高脂饮食对眼部影响的研究进展
Progress of Research on Effects of High-Fat Diet on Eye
DOI: 10.12677/ACM.2023.13102225, PDF, HTML, XML, 下载: 204  浏览: 285  科研立项经费支持
作者: 万梓菡:青海大学研究生院眼科,青海 西宁;李 娜*:青海大学附属医院眼科,青海 西宁
关键词: 高脂饮食动物模型眼表视网膜High Fat Diet Animal Models Ocular Surface Retina
摘要: 高脂饮食(High fat diet, HFD)会引起脂质代谢紊乱、肥胖等疾病,严重影响人类的健康;同时还会引起年龄相关性黄斑变性(age-related macular degeneration, AMD)、糖尿病性视网膜病变(diabetic retinopathy, DR)等眼部相关疾病,从而导致视力障碍。目前高脂饮食动物模型已被广泛应用研究,该类模型主要用于研究高脂饮食引起的相关疾病的病理生理机制,更有效地认识对HFD引起的视网膜眼部相关疾病的早期预防和治疗措施。本文综述了近几年来有关高脂饮食动物模型对眼部影响的研究进展,主要是从HFD的成分、HFD动物模型的构建,以及HFD对泪腺、睑板腺、角膜及视网膜的影响等方面进行综述。
Abstract: High fat diet (HFD) can cause disorders of lipid metabolism, obesity and other diseases, which seri-ously affect human health. At the same time, it also causes age related macular degeneration (AMD), diabetic retinopathy (DR) and other eye related diseases, which can lead to visual impairment. At present, animal models of high fat diet have been widely used to study the pathophysiological mechanism of related diseases caused by high fat diet, so as to more effectively understand the ear-ly prevention and treatment of retina-eye diseases caused by HED. In this paper, we review the re-search progress on the effects of high-fat diet animal models on the eyes in recent years, mainly from the components of high fat diet, the construction of animal models of high fat diet, and the ef-fects of high fat diet on lacrimal gland, meibomian gland, cornea and retina.
文章引用:万梓菡, 李娜. 高脂饮食对眼部影响的研究进展[J]. 临床医学进展, 2023, 13(10): 15918-15925. https://doi.org/10.12677/ACM.2023.13102225

1. 引言

高脂肪饮食(High fat diet, HFD)是一种常见的严重影响公共健康的因素。目前高脂饮食在人们的饮食结构中占比显著增加,容易使脂质代谢紊乱、肥胖等疾病的发病率逐步增高 [1] [2] ,严重影响人民健康。HFD可以诱发代谢性疾病,如糖尿病 [3] 引起的糖尿病性视网膜病变(diabetic retinopathy, DR),另外HFD是晚期老年性黄斑变性(age-related macular degeneration, AMD)的危险因素 [4] ,是导致视力障碍的主要原因之一。相关研究表明,HFD的摄入可以影响大脑各个区域的神经元结构和功能,加剧脑损伤和神经退行性疾病 [5] [6] 。随着肥胖和代谢性疾病发病率的增加,HFD动物模型被广泛应用在各个系统疾病的研究中,目前该模型在关于代谢性疾病和神经系统疾病对眼部产生影响方面提供了巨大价值。但是关于HFD对眼部组织影响的综述少之又少,因此本文综述了HFD动物模型的建立和HFD对部分眼部组织的影响。

2. 高脂饮食成分

饮食的总能量摄入中脂类含量超过30%即称为高脂饮食(HFD),但目前建立HFD动物模型的常见方法是用含有45%或60% kcal的脂类饮食进行动物饲养 [7] 。相比较喂食含有45%的脂类饮食而言,喂食含有60% kcal脂类的饮食能够更迅速的建立相关疾病的动物模型,因此研究者多采用含有60% kcal脂类的HFD来建立动物模型。而且,不同类型的脂肪酸对机体的性能有不同的影响,比如通常含有高饱和脂肪的饮食,如猪油、牛油或椰子油,这些饮食更容易诱发肥胖和代谢性疾病。而含有多不饱和脂肪酸的饮食,如鱼油、各种植物油等,对身体则会产生有益的影响 [8] ,但也不宜过多摄入。目前国内构建HFD动物模型的高脂饲料是在基础饲料上添加猪油、胆固醇等,配方种类较多,建模成功率高。而国外常用的HFD主要成分为60%的猪油、牛油、蛋白质和碳水化合物等。

3. HFD建立的动物模型

HFD是危害人体健康的重要因素。由于HFD对眼部影响的机制复杂,因此HFD饲养的动物模型在了解HFD导致眼部复杂疾病的潜在机制方面发挥了重要的作用。

3.1. 短期内建立HFD动物模型

在HFD建立动物模型中,短期内摄入HFD对眼部组织影响的研究比较少见,该类模型经常用来研究疾病早期病变的机制和检测某些疾病早期产生的标志物。例如,在Prince等人的研究中 [9] ,给6周龄的小鼠喂食高脂肪饮食10天,建立模型后发现角膜的神经敏感性失调。在Sen Zou [10] 等人研究中,将雄性小鼠喂食高脂饮食(60% kcal脂肪) 2周来研究HFD对泪腺的昼夜节律影响。另外Oksana等人研究中 [11] ,研究动物选择了视网膜变性的基因小鼠,将其喂食高脂饮食(61.6% kcal脂肪) 2~3周建立HFD模型,发现在短时间内HFD会加速视网膜病变的病理过程,使视网膜的炎症反应加重和增强视网膜的氧化应激状态。Weiwei Dai等人研究 [12] ,将6周龄的雄性小鼠喂食了高脂肪的饲料(39.7% kcal脂肪、41.4%碳水化合物和18.8%蛋白质) 4周后,成功建立了由饮食诱导的肥胖/糖尿病早期动物模型,发现视网膜上蛋白糖基化修饰增多。目前对于短期内HFD建模的研究较少,因此在未来对于HFD眼部模型中,应侧重研究短期内摄入HFD对角膜、泪腺及视网膜等眼部组织的影响,这对于研究高脂饮食造成的早期眼部病变有非常重要的意义。

3.2. 长期内建立HFD动物模型

HFD建模多倾向于长期(≥2个月)的饲养,该模型通常用于了解代谢性疾病的病理进展。在Kelsey H等人研究中 [13] ,给10~12周龄的雄性大鼠喂食HFD (40%脂肪,45%蔗糖),为期12周,建立HFD动物模型后,观察模型全身炎症情况对大鼠的眼睛内玻璃体体液的影响,发现玻璃体液中炎症因子IL-1β、IL-6、IL-13、IL-17和IL-18等水平升高。在Hai han等人的研究中 [14] ,将10周龄的雄性小鼠喂食高脂饮食(60% kcal脂肪)长达16周,定期检测代谢指标(体重、空腹血糖、体脂等),成功建立HFD动物模型,发现HFD小鼠的角膜上皮免疫细胞密度增多。另外在模拟“快餐”是否对视网膜结构产生变化的研究中 [15] ,用高脂肪、胆固醇和果糖组成的“快餐”(40%乳脂)喂养12周龄的雄性小鼠9个月,该模型表现出了高脂影响了AMD不同发展阶段的病理情况,如视网膜色素上皮层(retinal pigment epithelium, RPE)的细胞缺失。在HFD建模研究中,多以长期为主,且建模动物通常为雄性,雌性较少见,可能与雄性对HFD更为敏感有关 [16] 。

3.3. HFD与STZ联合建立模型

链脲佐菌素(streptozotocin, STZ),是一种由不产色链霉菌产生或人工合成的抗生素,对胰岛β细胞具有损害作用。通常被用于建立糖尿病性视网膜病变(DR)的动物模型中。1型糖尿病(type-1 diabetes mellitus, T1DM)和2型糖尿病(type-2 diabetes mellitus, T2DM)的动物模型建立与注射STZ的剂量有关 [17] 。由于注射大剂量的STZ时,可直接导致胰岛β细胞的广泛破坏,因此可以通过单次高剂量STZ注射在动物中诱导T1DM的发生,从而建立糖尿病视网膜模型。另外,大多数研究者利用HFD喂养联合注射小剂量的STZ来建立T2DM模型。注射小剂量STZ时,可以破坏一部分胰岛β细胞的功能,造成外周组织对胰岛素不敏感,同时给予HFD喂养,两者结合便可以诱导出生理、病理改变都接近于T2DM的动物模型 [18] [19] 。该类模型最多见,容易获得。在Yu等人的研究中 [20] ,通过连续5天静脉注射25 mg/kg的STZ建立T1DM恒河猴模型,又利用HFD建立T2DM恒河猴模型,证实T1DM和T2DM恒河猴模型在DR早期均观察到星形胶质细胞活化、反应性胶质细胞增生和神经退行性变。在Lawrence等人研究中 [21] ,其中一组12周龄的大鼠被HFD饲养8周后,开始用低剂量STZ (30mg/kg)注射引诱高血糖,成功建立晚期2型糖尿病模型,分别于2周、8周和16周时对大鼠的体重、血糖、血脂及角膜等进行检查,发现大鼠角膜的神经纤维长度减少及其功能下降。由于HFD联合STZ建立的模型具有成本低、易于获得等优点,并且表现出稳定的高血糖状态,因此该模型在建立糖尿病及DR模型中被广泛应用。

4. HFD对眼部的影响

高脂肪的摄入会导致循环游离脂肪酸的过量产生,引起全身炎症反应 [22] ,也会对眼部各组织产生影响,本部分主要从HFD对泪腺、睑板腺、角膜及视网膜的影响进行综述。

4.1. 泪腺

泪腺由细管状腺和导管组成,位于眼眶外上方泪腺窝,其分泌的泪液可润滑、保护角膜和结膜上皮,同时具有维持眼表稳态的作用 [23] 。当泪腺发生功能障碍时 [24] ,会导致泪液量减少引起干眼症。有研究表明HFD引起泪腺中脂质的异常蓄积,从而导致免疫细胞浸润增加,IL-1β和TNF-α等炎症因子水平和凋亡细胞增加,同时炎性细胞浸润到泪腺可以破坏腺泡细胞并阻塞导管,从而使泪液量分泌下降 [25] [26] 。细胞内脂质积累除了引起炎症外,还可引起氧化应激,会破坏泪膜的脂质层,降低泪膜的质量和稳定性,也是导致干眼症的关键因素 [27] [28] 。泪腺的分泌功能主要与昼夜节律的调节有关,是指泪液的分泌量、PH值、渗透压和蛋白质含量在24小时内表现出节律性变化,而HFD会引起泪腺分泌的昼夜节律功能障碍 [10] 。在HFD动物模型研究中发现,雌性小鼠分泌的泪液量相比雄性小鼠显著减少,其结果表明性别是引起干眼症的易发因素之一 [29] 。高脂饮食引起泪腺的分泌功能障碍是不可逆的,但是有研究表明非诺贝特药物可以减轻由HFD对泪腺造成的炎症及脂质沉积,并且泪腺的分泌功能较前部分好转 [26] 。

4.2. 睑板腺

睑板腺(Meibomian gland, MGs)是位于眼睑睑板内,垂直排列于上下睑板内,其功能是能分泌油脂物,具有润滑睑缘及眼球接触面的作用,同时可防止泪液流出结膜囊外,并形成屏障保护眼睛,抵抗病原微生物和灰尘、花粉等有机物的伤害等作用 [30] [31] 。睑板腺功能障碍(Meibomian gland dysfunction, MGD)是慢性弥漫性的睑板腺异常,其特征是末端导管阻塞以及腺液分泌定性或定量的变化这是引起临床上明显的炎症和眼表疾病的因素之一 [32] 。有研究表明HFD的摄入会引起MG分泌异常,诱导了MG中的脂质分布变化,并导致MGs中的脂质积聚,其中炎症因子IL-1β、TNF-α、IL-6的表达明显增加,引起其微环境的慢性炎症 [33] 。高脂饮食会引起氧化应激,其中活性氧(reactive oxygen species, ROS)引起睑板腺和泪腺的组织损伤,诱导炎症和减少脂质分泌导致MGD [34] 。而且在建立的高脂饮食与STZ联合建立的动物模型中 [30] ,2个月糖尿病大鼠的MG中ROS水平明显升高,表明MG早期产生过量的ROS。HFD除了能改变泪腺的昼夜节律,也对MGs和角膜的昼夜节律特征产生影响 [35] ,改变了它们转录组的节律模式及其相关的生理活性,使睑板腺及角膜发生功能障碍。由于MGs对食物中所含脂质成分高度敏感,因此可以在日常饮食上进行干预,从而减少HFD引起的MG炎症。同时有研究证明罗格列酮药物可以抑制HFD导致的MG炎症 [33] 。

4.3. 角膜

角膜是眼球壁外层前部的透明部分,主要由无血管的结缔组织构成 [36] 。角膜含有丰富的感觉神经末梢,任何微小刺激、损伤或炎症皆能引起疼痛、流泪 [37] 。HFD会导致角膜形态和功能的病理改变。短期HFD喂养后,角膜会发生炎症反应,如IL-1α,IL-10和IL-12p40等炎症因子的升高,会引起角膜炎症延迟角膜的伤口愈合 [38] 。角膜神经结构和功能的丧失也不利于角膜的健康,在喂养10天的HFD小鼠中,发现角膜神经敏感性下降,并且在中央上皮磨损后,角膜伤口愈合有明显的延迟 [9] 。角膜神经敏感性损失的程度取决于进食的持续时间。在Prince和Carolina等人用HFD诱导的肥胖小鼠模型中 [39] ,HFD喂养10周的小鼠,使其角膜损伤,发现伤口愈合延迟,但是当停止进食HFD后,恢复正常饮食,可以阻止角膜神经功能丧失的进展,并恢复了正常的角膜伤口愈合。有研究发现HFD影响了角膜上皮内免疫细胞和基质巨噬细胞的分布,使其密度增高,同时伴有整个角膜基底上皮神经密度降低和角膜神经纤维总量减少 [14] 。角膜感觉神经元的不同亚群可以受到不同病理的影响。角膜有三种不同的感觉神经元支配,其中冷热感受器的神经纤维密度比其他感受器更受HFD的影响,HFD会导致冷热感受器末梢密度的降低,减少泪液的产生,导致干眼症的发病率增加 [40] 。在Lawrence等人的研究中表明 [21] ,由HFD饲养的大鼠模型发生了角膜神经敏感性和结构的丧失,可以作为糖尿病前期及2型糖尿病周围神经病变的早期标志。HFD小鼠的角膜内皮细胞密度降低,细胞形态扭曲,内皮细胞紧密连接和粘附连接被破坏,引起角膜内皮功能障碍 [41] 。

4.4. 视网膜

视网膜居于眼球壁的内层,是一层透明的薄膜,紧贴在脉络膜内面,有感受光刺激的作用。该组织富含脂质,约占其干重的20% [42] 。由于视网膜的结构特性,视网膜含有丰富的不饱和脂肪酸和高氧含量,这增加了脂质氧化和ROS的产生,因此视网膜更易受氧化应激的影响,发展成DR、AMD等视网膜疾病 [43] 。因此,高脂饮食对视网膜产生的不利因素的危害较大。视网膜的结构和功能主要取决于其脂肪酸的组成,高脂饮食可能改变视网膜的脂质组成,在HFD喂养小鼠视网膜中亚油酸与亚麻酸的比值增加,而棕榈油酸的数量下降 [42] 。视网膜脂肪酸的成份改变可能会引起视网膜疾病的产生,视网膜病变的典型特征是大胶质细胞激活和胶质细胞增生。有研究表明 [44] ,喂养HFD饮食长达3和7个月后,检测到视网膜厚度下降,Müller神经胶质激活,小神经胶质细胞数量增加。并且指出神经退行性变和视网膜功能障碍是最早出现,优先于视网膜微血管病变。所以,尽量早发现DR的早期变化,如视网膜结构和功能的改变,有助于防止视力丧失。视网膜的另一个结构特征是血管丰富。糖尿病性视网膜病变(DR)以视网膜内新血管形成为特征,高血糖可以使内皮细胞从静止状态转变为促炎和促血管生成状态 [45] 。HFD可导致视网膜中的炎症因子NF-κB、INOS、ICAM、VEGF表达水平显著升高,Nrf2表达下调 [46] 。VEGF水平的升高可引起血管生成和血管通透性的增加 [47] 。而且由HFD-STZ诱导的小鼠引起光感受器和双极细胞层水肿和增厚,色素上皮层细胞水肿,双极细胞层无定形序列 [48] 。由于HFD的摄入引起视网膜炎症和氧化应激反应,进而加速视网膜退行性疾病的进展 [11] ,因此可以对该类患者进行饮食干预及健康宣教等措施。

5. 存在问题及展望

目前HFD动物模型被普遍应用于研究代谢性疾病发生的机制,为了解人类疾病提供关键信息,特别是临床上对疾病的诊治。选择动物模型时要考虑的主要因素包括:眼部的结构和生化特征;模型的可用性和成本;可用于疾病表征和验证的方法;病理变化的时间过程;以及伦理、道德和法律问题 [49] 。同时还要考虑建立动物模型过程中其他潜在影响因素如种类、年龄、性别等。在HFD建立的眼部模型中,大多数研究者采用啮齿动物,在性别上更偏向于雄性。在未来研究中也应关注雌性动物眼部的研究结果,解决HFD研究中的性别差异性。现在绝大多数文献都是探讨HFD对角膜、视网膜和脉络膜的研究,而对其他眼部组织的研究较少,因此,在未来研究中还需多关注HFD对其他眼部组织(如晶状体、玻璃体及脉络膜等)的影响。目前在HFD建模时长上多以长期喂养高脂饮食为主,因此在后续的研究中还应多关注在短期内摄入高脂饮食对眼部产生的早期改变。

基金项目

青海省科技计划项目(编号:2023-ZJ-768)。

NOTES

*通讯作者。

参考文献

[1] Hall, K.D. (2018) Did the Food Environment Cause the Obesity Epidemic? Obesity (Silver Spring), 26, 11-13.
https://doi.org/10.1002/oby.22073
[2] Pan, X.F., Wang, L. and Pan, A. (2021) Epidemiology and Determinants of Obesity in China. The Lancet Diabetes & Endocrinology, 9, 373-392.
https://doi.org/10.1016/S2213-8587(21)00045-0
[3] Afshin, A., Forouzanfar, M.H., Reitsma, M.B., et al. (2017) Health Effects of Overweight and Obesity in 195 Countries over 25 Years. The New England Journal of Medicine, 377, 13-27.
https://doi.org/10.1056/NEJMoa1614362
[4] Dighe, S., Zhao, J., Steffen, L., et al. (2020) Diet Patterns and the Incidence of Age-Related Macular Degeneration in the Atherosclerosis Risk in Communities (ARIC) Study. British Journal of Ophthalmology, 104, 1070-1076.
https://doi.org/10.1136/bjophthalmol-2019-314813
[5] Shaito, A., Hasan, H., Habashy, K.J., et al. (2020) West-ern Diet Aggravates Neuronal Insult in Post-Traumatic Brain Injury: Proposed Pathways for Interplay. EBioMedicine, 57, Article ID: 102829.
https://doi.org/10.1016/j.ebiom.2020.102829
[6] Chrysostomou, V., van Wijngaarden, P., Steinberg, G.R., et al. (2017) A Short Term High-Fat High-Sucrose Diet in Mice Impairs Optic Nerve Recovery after Injury and This Is Not Reversed by Exercise. Experimental Eye Research, 162, 104-109.
https://doi.org/10.1016/j.exer.2017.07.015
[7] Qiao, J., Wu, Y. and Ren, Y. (2021) The Impact of a High Fat Diet on Bones: Potential Mechanisms. Food & Function, 12, 963-975.
https://doi.org/10.1039/D0FO02664F
[8] Gheibi, S., Kashfi, K. and Ghasemi, A. (2017) A Practical Guide for Induction of Type-2 Diabetes in Rat: Incorporating a High-Fat Diet and Streptozotocin. Biomedicine & Pharmacothera-py, 95, 605-613.
https://doi.org/10.1016/j.biopha.2017.08.098
[9] Akowuah, P.K., Hargrave, A., Rumbaut, R.E., et al. (2021) Dissociation between Corneal and Cardiometabolic Changes in Response to a Time-Restricted Feeding of a High Fat Di-et. Nutrients, 14, Article No. 139.
https://doi.org/10.3390/nu14010139
[10] Zou, S., Jiao, X., Liu, J., et al. (2022) High-Fat Nutritional Challenge Reshapes Circadian Signatures in Murine Extraorbital Lacrimal Glands. Investigative Ophthalmology & Visual Science, 63, 23.
https://doi.org/10.1167/iovs.63.5.23
[11] Kutsyr, O., Noailles, A., Martinez-Gil, N., et al. (2021) Short-Term High-Fat Feeding Exacerbates Degeneration in Retinitis Pigmentosa by Promoting Retinal Oxidative Stress and Inflammation. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100566118.
https://doi.org/10.1073/pnas.2100566118
[12] Dai, W., Dierschke, S.K., Toro, A.L., et al. (2018) Consumption of a High Fat Diet Promotes Protein O-GlcNAcylation in Mouse Retina via NR4A1-Dependent GFAT2 Expression. Bio-chimica et Biophysica Acta: Molecular Basis of Disease, 1864, 3568-3576.
https://doi.org/10.1016/j.bbadis.2018.09.006
[13] Collins, K.H., Herzog, W., Reimer, R.A., et al. (2018) Di-et-Induced Obesity Leads to Pro-Inflammatory Alterations to the Vitreous Humour of the Eye in a Rat Model. Inflamma-tion Research, 67, 139-146.
https://doi.org/10.1007/s00011-017-1102-y
[14] Jiao, H., Lim, A.S., Fazio, C.T., et al. (2020) The Effect of High-Fat Diet-Induced Metabolic Disturbance on Corneal Neuroimmune Features. Experimental Eye Research, 201, Ar-ticle ID: 108298.
https://doi.org/10.1016/j.exer.2020.108298
[15] Roddy, G.W., Rosa, R.H., Viker, K.B., et al. (2020) Diet Mim-icking “Fast Food” Causes Structural Changes to the Retina Relevant to Age-Related Macular Degeneration. Current Eye Research, 45, 726-732.
https://doi.org/10.1080/02713683.2019.1694156
[16] Maric, I., Krieger, J.P., van der Velden, P., et al. (2022) Sex and Species Differences in the Development of Diet-Induced Obesity and Metabolic Disturbances in Rodents. Frontiers in Nutrition, 9, Article ID: 828522.
https://doi.org/10.3389/fnut.2022.828522
[17] Akinlade, O.M., Owoyele, B.V. and Soladoye, A.O. (2021) Strep-tozotocin-Induced Type 1 and 2 Diabetes in Rodents: A Model for Studying Diabetic Cardiac Autonomic Neuropathy. African Health Sciences, 21, 719-727.
https://doi.org/10.4314/ahs.v21i2.30
[18] Barriere, D.A., Noll, C., Roussy, G., et al. (2018) Combination of High-Fat/High-Fructose Diet and Low-Dose Streptozotocin to Model Long-Term Type-2 Diabetes Complications. Scien-tific Reports, 8, Article No. 424.
https://doi.org/10.1038/s41598-017-18896-5
[19] Vatandoust, N., Rami, F., Salehi, A.R., et al. (2018) Novel High-Fat Diet Formulation and Streptozotocin Treatment for Induction of Prediabetes and Type 2 Diabetes in Rats. Ad-vanced Biomedical Research, 7, Article No. 107.
https://doi.org/10.4103/abr.abr_8_17
[20] Xia, Y., Luo, Q., Chen, J., et al. (2022) Retinal Astrocytes and Microglia Activation in Diabetic Retinopathy Rhesus Monkey Models. Current Eye Research, 47, 297-303.
https://doi.org/10.1080/02713683.2021.1984535
[21] Coppey, L., Davidson, E., Shevalye, H., et al. (2020) Pro-gressive Loss of Corneal Nerve Fibers and Sensitivity in Rats Modeling Obesity and Type 2 Diabetes Is Reversible with Omega-3 Fatty Acid Intervention: Supporting Cornea Analyses as a Marker for Peripheral Neuropathy and Treatment. Diabetes, Metabolic Syndrome and Obesity, 13, 1367- 1384.
https://doi.org/10.2147/DMSO.S247571
[22] Tan, B.L. and Norhaizan, M.E. (2019) Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients, 11, Article No. 2579.
https://doi.org/10.3390/nu11112579
[23] Bannier-Helaouet, M., Post, Y., Korving, J., et al. (2021) Exploring the Human Lacrimal Gland Using Organoids and Single-Cell Sequenc-ing. Cell Stem Cell, 28, 1221-1232.
https://doi.org/10.1016/j.stem.2021.02.024
[24] Liu, Y., Hirayama, M., Kawa-kita, T., et al. (2017) A Ligation of the Lacrimal Excretory Duct in Mouse Induces Lacrimal Gland Inflammation with Proliferative Cells. Stem Cells International, 2017, Article ID: 4923426.
https://doi.org/10.1155/2017/4923426
[25] Wu, Y., Wu, J., Bu, J., et al. (2020) High-Fat Diet Induces Dry Eye-Like Ocular Surface Damages in Murine. The Ocular Surface, 18, 267-276.
https://doi.org/10.1016/j.jtos.2020.02.009
[26] He, X., Zhao, Z., Wang, S., et al. (2020) High-Fat Diet-Induced Functional and Pathologic Changes in Lacrimal Gland. The American Journal of Pathology, 190, 2387-2402.
https://doi.org/10.1016/j.ajpath.2020.09.002
[27] Zhang, M., Liang, Y., Liu, Y., et al. (2022) High-Fat Di-et-Induced Intestinal Dysbiosis Is Associated with the Exacerbation of Sjogren’s Syndrome. Frontiers in Microbiology, 13, Article ID: 916089.
https://doi.org/10.3389/fmicb.2022.916089
[28] Chiang, M.C., Liu, Y.C., Chen, B.Y., et al. (2023) Purple Sweet Potato Powder Containing Anthocyanin Mitigates High-Fat-Diet-Induced Dry Eye Disease. International Journal of Molecular Sciences, 24, Article No. 6983.
https://doi.org/10.3390/ijms24086983
[29] Shikama, Y., Kurosawa, M., Furukawa, M., et al. (2019) Involvement of Adiponectin in Age-Related Increases in Tear Production in Mice. Aging (Albany NY), 11, 8329-8346.
https://doi.org/10.18632/aging.102322
[30] Guo, Y., Zhang, H., Zhao, Z., et al. (2022) Hyperglycemia Induces Meibomian Gland Dysfunction. Investigative Ophthalmology & Visual Science, 63, Article No. 30.
https://doi.org/10.1167/iovs.63.1.30
[31] Jeyalatha, M.V., Qu, Y., Liu, Z., et al. (2017) Function of Meibomian Gland: Contribution of Proteins. Experimental Eye Research, 163, 29-36.
https://doi.org/10.1016/j.exer.2017.06.009
[32] Gurnani, B. and Kaur, K. (2023) Meibomian Gland Dis-ease.
[33] Bu, J., Zhang, M., Wu, Y., et al. (2021) High-Fat Diet Induces Inflammation of Meibomian Gland. Investiga-tive Ophthalmology & Visual Science, 62, Article No. 13.
https://doi.org/10.1167/iovs.62.10.13
[34] Dogru, M., Kojima, T., Simsek, C., et al. (2018) Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Investigative Ophthalmology & Visual Science, 59, S163-S168.
https://doi.org/10.1167/iovs.17-23402
[35] Zou, S., Liu, J., Si, H., et al. (2023) High-Fat Intake Reshapes the Cir-cadian Transcriptome Profile and Metabolism in Murine Meibomian Glands. Frontiers in Nutrition, 10, Article ID: 1146916.
https://doi.org/10.3389/fnut.2023.1146916
[36] Yang, A.Y., Chow, J. and Liu, J. (2018) Corneal Inner-vation and Sensation: The Eye and Beyond. Yale Journal of Biology and Medicine, 91, 13-21.
[37] Labetoulle, M., Bau-douin, C., Calonge, M., et al. (2019) Role of Corneal Nerves in Ocular Surface Homeostasis and Disease. Acta Oph-thalmologica, 97, 137-145.
https://doi.org/10.1111/aos.13844
[38] Hargrave, A., Courson, J.A., Pham, V., et al. (2020) Corneal Dysfunction Precedes the Onset of Hyperglycemia in a Mouse Model of Diet-Induced Obesity. PLOS ONE, 15, e238750.
https://doi.org/10.1371/journal.pone.0238750
[39] Akowuah, P.K., Lema, C., Rumbaut, R.E., et al. (2023) A Low-Fat/Sucrose Diet Rich in Complex Carbohydrates Reverses High-Fat/Sucrose Diet-Induced Corneal Dysregulation. International Journal of Molecular Sciences, 24, Article No. 931.
https://doi.org/10.3390/ijms24020931
[40] Alamri, A.S., Brock, J.A., Herath, C.B., et al. (2019) The Effects of Diabetes and High-Fat Diet on Polymodal Nociceptor and Cold Thermoreceptor Nerve Terminal Endings in the Corneal Epithelium. Investigative Ophthalmology & Visual Science, 60, 209-217.
https://doi.org/10.1167/iovs.18-25788
[41] Bu, J., Yu, J., Wu, Y., et al. (2020) Hyperlipidemia Affects Tight Junc-tions and Pump Function in the Corneal Endothelium. The American Journal of Pathology, 190, 563-576.
https://doi.org/10.1016/j.ajpath.2019.11.008
[42] Albouery, M., Buteau, B., Gregoire, S., et al. (2020) Impact of a High-Fat Diet on the Fatty Acid Composition of the Retina. Experimental Eye Research, 196, Article ID: 108059.
https://doi.org/10.1016/j.exer.2020.108059
[43] van Reyk, D.M., Gillies, M.C. and Davies, M.J. (2003) The Reti-na: Oxidative Stress and Diabetes. Redox Report, 8, 187-192.
https://doi.org/10.1179/135100003225002673
[44] Hammoum, I., Benlarbi, M., Dellaa, A., et al. (2018) Retinal Dysfunction Parallels Morphologic Alterations and Precede Clinically Detectable Vascular Alterations in Meriones shawi, a Model of Type 2 Diabetes. Experimental Eye Research, 176, 174-187.
https://doi.org/10.1016/j.exer.2018.07.007
[45] Lim, R.R., Grant, D.G., Olver, T.D., et al. (2018) Young Ossabaw Pigs Fed a Western Diet Exhibit Early Signs of Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 59, 2325-2338.
https://doi.org/10.1167/iovs.17-23616
[46] Tuzcu, M., Orhan, C., Muz, O.E., et al. (2017) Lutein and Zeaxanthin Isomers Modulates Lipid Metabolism and the Inflammatory State of Retina in Obesity-Induced High-Fat Diet Rodent Model. BMC Ophthalmology, 17, Article No. 129.
https://doi.org/10.1186/s12886-017-0524-1
[47] Orhan, C., Er, B., Deeh, P., et al. (2021) Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regu-lation Nrf2 and NF-kappaB Signaling Pathways in High-Fat Diet Rats. Biological Trace Element Research, 199, 4162-4170.
https://doi.org/10.1007/s12011-020-02526-9
[48] Ren, Z., Li, W., Zhao, Q., et al. (2012) The Impact of 1,25-Dihydroxy Vitamin D3 on the Expressions of Vascular Endothelial Growth Factor and Transforming Growth Factor-beta(1) in the Retinas of Rats with Diabetes. Diabetes Research and Clinical Practice, 98, 474-480.
https://doi.org/10.1016/j.diabres.2012.09.028
[49] Robinson, R., Barathi, V.A., Chaurasia, S.S., et al. (2012) Up-date on Animal Models of Diabetic Retinopathy: From Molecular Approaches to Mice and Higher Mammals. Disease Models & Mechanisms, 5, 444-456.
https://doi.org/10.1242/dmm.009597