂养小鼠的全身葡萄糖稳态。结果支持骨骼是调节全身能量平衡的一个非常重要的部位的观点。Khosla的文章以人体研究为重点,也举例阐明了一个观点,骨受瘦素调节,瘦素是能量代谢的关键调节因子 [2] 。一项对妊娠期和哺乳期大鼠的研究中发现,ucOC通过调节怀孕和哺乳期间的葡萄糖和脂质代谢在能量稳态中起重要作用 [21] 。

4. 骨钙素与瘦素、脂联素

脂联素是一种由脂肪细胞产生的脂肪因子,通过与其特异性受体AdipoR1和AdipoR2的相互作用调节脂质和葡萄糖的代谢 [22] [23] [24] [25] 。有研究发现骨钙素可以直接诱导白色脂肪中脂联素及其靶基因的表达 [11] 。Lee等人 [1] 的研究发现在成骨细胞中表达的一种蛋白酪氨酸磷酸酶Esp基因缺陷的小鼠中,脂联素的mRNA和蛋白水平均有所增加,其表现为血清骨钙素的未羧化形式水平升高。过氧化物酶体增殖激活受体γ (PPARγ)是脂肪形成的主要调节因子。Otani等人 [26] 的研究发现ucOC以剂量依赖的方式增加了脂联素以及PPARγ1及PPARγ2的表达,PPARγ的激活介导了ucOC对脂联素表达的上调,而ucOC的这些作用是由GPRC6A介导的。

瘦素分泌仅由脂肪细胞产生,与脂肪组织质量呈正相关。瘦素穿过血脑屏障刺激其在下丘脑中的受体,从而触发与能量调节、青春期开始和控制骨重塑相关的复杂作用。瘦素是脂肪组织和骨骼之间连接的脂肪细胞信使,而骨钙素是将信号从骨骼传递到脂肪组织的分子。骨钙素通过γ-c-羧化酶以维生素K依赖性方式在三个谷氨酸残基上翻译后羧化。进入循环的羧化骨钙素通过增加β细胞增殖、胰岛素分泌和胰岛素敏感性来调节能量代谢 [27] 。

5. 骨钙素与代谢相关参数的流行病学研究

目前已经有越来越多的研究者们注意到骨钙素与一些代谢相关参数,如血糖、胰岛素分泌、脂质谱等有着密切的关系。Funakoshi等人 [28] 在发现了骨钙素可以调节啮齿动物的血糖、胰岛素分泌和脂肪沉积后,研究了骨钙素对人类葡萄糖代谢的意义,结果发现ucOC在糖尿病患者的胰岛素分泌中比在胰岛素敏感性中起更重要的作用。Garanty-Bogacka等人 [29] 的研究结果发现血清骨钙素浓度与代谢异常表型的血液标志物和肥胖测量有关,这表明骨钙素不仅对骨骼很重要,而且早在儿童时期就对葡萄糖和脂肪代谢也很重要。国外的一项针对儿童骨钙素与能量代谢标志物的研究中表明,骨钙素参与儿科受试者的能量代谢,因为它始终与代谢和人体测量参数相关 [30] 。而国内一项关于儿科受试者的研究也支持循环骨钙素和ucOC可能在调节糖代谢能发挥重要作用这一观点 [31] 。在另一项对绝经后妇女的研究中发现,在存在代谢综合征的情况下,骨钙素水平显著降低,并且与葡萄糖代谢和脂肪组织密切相关 [32] 。最近一项涉及200多名2型糖尿病患者的中国研究中,观察到较高的血清骨钙素水平与更控制、较高的胰岛素敏感性、胰岛β细胞早期胰岛素分泌增加以及适当抑制2型糖尿病成年患者餐后胰高血糖素分泌胰岛α细胞密切相关 [33] 。

6. 结语

随着研究的深入,血清骨钙素作为一种新发现的来源于成骨细胞的激素,越来越被人们所重视。关于啮齿动物的研究已经证明了骨钙素与葡萄糖代谢、能量代谢密切相关。过去几年间,研究者们已经将研究的注意力从啮齿动物转移到人类身上,并且发现了骨钙素对于调节人体葡萄糖和能量代谢能够发挥作用,许多学者对于骨钙素与代谢相关参数的流行病学研究显然也支持这一结论。但目前仍缺少这一方面的直接证据,我们需要对骨钙素发挥作用的机制进行更加深入的研究,寻找更多支持这一观点的流行病学证据,在未来或许将有助于许多代谢性疾病如肥胖症、糖尿病的诊断治疗。

NOTES

*通讯作者。

参考文献

[1] Lee, N.K., Sowa, H., Hinoi, E., et al. (2007) Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 130, 456-469.
https://doi.org/10.1016/j.cell.2007.05.047
[2] Khosla, S. (2023) Evidence in Humans for Bone as an Endocrine Organ Regulating Energy Metabolism. Current Opinion in Endocrine and Metabolic Research, 31, Article ID: 100471.
https://doi.org/10.1016/j.coemr.2023.100471
[3] Florencio-Silva, R., da Silva Sasso, G.R., Sasso-Cerri, E., Simões, M.J. and Cerri, P.S. (2015) Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International, 2015, Article ID: 421746.
https://doi.org/10.1155/2015/421746
[4] Oldknow, K.J., Macrae, V.E. and Farquharson, C. (2015) Endocrine Role of Bone: Recent and Emerging Perspectives beyond Osteocalcin. Journal of Endocrinology, 225, R1-R19.
https://doi.org/10.1530/JOE-14-0584
[5] Arias, C.F., Herrero, M.A., Echeverri, L.F., Oleaga, G.E. and López, J.M. (2018) Bone Remodeling: A Tissue-Level Process Emerging from Cell-Level Molecular Algorithms. PLOS ONE, 13, e0204171.
https://doi.org/10.1371/journal.pone.0204171
[6] Ferron, M. and Lacombe, J. (2014) Regulation of Energy Me-tabolism by the Skeleton: Osteocalcin and beyond. Archives of Biochemistry and Biophysics, 561, 137-146.
https://doi.org/10.1016/j.abb.2014.05.022
[7] Fernandes, T.A.P., Gonçalves, L.M.L. and Brito, J.A.A. (2017) Relationships between Bone Turnover and Energy Metabolism. Journal of Diabetes Research, 2017, Article ID: 9021314.
https://doi.org/10.1155/2017/9021314
[8] Confavreux, C.B. (2011) Bone: From a Reservoir of Miner-als to a Regulator of Energy Metabolism. Kidney International, 79, S14-S19.
https://doi.org/10.1038/ki.2011.25
[9] Lin, X., Brennan-Speranza, T.C., Levinger, I. and Yeap, B.B. (2018) Un-dercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regula-tion of Insulin Sensitivity. Nutrients, 10, Article No. 847.
https://doi.org/10.3390/nu10070847
[10] Hauschka, P.V., Lian, J.B., Cole, D.E. and Gundberg, C.M. (1989) Osteocalcin and Matrix Gla Protein: Vitamin K-Dependent Pro-teins in Bone. Physiological Reviews, 69, 990-1047.
https://doi.org/10.1152/physrev.1989.69.3.990
[11] Ferron, M., Hinoi, E., Karsenty, G. and Ducy, P. (2008) Osteocalcin Differentially Regulates Beta Cell and Adipocyte Gene Ex-pression and Affects the Development of Metabolic Diseases in Wild-Type Mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 5266-5270.
https://doi.org/10.1073/pnas.0711119105
[12] Ng, K.W. and Martin, T.J. (2009) New Functions for Old Hormones: Bone as an Endocrine Organ. Molecular and Cellular Endocrinology, 310, 1-2.
https://doi.org/10.1016/j.mce.2009.07.002
[13] Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. and Karsenty, G. (1997) Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell, 89, 747-754.
https://doi.org/10.1016/S0092-8674(00)80257-3
[14] Ducy, P., Desbois, C., Boyce, B., et al. (1996) Increased Bone Formation in Osteocalcin-Deficient Mice. Nature, 382, 448-452.
https://doi.org/10.1038/382448a0
[15] Mizokami, A., Kawakubo-Yasukochi, T. and Hirata, M. (2017) Osteocalcin and Its Endocrine Functions. Biochemical Pharmacology, 132, 1-8.
https://doi.org/10.1016/j.bcp.2017.02.001
[16] Kanazawa, I. (2015) Osteocalcin as a Hormone Regulating Glucose Metabolism. World Journal of Diabetes, 6, 1345-1354.
https://doi.org/10.4239/wjd.v6.i18.1345
[17] Bilotta, F.L., Arcidiacono, B., Messineo, S., et al. (2018) Insulin and Osteocalcin: Further Evidence for a Mutual Cross-Talk. Endo-crine, 59, 622-632.
https://doi.org/10.1007/s12020-017-1396-0
[18] Rosen, C.J. and Motyl, K.J. (2010) No Bones about It: Insulin Modulates Skeletal Remodeling. Cell, 142, 198-200.
https://doi.org/10.1016/j.cell.2010.07.001
[19] Otani, T., Mizokami, A., Kawakubo-Yasukochi, T., et al. (2020) The Roles of Osteocalcin in Lipid Metabolism in Adipose Tissue and Liver. Advances in Biological Regulation, 78, Arti-cle ID: 100752.
https://doi.org/10.1016/j.jbior.2020.100752
[20] Wei, J., Ferron, M., Clarke, C.J., et al. (2014) Bone-Specific Insu-lin Resistance Disrupts Whole-Body Glucose Homeostasis via Decreased Osteocalcin Activation. Journal of Clinical In-vestigation, 124, 1-13.
https://doi.org/10.1172/JCI72323
[21] Pandey, A., Khan, H.R., Alex, N.S., et al. (2020) Under-Carboxylated Os-teocalcin Regulates Glucose and Lipid Metabolism during Pregnancy and Lactation in Rats. Journal of Endocrinological Investigation, 43, 1081-1095.
https://doi.org/10.1007/s40618-020-01195-8
[22] Yamauchi, T., Kamon, J., Waki, H., et al. (2001) The Fat-Derived Hormone Adiponectin Reverses Insulin Resistance Associated with Both Lipoatrophy and Obesity. Nature Medicine, 7, 941-946.
https://doi.org/10.1038/90984
[23] Yamauchi, T., Kamon, J., Ito, Y., et al. (2003) Cloning of Adiponectin Receptors That Mediate Antidiabetic Metabolic Effects. Nature, 423, 762-769.
https://doi.org/10.1038/nature01705
[24] Tsuchida, A., Yamauchi, T., Ito, Y., et al. (2004) Insulin/Foxo1 Pathway Regulates Expression Levels of Adiponectin Receptors and Adiponectin Sensitivity. Journal of Biological Chemistry, 279, 30817-30822.
https://doi.org/10.1074/jbc.M402367200
[25] Yamauchi, T., Nio, Y., Maki, T., et al. (2007) Targeted Disruption of AdipoR1 and AdipoR2 Causes Abrogation of Adiponectin Binding and Metabolic Actions. Nature Medicine, 13, 332-339.
https://doi.org/10.1038/nm1557
[26] Otani, T., Mizokami, A., Hayashi, Y., et al. (2015) Signaling Path-way for Adiponectin Expression in Adipocytes by Osteocalcin. Cellular Signalling, 27, 532-544.
https://doi.org/10.1016/j.cellsig.2014.12.018
[27] de Paula, F.J. and Rosen, C.J. (2013) Bone Remodeling and En-ergy Metabolism: New Perspectives. Bone Research, 1, 72-84.
https://doi.org/10.4248/BR201301005
[28] Funakoshi, S., Yoshimura, K., Hirano, S., et al. (2020) Undercarbox-ylated Osteocalcin Correlates with Insulin Secretion in Japanese Individuals with Diabetes. Diabetology & Metabolic Syndrome, 12, Article No. 72.
https://doi.org/10.1186/s13098-020-00579-3
[29] Garanty-Bogacka, B., Syrenicz, M., Rać, M., et al. (2013) Asso-ciation between Serum Osteocalcin, Adiposity and Metabolic Risk in Obese Children and Adolescents. Endokrynologia Polska, 64, 346-352.
https://doi.org/10.5603/EP.2013.0016
[30] Rodríguez-Narciso, S., Martínez-Portilla, R.J., Guzmán-Guzmán, I.P., et al. (2022) Osteocalcin Serum Concentrations and Markers of Energetic Metabolism in Pediatric Patients. Systematic Review and Metanalysis. Frontiers in Pediatrics, 10, Article 1075738.
https://doi.org/10.3389/fped.2022.1075738
[31] Zheng, W.-B., Hu, J., Zhao, D.-C., et al. (2022) The Role of Os-teocalcin in Regulation of Glycolipid Metabolism and Muscle Function in Children with Osteogenesis Imperfecta. Fron-tiers in Endocrinology, 13, Article 898645.
https://doi.org/10.3389/fendo.2022.898645
[32] Ugurlu, I., Akalin, A. and Yorulmaz, G. (2022) The Association of Serum Osteocalcin Levels with Metabolic Parameters and Inflammation in Postmenopausal Women with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 20, 219-223.
https://doi.org/10.1089/met.2021.0074
[33] Lei, H., Liu, J., Wang, W., et al. (2022) Association between Osteocal-cin, a Pivotal Marker of Bone Metabolism, and Secretory Function of Islet Beta Cells and Alpha Cells in Chinese Patients with Type 2 Diabetes Mellitus: An Observational Study. Diabetology & Metabolic Syndrome, 14, Article No. 160.
https://doi.org/10.1186/s13098-022-00932-8