柔性超疏水材料的研究进展
Research Progress of Flexible Superhydrophobic Materials
DOI: 10.12677/MS.2023.1310097, PDF, HTML, XML, 下载: 266  浏览: 532  科研立项经费支持
作者: 郑敏超, 周 城, 刘钦佩, 陈明强, 黄彦彦*:成都大学机械工程学院,四川 成都
关键词: 柔性材料超疏水涂层 Flexible Materials Superhydrophobicity Coatings
摘要: 近年来,柔性超疏水表面不仅在新兴的柔性电子领域而且在各种场合的实用性都引起了人们的广泛关注。尤其是将柔性薄膜材料作为可穿戴电子器件时,容易受到雨水,汗液以及其他污物的污染,影响薄膜响应电信号的灵敏度和稳定性,并减少柔性感应元件的使用寿命。因此,受自然界动植物的启发,新型超疏水技术被广泛讨论与研究。本文综述了近年来柔性材料的超疏水润湿理论,归纳了具有代表性的润湿理论模型,总结了当前广泛应用的超疏水表面制备方法。另外,针对目前国内外的研究热点,进一步阐述了柔性超疏水材料在织物、智能可穿戴设备上的应用。最后,讨论了柔性超疏水涂层面临的挑战和发展前景。
Abstract: In recent years, flexible superhydrophobic surfaces have attracted widespread attention not only in the emerging field of flexible electronics, but also for their practicality in various settings. In particular, when using flexible thin-film materials as wearable electronics, they are susceptible to contamination by rain, sweat, and other dirt, which affects the sensitivity and stability of the film’s response to electrical signals and reduces the service life of the flexible sensing element. Therefore, inspired by plants and animals in nature, novel superhydrophobic technologies have been widely discussed and investigated. This paper reviews the superhydrophobic wetting theories of flexible materials in recent years, summarizes representative wetting theoretical models, and summarizes the current widely used superhydrophobic surface preparation methods. In addition, the applications of flexible superhydrophobic materials on fabrics and smart wearable devices are further elaborated with respect to the current research hotspots at home and abroad. Finally, the challenges and development prospects of flexible super-hydrophobic coatings are discussed.
文章引用:郑敏超, 周城, 刘钦佩, 陈明强, 黄彦彦. 柔性超疏水材料的研究进展[J]. 材料科学, 2023, 13(10): 883-893. https://doi.org/10.12677/MS.2023.1310097

1. 引言

随着近年来可穿戴设备、柔性材料及柔性光电器件的不断兴起,可拉伸可曲折的柔性功能化防污防水基底也逐渐引起了大家的关注,同时,具有更广阔的应用场景也使得对超疏水柔性基底的需求不断提升。智能型的柔性电子产品,因其可以舒适地贴合到人体皮肤表面而被用于实现智能响应型信号传输,用于模仿人类器官对外界环境刺激的感知和响应能力,在生物医学、运动性能监测、软体机器人、触觉感应、虚拟现实技术等方面具有巨大的发展潜力 [1] 。然而,对于可穿戴传感器中柔性薄膜材料与人体接触时容易受到环境中的水、酸、碱、盐以及汗液等的影响。因此,增强柔性薄膜材料的稳定性及环境适用性仍面临较大挑战 [2] [3] 。

超疏水表面,亦称“荷叶效应”,由于其不润湿、抗菌、防结冰和自清洁特性而在纺织品、可穿戴电子设备、医疗保健设备、防冰防腐、生物传感和微流体等领域有着广泛的应用前景 [4] [5] 。这些新材料和制造技术可以帮助将高性能、可扩展的电子设备直接制作到导电和柔性基板上,具有高度可拉伸性和良好导电性的超疏水材料可用于可穿戴电子传感器、储能装置、防腐电路等领域 [6] 。同时以纺织品、无纺布、纸基、静电纺丝薄膜等构筑柔性薄膜材料的柔性基底,实现低成本、环境友好型传感器设计与开发的工作具有重要的研究意义。本文主要介绍了研究疏水性表面的基本理论,构建超疏水柔性涂层的常用材料和制备方法,并介绍了近年来超疏水柔性涂层在织物以及可穿戴智能设备的研究进展,最后讨论了柔性超疏水涂层未来的发展和当前面临的挑战。

2. 超疏水表面理论

表面的疏水性取决于其形态和表面自由能,开发疏水表面的关键是掌握其化学性质。有多种方式来改变基材的表面化学能以使它们更疏水,Zisman等人 [7] 对有机表面的仔细研究表明,表面能主要由表面的化学结构决定,并且表面能随着氟含量的增加而降低。许多研究小组报道了氟化分子的合成,且使用最多的是CF3基团进行官能化表面;然而,最高接触角不超过120˚ [8] [9] 。在许多研究中证明,粗糙度在表面的润湿性质中起关键作用。因此,粗糙表面和低表面能材料的组合对于实现超疏水性是必要的。

由水滴的接触角表示的平滑表面的润湿性由Young’s方程给出,方程(1):

cos θ = γ S V γ S L γ L V (1)

其中SVSLLV分别指SLV作为固体、液体和气体时的界面表面张力,如图1(a)所示 [10] ,Young’s方程仍然是润湿科学中的基本方程,并且基于完全光滑和化学均匀的固体表面的概念。然而,大多数表面具有缺陷和瑕疵,从而导致表面粗糙。粗糙和化学不均匀表面的润湿是非常复杂的。描述表面粗糙度对接触角的影响的最早工作由Wenzel和Cassie & Baxter在文献中报道 [11] [12] 。Wenzel假设水滴完全渗透到粗糙凹槽中,如图1(b)所示。Wenzel引入了一个大于等于1的粗糙度因子r [11] 。在这种情况下,粗糙表面上的接触角由方程(2)给出:

cos θ w = r ( γ S V γ S L γ L V ) = r cos θ (2)

w是粗糙表面上的接触角,θ是理想表面上的Young’s接触角,并且r是表面粗糙度因子,其被定义为实际表面积与投影表面积之间的比率。根据Wenzel模型可知,疏水表面(θ > 90˚)接触角将随着粗糙度的增加而增大,而如果θ < 90˚,接触角随着表面粗糙度的增大而减小。在一些粗糙条件下,气泡可能被困在粗糙凹槽中。在这种情况下,液滴实际位于复合表面上,润湿行为由Cassie & Baxter描述 [12] 。

对于Cassie & Baxter模型,液体悬浮在表面粗糙体上,并且不渗透到表面特征的突起中,如图1(c)所示 [12] [13] 。在这种情况下,液体–表面界面实际上是由表面分数分别为f1和f2的两种不同材料1和2组成的界面。沉积在表面上的液滴具有接触角,该接触角可以分别相对于在均质材料1和2上获得的接触角θ1θ2来表示,如方程(3)所示:

cos θ C B = f 1 cos θ 1 + f 2 cos θ 2 (3)

Figure 1. Droplets on different surfaces: (a) Young’s model; (b) Wenzel’s model; (c) Cassie-Baxter model [10]

图1. 不同表面上的液滴:(a) Young’s模型;(b) Wenzel模型;(c) Cassie-Baxter模型 [10]

3. 超疏水表面构筑方法

表面化学组成和表面粗糙度是超疏水表面形成的关键因素。近年来,研究人员主要通过以下组合来制造超疏水表面:(1) 对低表面能材料表面构筑粗糙结构;(2) 通过沉积低表面能材料改变粗糙表面 [14] [15] 。在第一种方法中,采用多种方式在低表面能材料或固有的疏水表面(如硅酮、碳氟化合物和长链脂肪酸)上制造粗糙度 [16] 。第二种方法适用于无法使用疏水材料的情况。对于亲水性材料,应在使用低表面能材料进行表面改性之前制造表面粗糙度。长烷基链硫醇、烷基或氟化有机硅烷、全氟烷基剂、长烷基链脂肪酸、PDMS的聚合物或它们的组合是用于低表面能改性的主要反应分子。基于以上思路,研究者们已经开发出了多种用于制备不同性能超疏水表面的方法,如,溶胶凝胶法 [17] [18] [19] 、化学气相沉积法 [20] [21] 、喷涂法 [22] [23] 、水热法 [24] 、自组装法 [25] 、电沉积法 [26] 如表1所示。

Table 1. Preparation of superhydrophobic surfaces with different properties

表1. 制备不同性能的超疏水表面

3.1. 溶胶凝胶法

采用溶胶–凝胶法得到的表面粗糙度可以通过改变反应混合物的组成而调整,溶胶凝胶工艺一般不需要高温或高压环境,并且可以很容易地应用于各种基材上 [30] [31] 。目前已有使用溶胶–凝胶法制备超疏水表面材料的报道,可制得高质量的超疏水材料。Xu等人 [32] 以壳聚糖预涂层棉织物为研究对象,通过交替沉积有机改性硅醇凝胶粒子,再经1H,1H,2H,2H全氟辛基三甲氧基硅烷(PFOTMS)改性,制备了超双疏棉织物。处理后的棉织物具有良好的拒液性,对水、食用油和十六烷等具有较高接触角。同时,经处理的棉织物表现出良好的耐磨性和高洗涤耐久性。Gao等人 [33] 用四乙氧基硅烷水解和缩合,然后用水解的十六烷基三甲氧基硅烷(HDTMS)在棉和涤纶织物上形成高度疏水表面,经此处理的织物具有优异的拒水性,其水接触角在棉上高达155˚,在聚酯上高达143˚。Zhang等人 [34] 引入支链硫醇–烯氟烷基硅氧烷设计用于涂层处理的自修复超疏水3D溶胶–凝胶网络悬挂氟烷基链。涂覆的织物高度耐用,在45 kPa下承受至少1000次磨损循环,并且耐强酸/强碱、紫外线辐射、热处理和污迹处理。此外,无论严重的物理或化学损伤,涂层可迅速自我修复超疏水性能。尽管可调控的表面粗糙度使溶胶–凝胶法受到许多研究者的欢迎,但是复杂的制备流程依然只能停留于实验室中,不适合大规模量产应用。

3.2. 模板法

模板法类似于模具制造法。这种方法使用母模板,然后使用模具制作复制品,之后再将其从模具中分离出来,从而获得所需的表面。这种技术经济不但耗时,且只适用于有限的材料。Chen等人 [35] 报道了通过碳模板法合成由空心SiO2球形颗粒组成的透明超疏水涂层。所制备的涂层经3-氨基丙基二乙氧基甲基硅烷进一步处理,以降低涂层的表面能。二氧化硅多孔胶囊的树莓类结构使涂层具有超疏水特性,进一步煅烧涂层可获得高透明度。Peng等人 [36] 通过将液体PDMS直接浇铸到天然新鲜的箭叶黄杉叶上并将其在50℃下固化4小时,然后除去硬化的PDMS模板来制备PDMS主模板。随后使用该母模板在冷轧钢板上制备由聚苯胺组成的复制品。超疏水性聚苯胺薄膜的微米级和纳米级表面形态与天然黄杉叶几乎完全相同。模板法不仅可以用于不同类型的聚合物,并且能够制造出纳米级别的微结构表面。但是,由于模板制备法的尺寸有限,从而限制了该方法在实际应用过程中的大规模制备。此外,因在剥离过程中样品和模板都有可能发生损坏,模板法可能无法生产出过度复杂的表面微观结构。

3.3. 喷涂法

喷涂法由于对设备以及基板的要求较低而且该方法简单易操作,且适用于各种材料表面,是最常用于制备超疏水表面的方法之一。对于喷涂法,必须首先制备氟化纳米颗粒或聚合物,再使用喷枪喷涂在基底上形成具有微/纳结构的低表面能涂层。Kong等人 [37] 通过有序喷涂商用粘合剂和无氟疏水烟雾二氧化硅悬浮液,在聚酯纤维织物上制备出了具有强大机械稳定性的织物上制备了具有强大机械稳定性的超疏水涂层。Xie等人 [38] 用吡咯氧化聚合法在凹凸棒石纳米棒表面包覆聚吡咯,然后水解缩合法在凹凸棒石纳米棒表面包覆十六烷基聚硅氧烷。将改性凹凸棒石悬浮液与有机硅树脂混合后喷涂到铝板上(如图2),制备了具有优异的超疏水性、以及良好的机械、化学和热稳定性的超疏水涂层。Pan等人 [39] 以氰基丙烯酸正丁酯、全氟己基三氯硅烷和Asahiklin225合成了制备涂层的溶液,随后采用喷涂法成功制备了对低表面能液体具有超疏性能的涂层。结果表明,该涂层对于表面能为8.8 mN/m1的液氮具有超疏性。然而,通常喷涂法所制备的超疏水涂层粘接力不强,且涂层表面的微纳米结构比较随机,形成规整的阵列结构较难,不能像模板法进行定制微纳米图案,所以也不利于超疏水表面润湿理论的分析和研究。

Figure 2. Schematic diagram of the preparation of PPY/ATP @hexadecylPOS photothermal superhydrophobic coating [38]

图2. PPY/ATP@hexadecylPOS光热超疏水涂层的制备原理图 [38]

3.4. 水热合成法

水热合成是制备微纳米级材料的一种通用方法,水热法利用水介质在高温和高压下合成表面的微纳米结构。由于化学原料主要是H2O或H2O2,因此这个方法相比其他的制备方法更为环保。Jun Cho等人 [40] 利用水热法在不同的衬底上制备氧化铈纳米棒状纳米结构,将不同的底物置于六水硝酸铈和尿素的去离子水生长溶液中,然后95℃加热24小时,形成超疏水表面(如图3)。Zhang等人 [41] 以聚二甲基硅氧烷为硅源,以多壁碳纳米管为模板,通过化学气相沉积对固化的PDMS进行疏水化,在玻璃基底上制备了高透明、无氟的二氧化硅纳米管超疏水涂层。研究了二氧化硅纳米管表面形貌对涂层的透明度和超疏水性的影响。通过改变用于二氧化硅纳米管涂层的聚二甲基硅氧烷的浓度以及用于疏水化的固化PDMS(APDMS)的量,可以实现表面的高透明度和优异的超疏水性,具有突出的自清洁性能。

Figure 3. Schematic diagram of hydrothermal method for direct growth of cerium oxide NRs on different substrates [40]

图3. 在不同基底上直接生长氧化铈NRs的水热法示意图 [40]

4. 柔性超疏水涂层应用

4.1. 超疏水涂层在织物和纺织品上的应用

随着时代的发展和科技的进步,人们对织物的性能要求不再局限于美观、保暖、舒适等方面,以抗紫外、超疏水、抗菌、防静电等功能性为导向的纺织品给人们的生活带来了极大的帮助。普通纺织品固有的亲水性使其在日常使用过程中极易被水润湿而降低穿着舒适度,且潮湿的织物容易滋生细菌,危害人体健康。超疏水织物不仅在防水性能上效果显著,还可以抗污染和自清洁,在帐篷、伞、潜水衣、防水布以及卫生包装等方面具有广阔的应用前景和重要的应用价值。根据本文所调研的相关工作,下面将对近年来国内外超疏水涂层在织物上应用的典型案例进行综述。

Zhang等人 [42] 采用二氧化钛(TiO2)涂层与十二氟庚基丙基三甲氧基硅烷(DFTMS)改性相结合的方法制备了超疏水棉织物,具有强疏水性和防紫外线性能。经测试,棉织物样品显示良好的超疏水性,接触角高达162˚,而且该织物能显著降低紫外线辐射,织物表面TiO2的光催化性能对罗丹明B有显著的降解能力,该织物有较好的自清洁性能。Yu等人 [43] 通过溶胶–凝胶衍生的原位沉积,随后用硅烷基防水剂进行疏水处理,制备了超疏水聚酯织物。在实验中,该超疏水织物在马丁代尔耐磨仪上磨损340次后,以及在四氢呋喃(THF)溶液中经过120分钟的超声处理后,它们的水接触角仍能达到137˚以上,表现出了持久的拒水和抗污性能。Xue等人 [44] 通过一种方便的溶液浸渍法,用聚二甲基硅氧烷和十八乙胺(ODA)。制备了一种具有超疏水耐久性的涤纶纺织品,织物涂层经久耐用,可承受120次洗涤和5000次磨损,即使经过20000次的磨损,织物在室温下仍能在72小时内恢复其超疏水性能。与此同时,织物受到化学破坏后,经短时间加热处理12小时自动恢复其超疏水性。这种简单而有效的涂层可用于开发各种用途的坚固防护服。Gao等人 [45] 将棉织物在正辛基三乙氧基硅烷与含钛前驱体混合溶液浸泡后采用简单的一步热压工艺在棉织物上制备了超疏水TiO2涂层。所制备的织物具有良好的超疏水性,水接触角大于150˚,紫外线防护系数为45。构建的超疏水织物能够承受超过800次的磨损。制备的超疏水织物对酸性和碱性溶液也有较强的抵抗能力以及具有较好的自清洁(如图4)、防污、水油分离等性能。

Figure 4. Self-cleaning process of modified superhydrophobic fabrics (a) Modified fabric on the left, original cotton on the right; (b~d) Original cotton fabric and modified fabric are placed on an inclined platform, and pencil shavings are uniformly distributed on them. When the water droplets fell, the dust was carried away by the spherical water droplets and rolled off the surface quickly; (e) Images of modified cotton fabric (left) and original cotton fabric (right) before and (f) after immersion in methylene blue solution; (g) Images of samples after rinsing and drying [45]

图4. 改性超疏水织物的自清洁过程(a) 左边为改性织物,右边为原始棉;(b~d) 将原始棉织物和改性织物放置在倾斜平台上,铅笔屑均匀分布在其上。当水滴落下时,灰尘被球形水滴带走,迅速从表面滚下;(e) 浸入亚甲基蓝溶液前和(f) 浸入亚甲基蓝溶液后,改性棉织物(左)和原始棉织物(右)的图像;(g) 样品冲洗干燥后的图像 [45]

4.2. 超疏水涂层材料在可穿戴智能设备方面的应用

随着人工智能的快速发展,柔性薄膜材料在柔性电子产品、可穿戴设备和软机器人方面具有潜在应用,在学术界和工业界受到了广泛关注。对于柔性薄膜材料在可穿戴传感器与人体接触时容易受到环境中的水、酸、碱、盐以及汗液等的影响。为了进一步减少环境水的渗透,柔性材料表面的疏水聚合物被认为是保护层 [46] 。基于导电性能和超疏水表面的功能协同效应,柔性导电材料可以通过具有疏水涂层的致密导电网络和比金属材料更大的形变来实现高灵敏度,例如,许多功能性复合导电材料,如聚合物海绵 [47] ,静电纺丝膜 [48] ,智能纺织品 [49] [50] 和水凝胶 [51] [52] [53] ,已广泛用于柔性应变传感器。具有超疏水性能的导电聚合物复合材料应用于超疏水柔性可穿戴传感器具有非常重要的意义,超疏水性能与电子技术的联合,可以赋予柔性传感器实际应用中的多功能性,如防结冰、防霜冻、液滴操控、电子皮肤等,也可以延长柔性应变传感器在潮湿低温环境中的使用周期。表2列举了在智能可穿戴领域的超疏水传感器。

Table 2. Superhydrophobic sensors in the field of smart wearables

表2. 在智能可穿戴领域的超疏水传感器

对于柔性超疏水薄膜材料,常采用喷涂、浸涂、气相沉积、电沉积等工艺方法在柔性基底上制备涂层,该工艺不仅可以构造出柔性可拉伸导电层,也可以实现多层级结构的超疏水表面。多种超疏水导电材料的研究表明,制备的超疏水响应元件具有稳定、快速以及精确的信号输出能力。与其他未经处理的表面相比,表面改性能有效控制水在柔性导电材料上的运动行为。Liu等人 [58] 制备了一种具有微纳米结构的超疏水三电极,通过双面胶带将聚偏氟乙烯纳米球粘附在聚酰亚胺薄膜上,然后进行表面氟化处理,这样即使在长期工作过程中表面受损,也可以通过释放胶带表面孔隙中的氟化烷基硅烷进行自我修复。具有防水功能的超疏水材料因其在可穿戴设备中的巨大应用价值而得到了快速发展。Li等人 [54] 将多壁碳纳米管通过喷涂分散在热塑性弹性体溶液中的,然后用乙醇处理,在弹性基材表面制造了高度柔性的多功能智能涂层。如图5所示,涂层不仅赋予各种基材超疏水表面,而且还可以对拉伸、弯曲和扭转做出反应。涂层显示出优异的灵敏度,高分辨率(弯曲1˚)、快速响应时间(<8 ms)、超过5000个拉伸–松弛循环的稳定响应以及感测范围宽(拉伸超过76%,弯曲:0˚~140˚,扭转:0~350 rad/m)。此外,厚度仅为1 μm的多功能涂层可直接应用于服装上,可以用于全方位实时检测人体运动,同时对水、酸和碱表现出极强的排斥性,这有助于传感器在潮湿和腐蚀性条件下工作。Su等人 [59] 以多壁碳纳米管/聚乙烯–醋酸乙烯为骨架,制作了三维多孔超疏水复合材料,可用于水下振动检测。上述研究表明,获得超疏水和导电性能协同效应的最有效策略是结合低表面能材料和微纳米粗糙结构。然而,导电材料中疏水聚合物的界面阻力仍然是影响导电层响应灵敏度的关键问题。为了实现优异的疏水性能,引入了全氟烷基 [60] 来降低导电材料的表面能。此外,多层导电网络的叠层结构可有效减少拉伸过程中孔的重叠、穿透和扩大,从而使多孔导电材料保持优异的超疏水性能。

综上所述,基于薄膜材料、弹性基材以及织物等构造的柔性导电超疏水薄膜,实现了超疏水性能与导电性能的复合,并且所制备的超疏水智能可穿戴的元件具有稳定性强、速度相应快以及精确的信号输出能力。因此,对于小型化、轻量化的柔性智能可穿戴设备,在柔性导电材料表面引入超疏水性能,实现柔性导电材料应变过程中的自清洁、防浸润以及耐腐蚀的性能,该工作不仅对推动柔性可穿戴技术具有重要的意义。而且,引入超疏水性能可以延长功能材料使用寿命,拓宽了透明电极、柔性电子、智能传感等新兴须域的发展。

Figure 5. A superhydrophobic smart coating for real-time human motion detection [54]

图5. 一种超疏水智能涂层,用于实时人体运动检测 [54]

5. 总结与展望

本文主要介绍了超疏水表面的理论,以及超疏水表面的制备方法,如溶胶凝胶、水热合成、喷涂法和模板法。此外,还分析和讨论了柔性超疏水材料在织物和智能可穿戴方面的应用,为进一步开发新型柔性超疏水高性能材料提供了借鉴。

由于超疏水表面具有自清洁、耐酸碱腐蚀、防冰等性能,可在穿戴电子器件、织物和人造皮肤等柔性器件上有着广阔的应用前景。然而,超疏水表面在使用中往往会面临不可避免的摩擦和各种溶液的腐蚀,这将考验超疏水表面的疏水耐久性。有些情况下超疏水表面在恶劣的使用条件下会失去超疏水性能,从而使得使用寿命缩短,如何制备具有耐摩擦性、耐洗涤性、耐腐蚀性并有自修复性的超疏水涂层还需深入研究,距离工业化实际应用仍具有很长距离。与此同时,未来如何通过简单的方法用柔性材料制备出结构有序、均匀的微纳米织构超疏水表面也是超疏水涂层制备面临的挑战性课题之一。

基金项目

四川省自然科学基金(项目编号:2023NSFSC0916)。

NOTES

*通讯作者。

参考文献

[1] Wang, S., Oh, J.Y., Xu, J., Tran, H. and Bao, Z. (2018) Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 51, 1033-1045.
https://doi.org/10.1021/acs.accounts.8b00015
[2] Liu, Y., Pharr, M. and Sal-vatore, G.A. (2017) Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano, 11, 9614-9635.
https://doi.org/10.1021/acsnano.7b04898
[3] 丁亚茹. 柔性导电超疏水薄膜材料的制备与性能研究[D]: [博士学位论文]. 西安: 陕西科技大学, 2021.
[4] Park, J., Kim, M., Lee, Y., Lee, H.S. and Ko, H. (2015) Fingertip Skin-Inspired Microstructured Ferroelectric Skins Discriminate Static/Dynamic Pressure and Tem-perature Stimuli. Science Advances, 1, e1500661.
https://doi.org/10.1126/sciadv.1500661
[5] Hu, H., Tian, H., Shao, J., Li, X., Wang, Y., Wang, Y., Tian, Y. and Lu, B. (2017) Discretely Supported Dry Adhesive Film Inspired by Biological Bending Behavior for Enhanced Perfor-mance on a Rough Surface. ACS Applied Materials & Interfaces, 9, 7752-7760.
https://doi.org/10.1021/acsami.6b14951
[6] Ding, Y.R., Liu, R.T., Zheng, Y., Wang, X. and Yu, Y.Y. (2023) Fabrication of a Superhydrophobic Conductive Porous Film with Water-Resistance for Wearable Sensors. ACS Applied Electronic Materials, 5, 440-450.
https://doi.org/10.1021/acsaelm.2c01452
[7] Shafrin, E.G. and Zisman, W.A. (1967) Critical Surface Tension for Spreading on a Liquid Substrate. The Journal of Physical Chemistry, 71, 1309-1316.
https://doi.org/10.1021/j100864a020
[8] Mahadevan, L. (2001) Non-Stick Water. Nature, 441, 895-896.
https://doi.org/10.1038/35082164
[9] Nishino, T., Meguro, M., Nakamae, K., Matsushita, M. and Ueda, Y. (1999) The Lowest Surface Free Energy Based on −CF3 Alignment. Langmuir, 15, 4321-4323.
https://doi.org/10.1021/la981727s
[10] Zhang, D.W., Wang, L.T., Qian, H.C. and Li, X.G. (2016) Superhydropho-bic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions. Journal of Coatings Technology & Research, 13, 11-29.
[11] Wenzel, R.N. (1936) Resistance of Solid Surfaces to Wetting by Water. Indus-trial & Engineering Chemistry Research, 28, 988-994.
https://doi.org/10.1021/ie50320a024
[12] Cassie, A.B.D. and Baxter, S. (1944) Wettability of Porous Surfaces. Transactions of the Faraday Society, 40, 546-551.
https://doi.org/10.1039/TF9444000546
[13] Marmur, A. (2003) Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be? Langmuir, 19, 8343-8348.
https://doi.org/10.1021/la0344682
[14] Buijnsters, J.G., Zhong, R., Tsyntsaru, N. and Celis, J.P. (2013) Surface Wettability of Macroporous Anodized Aluminum Oxide. ACS Applied Materials & Interfaces, 5, 3224-3233.
https://doi.org/10.1021/am4001425
[15] Liu, C., Su, F. and Liang, J. (2014) Facile Fabrication of a Robust and Corrosion Resistant Superhydrophobic Aluminum Alloy Surface by a Novel Method. RSC Advances, 4, 55556-55564.
https://doi.org/10.1039/C4RA09390A
[16] Jafari, R. and Farzaneh, M. (2012) A Simple Method to Create Superhydrophobic Aluminium Surfaces. Materials Science Forum, 706-709, 2874-2879.
https://doi.org/10.4028/www.scientific.net/MSF.706-709.2874
[17] Latthe, S.S., Mahadik, S.A. and Kappenstein, C. (2011) Mechanically Stable and Corrosion Resistant Superhydrophobic Sol—Gel Coatings on Copper Substrate. Applied Surface Science, 257, 5772-5776.
[18] Wang, S., Guo, X., Xie, Y., Liu, L., Yang, H., Zhu, R., Gong, J., Peng, L. and Ding, W. (2012) Preparation of Superhydrophobic Silica Film on Mg-Nd-Zn-Zr Magnesium Alloy with Enhanced Corrosion Resistance by Combining Micro-Arc Oxidation and Sol-Gel Method. Surface and Coatings Tech-nology, 213, 192-201.
https://doi.org/10.1016/j.surfcoat.2012.10.046
[19] Fan, Y.H., Li, C.Z., Chen, Z.J. and Chen, H. (2012) Study on Fabrication of the Superhydrophobic Sol-Gel Films Based on Copper Wafer and Its Anti-Corrosive Properties. Applied Surface Science, 258, 6531-6536.
https://doi.org/10.1016/j.apsusc.2012.03.072
[20] Cai, Z., Lin, J. and Hong, X. (2018) Transparent Superhydro-phobic Hollow Films (TSHFs) with Superior Thermal Stability and Moisture Resistance. RSC Advances, 8, 491-498.
https://doi.org/10.1039/C7RA10075B
[21] Hozumi, A., Cheng, D.F. and Yagihashi, M. (2011) Hydropho-bic/Superhydrophobic Oxidized Metal Surfaces Showing Negligible Contact Angle Hysteresis. Journal of Colloid & In-terface Science, 353, 582-587.
https://doi.org/10.1016/j.jcis.2010.09.075
[22] Jiang, G., Chen, L., Zhang, S. and Huang, H. (2018) Superhydro-phobic SiC/CNTs Coatings with Photothermal Deicing and Passive Anti-Icing Properties. ACS Applied Materials & In-terfaces, 10, 36505-36511.
https://doi.org/10.1021/acsami.8b11201
[23] Shen, Y., Wu, Y., Tao, J., Zhu, C., Chen, H., Wu, Z. and Xie, Y. (2018) Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion. ACS Applied Materials & Interfaces, 11, 3590-3598.
https://doi.org/10.1021/acsami.8b19225
[24] Ou, J., Hu, W., Xue, M., Wang, F. and Li, W. (2013) Superhydro-phobic Surfaces on Light Alloy Substrates Fabricated by a Versatile Process and Their Corrosion Protection. ACS Ap-plied Materials & Interfaces, 5, 3101-3107.
https://doi.org/10.1021/am4000134
[25] Darband, G.B., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S. and Kabo-li, A. (2020) Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arabian Journal of Chemistry, 13, 1763-1802.
https://doi.org/10.1016/j.arabjc.2018.01.013
[26] Weng, C.J., Chang, C.H., Peng, C.W., Chen, S.W., Yeh, J.M., Hsu, C.L. and Wei, Y. (2011) Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifoli-um-Leaf-Like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability. Chemistry of Materials, 23, 2075-2083.
https://doi.org/10.1021/cm1030377
[27] Zhang, M., Zhang, T. and Cui, T. (2011) Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings. Langmuir, 27, 9295-9301.
https://doi.org/10.1021/la200405b
[28] Zhao, R.G., Khandoker, A.R. and Golovin, K. (2020) Non-Fluorinated Omniphobic Paper with Ultralow Contact Angle Hysteresis. ACS Applied Materials & Interfaces, 12, 15748-15756.
https://doi.org/10.1021/acsami.0c01678
[29] Guo, L., Zhang, F., Song, L., Zeng, R.C., Li, S.Q. and Han, E.H. (2017) Corrosion Resistance of Ceria/Polymethyl- trimethoxysilane Modified Magnesium Hydroxide Coating on AZ31 Magnesium Alloy. Surface and Coatings Technology, 328, 121-133.
https://doi.org/10.1016/j.surfcoat.2017.08.039
[30] Li, X., Zhang, Q., Guo, Z., Shi, T., Yu, J., Tang, M. and Huang, X. (2015) Fabrication of Superhydrophobic Surface with Improved Corrosion Inhibition on 6061 Aluminum Alloy Sub-strate. Applied Surface Science, 342, 76-83.
https://doi.org/10.1016/j.apsusc.2015.03.040
[31] 张帆. 可喷涂超疏水纳米复合防护涂层的制备与性能研究[D]: [博士学位论文]. 北京: 北京科技大学, 2021.
[32] Xu, B., Ding, Y., Qu, S. and Cai, Z. (2015) Superamphipho-bic Cotton Fabrics with Enhanced Stability. Applied Surface Science, 356, 951-957.
https://doi.org/10.1016/j.apsusc.2015.08.180
[33] Gao, Q., Zhu, Q. and Guo, Y. (2009) Formation of Highly Hy-drophobic Surfaces on Cotton and Polyester Fabrics Using Silica Sol Nanoparticles and Nonfluorinated Alkylsilane. In-dustrial & Engineering Chemistry Research, 48, 9797-9803.
https://doi.org/10.1021/ie9005518
[34] Zhang, H., Hou, C.P., Song, L.X., Ma, Y., Ali, Z., et al. (2018) A Stable 3D Sol-Gel Network with Dangling Fluoroalkyl Chains and Rapid Self-Healing Ability as a Long-Lived Superhydrophobic Fabric Coating. Chemical Engineering Journal, 334, 598-610.
https://doi.org/10.1016/j.cej.2017.10.036
[35] Chen, Y., Zhang, Y., Shi, L., Li, J., Xin, Y., Yang, T. and Guo, Z. (2012) Transparent Superhydrophobic/Superhy- drophilic Coatings for Self-Cleaning and Anti-Fogging. Applied Physics Letters, 101, Article ID: 033701.
https://doi.org/10.1063/1.4737167
[36] Peng, C.W., Chang, K.C., Weng, C.J., Lai, M.C., Hsu, C.H., Hsu, S.C., Hsu, Y.Y., Hung, W.I., Wei, Y. and Yeh, J.M. (2013) Nano-Casting Technique to Prepare Polyaniline Surface with Biomimetic Superhydrophobic Structures for Anticorrosion Application. Electrochimica Acta, 95, 192-199.
https://doi.org/10.1016/j.electacta.2013.02.016
[37] Kong, X.W., Zhu, C.X., Lv, J., Zhang, J. and Feng, J. (2020) Robust Fluorine-Free Superhydrophobic Coating on Polyester Fabrics by Spraying Commercial Adhesive and Hydro-phobic Fumed SiO2 Nanoparticles. Progress in Organic Coatings, 138, Article ID: 105342.
https://doi.org/10.1016/j.porgcoat.2019.105342
[38] Xie, H., Wei, J., Duan, S., Zhu, Q. and Zhang, J. (2021) Non-Fluorinated and Durable Photothermal Superhydrophobic Coatings Based on Attapulgite Nanorods for Efficient Anti-Icing and Deicing. Chemical Engineering Journal, 428, Article ID: 132585.
https://doi.org/10.1016/j.cej.2021.132585
[39] Pan, S., Guo, R., Björnmalm, M., Richardson, J.J., Li, L., Peng, C., Bertleff-Zieschang, N., Xu, W., Jiang, J. and Caruso, F. (2018) Coatings Super-Repellent to Ultralow Surface Tension Liquids. Nature Materials, 17, 1040-1047.
https://doi.org/10.1038/s41563-018-0178-2
[40] Cho, Y.J., Jang, H., Lee, K.S. and Kim, D.R. (2015) Direct Growth of Cerium Oxide Nanorods on Diverse Substrates for Superhydrophobicity and Corrosion Resistance. Applied Surface Science, 340, 96-101.
https://doi.org/10.1016/j.apsusc.2015.02.138
[41] Zhang, L., Xue, C.H., Cao, M., Zhang, M.M., Li, M. and Ma, J.Z. (2017) Highly Transparent Fluorine-Free Superhydrophobic Silica Nanotube Coatings. The Chemical Engineering Journal, 320, 244-252.
https://doi.org/10.1016/j.cej.2017.03.048
[42] Zhang, Y., Li, S., Huang, F., Wang, F., Duan, W., Li, J., Shen, Y. and Xie, A. (2012) Functionalization of Cotton Fabrics with Rutile TiO2 Nanoparticles: Applications for Superhydropho-bic, UV-Shielding and Self-Cleaning Properties. Russian Journal of Physical Chemistry A, 86, 413-417.
https://doi.org/10.1134/S0036024412030375
[43] Yu, M., Li, P., Feng, Y., Li, Q., Sun, W., Quan, M., Liu, Z., Sun, J., Shi, S. and Gong, Y. (2018) Positive Effect of Polymeric Silane-Based Water Repellent Agents on the Durability of Superhydrophobic Fabrics. Applied Surface Science, 450, 492-501.
https://doi.org/10.1016/j.apsusc.2018.04.204
[44] Xue, C.H., Bai, X. and Jia, S.T. (2016) Robust, Self-Healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine. Scientific Reports, 6, Article No. 27262.
https://doi.org/10.1038/srep27262
[45] Gao, S., Huang, J., Li, S., Liu, H., Li, F., Li, Y., Chen, G. and Lai, Y. (2017) Facile Construction of Robust Fluorine-Free Superhydrophobic TiO2@Fabrics with Excellent An-ti-Fouling, Water-Oil Separation and UV-Protective Properties. Materials & Design, 128, 1-8.
https://doi.org/10.1016/j.matdes.2017.04.091
[46] Chen, X., Li, R., Niu, G., Xin, M., Xu, G., Cheng, H. and Yang, L. (2022) Porous Graphene Foam Composite-Based Dual-Mode Sensors for Underwater Temperature and Subtle Mo-tion Detection. Chemical Engineering Journal, 444, Article ID: 136631.
https://doi.org/10.1016/j.cej.2022.136631
[47] Zhu, J.D., Hu, J., Peng, T.P., Jiang, C.W., Liu, S.Y., Li, Y., Guo, T.Y. and Xie, L. (2019) Superhydrophobic Melamine-Formaldehyde Sponge Functionalized by Coupling Agent-Isocyanate Siloxane as Efficient Absorbents for Oil and Organic Solvents. Advanced Materials Interfaces, 6, Arti-cle ID: 1900025.
https://doi.org/10.1002/admi.201900025
[48] Li, Z., Zhu, M., Shen, J., Qiu, Q., Yu, J. and Ding, B. (2020) All-Fiber Structured Electronic Skin with High Elasticity and Breathability. Advanced Functional Materials, 30, Article ID: 1908411.
https://doi.org/10.1002/adfm.201908411
[49] He, J., Shi, F., Liu, Q., Pang, Y., He, D., Sun, W., Peng, L., Yang, J. and Qu, M. (2022) Wearable Superhydrophobic PPy/MXene Pressure Sensor Based on Cotton Fabric with Superior Sensitivity for Human Detection and Information Transmission. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 642, Article ID: 128676.
https://doi.org/10.1016/j.colsurfa.2022.128676
[50] Medeiros, M.S.D., Goswami, D., Chanci, D., Moreno, C. and Martinez, R.V. (2021) Supporting Information: Washable, Breathable, and Stretchable e-Textiles Wirelessly Powered by Omniphobic Silk-based Coils. Nano Energy, 87, Article ID: 106155.
https://doi.org/10.1016/j.nanoen.2021.106155
[51] Sun, H.L., Zhao, Y., Jiao, S.L., et al. (2021) Environment Tol-erant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Elec-tronics. Advanced Functional Materials, 31, Article ID: 2101696.
https://doi.org/10.1002/adfm.202101696
[52] Yu, Z.C. and Wu, P.Y. (2021) Underwater Communication and Optical Camouflage Ionogels. Advanced Materials, 33, Arti-cle ID: 2008479.
[53] Wang, P., Chen, T., Zhang, X.S., et al. (2021) A Superhydrophobic Hydrogel for Self-Healing and Robust Strain Sensor with Liquid Impalement Resistance. Chinese Journal of Chemistry, 39, 3393-3398.
[54] Li, L.H., Bai, Y.Y., Li, L.L., Wang, S.Q. and Zhang, T. (217) A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Advanced Materials, 29, Article ID: 1702517.
https://doi.org/10.1002/adma.201702517
[55] Liu, L., Jiao, Z., Zhang, J., Wang, Y., Zhang, C., Meng, X., Jiang, X., Niu, S., Han, Z. and Ren, L. (2021) Bioinspired, Superhydrophobic, and Paper-Based Strain Sensors for Wearable and Underwater Applications. ACS Applied Materials & Interfaces, 13, 1967-1978.
https://doi.org/10.1021/acsami.0c18818
[56] Liu, J., Zhu, C., Liu, K., Jiang, Y., Song, Y., Francisco, J.S., Zeng, X.C. and Wang, J. (2017) Distinct Ice Patterns on Solid Surfaces with Various Wettabilities. Proceedings of the National Academy of Sciences, 114, 11285-11290.
https://doi.org/10.1073/pnas.1712829114
[57] Wang, Z., Zhang, X., Cao, T., Wang, T., Sun, L., Wang, K. and Fan, X. (2021) Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS Applied Materials & Interfaces, 13, 46022-46032.
https://doi.org/10.1021/acsami.1c15052
[58] Liu, Y., Zheng, Y., Li, T., Wang, D. and Zhou, F. (2019) Water-Solid Triboelectrification with Self-Repairable Surfaces for Water-Flow Energy Harvesting. Nano Energy, 61, 454-461.
https://doi.org/10.1016/j.nanoen.2019.05.007
[59] Su, X., Li, H., Lai, X., Chen, Z. and Zeng, X. (2019) 3D Porous Superhydrophobic CNT/EVA Composites for Recoverable Shape Reconfiguration and Underwater Vibration Detection. Advanced Functional Materials, 29, Article ID: 1900554.
https://doi.org/10.1002/adfm.201900554
[60] Yang, S., Yang, W., Yin, R., Liu, H., Sun, H., Pan, C., Liu, C. and Shen, C. (2023) Waterproof Conductive Fiber with Mi-crocracked Synergistic Conductive Layer for High-Performance Tunable Wearable Strain Sensor. Chemical Engineering Journal, 453, Article ID: 139716.
https://doi.org/10.1016/j.cej.2022.139716