肠道菌群–胆汁酸通路与2型糖尿病的关系
Correlation between Intestinal Flora-Bile Acid Related Pathway and Type 2 Diabetes
摘要: 肠道菌群通过多种途径参与2型糖尿病(T2DM)的发生发展过程,导致胰岛素抵抗(IR)、胰岛β细胞功能损伤和糖原合成及代谢紊乱,不断推动糖脂代谢并发症的发展。胆汁酸(BAs)作为肠道菌群代谢产物,与其内源性受体结合,包括法尼醇X核受体(FXR)和G蛋白偶联胆汁酸受体1 (TGR5),对T2DM产生影响。本文对肠道菌群–胆汁酸轴与T2DM关系的内在机制及相互影响进行综述。
Abstract: Intestinal flora participates in the occurrence and development of type 2 diabetes (T2DM) through various ways, leading to insulin resistance (IR) and pancreatic islets β damage to cellular function and disruption of glycogen synthesis and metabolism, continuing to drive the development of com-plications in glycolipid metabolism. Bile acids (BAs), as metabolites of Intestinal flora, bind to their endogenous receptors, including farnesol X Nuclear receptor (FXR) and G protein coupled Bile acid receptor 1 (TGR5), which affect T2DM. This article reviews the internal mechanism and interaction between Intestinal flora-Bile acid axis and T2DM.
文章引用:岳晓岩, 张瑞霞. 肠道菌群–胆汁酸通路与2型糖尿病的关系[J]. 临床医学进展, 2023, 13(12): 19851-19856. https://doi.org/10.12677/ACM.2023.13122796

1. 肠道菌群与T2DM

肠道菌群与肥胖、慢性炎症和胰岛素抵抗有关,而这些均与T2DM的发展有关 [1] 。肠道菌群失衡可通过肠–脑轴影响中枢神经系统,减少乳酸杆菌和双歧杆菌产生,缩短饭后的饱腹感,导致肥胖 [2] 。厚壁菌/拟杆菌比率随着体重指数(BMI)的增加而增加,是肥胖T2DM患者肠道微生物群的一个重要特征 [3] 。肥胖促进内毒素脂多糖的分泌,从而导致糖耐量紊乱、慢性低水平炎症和肠内抗炎细菌(粪便杆菌)丰度降低 [4] 。Li等人认为 [5] ,由于T2DM患者在饮食上出现机体营养不良及随年龄增长引起组织结构变化,导致肠道菌群统动态平衡紊乱,机体吸收大量毒素,导致胃肠道甚至全身产生炎症反应,释放炎症介质。血糖升高会导致肠上皮细胞的葡萄糖转运蛋白2 (GLUT-2)的非特异性糖基化 [6] ,改变肠道通透性使内毒素进入体循环 [7] ,导致菌群失调,诱发胰岛素抵抗,影响糖耐量机制和促进代谢疾病的发展 [8] [9] 。双歧杆菌、脆弱拟杆菌、大肠杆菌都被证明能改善葡萄糖代谢和胰岛素敏感性,抑制促炎细胞因子,保持肠道屏障的完整性,降低糖尿病发生的风险 [10] [11] 。因此肠道微生物代谢物可通过调节葡萄糖代谢异常、β细胞功能障碍和低度炎症等生理过程影响T2DM的发展。

2. 胆汁酸与T2DM

BAs是胆汁的主要脂质成分,作为一种对脂质和葡萄糖代谢具有调节作用的信号分子 [12] ,BA代谢受损与T2DM的发展和进展有关。研究表明,口服葡萄糖耐量试验(OGTT) 30分钟后结合胆汁酸升高,提示T2DM患者餐后总胆汁酸曲线下面积均高于对照组 [13] 。OGTT期间甘氨鹅脱氧胆酸减少,并与空腹胰岛素呈负相关相反。类内(即原发性和继发性)和类间(即非共轭和共轭) BAs协同调控在糖尿病患病之前就已存在,证明BAs可以独立于OGTT预测糖尿病的发生率。WANG等人研究结果表明 [14] ,T2DM患者中的石胆酸(LCA)和牛磺胆酸(TCA)升高,而熊去氧胆酸(UDCA)降低。认为UDCA浓度和UDCA/LCA比值与胰岛素分泌呈正相关,并建议在治疗后进行纠正 [15] 。相反地,有研究发现,BAs水平降低时患者更易引起血糖上升,重症肠胆汁酸缺乏患者血糖异常升高的比例约为30% [16] 。胆固醇7α羟化酶(CYP7A1)染色质组蛋白乙酰化可以被葡萄糖和胰岛素促进,激活经典BA合成途径,使CA (胆酸)、DCA (脱氧胆酸)与CDCA (鹅去氧胆酸)的比例升高,通过刺激胆固醇吸收而导致血脂异常、糖尿病 [17] ,且与胰岛素抵抗呈正相关 [18] 。总HCA (猪胆酸)/总CDCA比值与体重指数、胰岛素抵抗指数和糖化血红蛋白呈负相关 [19] 。6α-羟基化(6α-OH) BAs与T2DM的代谢改变呈负相关,12α-羟基化(12α-OH) BAs和12α-OH与非12α-OH BAs的比例与胰岛素抵抗有关 [20] 。总之,BAs参与机体代谢、胰岛素抵抗和能量代谢,表明胆汁酸可以代表T2DM的潜在治疗靶标。

3. 肠道菌群–胆汁酸轴与T2DM

肠道菌群酶(包括胆汁酸水解酶(BSH)和胆汁酸诱导酶(BAI))通过解共轭和去羟化反应生成未共轭胆汁酸和次生胆汁酸,胆汁酸是宿主细胞受体(包括FXR、TGR5受体)的配体,通过两条信号通路的改变调节胃肠道内激素的分泌,包括胰高血糖素样肽-1 (GLP-1)和肽YY (PYY),肝脏糖异生,糖原合成,能量消耗和肠道菌群的组成。

3.1. 肠道菌群–胆汁酸-FXR通路

FXR由核受体亚家族1H组成员-4基因编码,主要分布于细胞核,作为胆汁酸的主要传感器,在肝脏和肠道中的不同部位启动不同的下游靶基因转录。鹅去氧胆酸(CDCA)是激活FXR最有效的内源性胆汁酸 [21] ,可抑制膜钾通道,从而增加钙内流,导致更多葡萄糖刺激的胰岛素分泌 [12] 。α-和β-胆酸(MCA)作为啮齿动物中的胆汁酸,已经被确定为FXR拮抗剂 [22] [23] ,负反馈抑制胆汁酸合成,维持肝内胆汁酸的低水平,以防止胆汁淤积性肝损伤,维持肠道通透性、形态变化和肠道微生物群的组成。肠道细菌和内毒素进入血液后,黏膜屏障受损,肠道中BAs水平降低导致肠上皮细胞凋亡和肠黏液萎缩,分别导致菌血症和内毒素血症 [24] ,从而改变细胞的代谢和功能 [21] 。

FXR通过肠肝循环后,有2条主要途径影响肠道菌群调控Bas:小异源二聚体(SHP)途径和人成纤维细胞生长因子19 (FGF19)途径。(1) BAs-FXR-SHP途径:FXR的下游靶点之一是非典型核受体-SHP [25] ,激活FXR-SHP信号通路,减少胆汁酸通过门静脉进入肝脏的量,加快BAs通过小管膜和基底外侧膜的外排。肠道中的细菌过度增殖后,BAs可以通过FXR产生的直接抗菌作用的抗菌肽,稳定肠道通透性和肠道微生物群的菌群平衡。此外,BsA作为一种辅抑制因子,肝脏FXR的激活增加了目的基因SHP表达 [26] 。肠道微生物群及肠道屏障的组成和结构的破坏触发肝细胞上的FGF受体4 (FGFR4)/β-Klotho (βKL)异二聚体复合物,进一步激活下游JNK/ERK信号,SHP通过抑制肝受体同源物-1和肝核因子-4α转录活性,从而下调CYP7A1和羟化胆固醇7-羟化酶(CYP7B1)基因表达,抑制BAs合成及能量消耗增加 [27] 。(2) BAs-FXR-FGF19通路:FGF19被认为是胆汁酸、碳水化合物和能量稳态以及肝脏再生的关键调节因子 [28] 。作用于肝细胞内的细胞表面成纤维细胞生长因子受体-4 (FGFR4)上,由于肠道微生物群可以改变胆汁酸结构和池组成,它间接通过依赖于c-Jun n末端激酶(JNK)的途径负反馈抑制肝细胞中的CYP7A1的活性 [29] ,防止微生物群生长过度和黏膜破坏的基因表达。体循环允许微生物代谢的胆汁酸充当内分泌分子,激活胆汁酸介导的途径,从而调节宿主代谢过程,包括增加能量消耗、降低体重和改善葡萄糖耐受性 [30] 。肠道微生物群中胆盐水解酶活性的增加降低了肠道β-MCA的拮抗作用 [31] ,而肠道乳酸杆菌和拟杆菌属也相应增多 [32] ,刺激FGF19的产生,以抑制BAs合成。通过肠肝循环,激活肝脏FGFR4和β KL形成二元受体复合物,抑制两种羟化酶的表达,并调节涉及胆固醇、BA和糖脂代谢的表达。非依赖性胰岛素肠道FGF19的降糖作用对糖尿病治疗提供新思路 [33] 。

3.2. 肠道菌群–胆汁酸-TGR5通路

TGR5作为一种经典的膜受体,广泛表达于多个组织,在肝、胃、小肠、脂肪、肾等部位均有表达,TGR5已被证明参与调节肠道环境的稳定性和调节葡萄糖代谢 [34] 。次级胆汁酸LCA和DCA是激活TGR5最有效的内源性胆汁酸。肠道菌群组成成分变化受到肠道内激素调节,通过激活位于肠内分泌L细胞基底外侧膜的TGR5和刺激GLP-1的释放,调节餐后胰岛素释放和血糖水平 [35] ,抑制胃排空和食欲,并通过GLP-1作用分泌胰高血糖素 [36] 。研究发现,通GLP-1与胰岛β细胞膜上的GLP-1受体结合激活细胞膜上的腺苷酸环化酶(AC),将三磷酸腺苷(ATP)转化为环磷腺苷(cAMP),激活cAMP/蛋白激酶 A(PKA)效应元件结合蛋白途径,调节鸟嘌呤核苷酸交换因子II促进GLP-1释放后影响胰岛素分泌,改善胰岛β细胞功能 [37] ,同时TGR5会使α细胞分泌表型从胰高血糖素转变为GLP-1,从而促进β细胞的旁分泌作用,刺激胰岛素分泌 [38] ,从而调控机体的糖脂代谢 [39] ;并诱导细胞表面的钠离子依赖性胆汁酸转运体(ASBT)转运,从而增加胆汁酸的重吸收,在胆汁淤积中,菌群总体多样性相对减少,厚壁菌门细菌水平降低 [40] ,因此发挥利胆的作用 [41] 。PKA和交换蛋白(EPAC)/磷脂酶C(PLC)被激活,通过电压依赖性Ca2+通道诱导细胞内Ca2+的增加,Ca2+内流刺激β细胞分泌胰岛素。肠道菌群失调后,BAs抑制GLP-1的G蛋白耦联受体,增加食物摄入,胰岛素敏感性降低,脂肪积累,导致全身炎症。在脂肪组织中,TGR5的激活诱导甲状腺激素脱碘酶2型(Dio2),它将甲状腺激素甲状腺素(T4)转化为三碘甲状腺原氨酸(T3),以刺激能量代谢和白色脂肪组织褐变。细胞cAMP水平升高,BAs通过碘甲状腺原氨酸脱碘酶(D2)增加骨骼肌和棕色脂肪组织的能量消耗,从而预防肥胖 [42] ,提高甲状腺激素的水平,增加氧气的消耗和能量的产生,避免了肥胖和胰岛素抵抗的发生 [43] 。可见,BAs-TGR5-cAMP-Dio2信号通路,是调节能量平衡的重要机制。

研究表明,BAs与肠道菌群相互作用,TGR5改善糖脂代谢的作用主要包括 [44] :促进肝糖原合成和胰岛素敏感性;胰腺胰岛素分泌增加;促进能量消耗,特别是棕色脂肪组织和肌肉;促进产热,导致体重减轻;调节大脑中的饱腹感 [45] 。这些作用是由TGR5介导的,这就是为什么基于胆汁酸的TGR5激动剂可能是糖尿病的治疗靶点。

4. 小结

综上所诉,T2DM患者体内肠道菌群与胆汁酸代谢产物关系密切,通过FXR、TGR5信号通路及控制胆汁酸池组成和相关免疫和代谢功能,最终影响糖脂代谢变化。因此,调节和维持肠道菌群及胆汁酸的正常代谢对T2DM的治疗和预防具有重要意义。糖尿病及其并发症严重影响人类生命健康,发病机制复杂,需要从多角度研究和治疗。通过多学科共同探索,完善总结相关作用机制,为今后T2DM的治疗提供更多安全有效的参考。

参考文献

[1] Li, L., Bao, J., Chang, Y., et al. (2021) Gut Microbiota May Mediate the Influence of Periodontitis on Prediabetes. Jour-nal of Dental Research, 100, 1387-1396.
https://doi.org/10.1177/00220345211009449
[2] Shajib, M.S. and Khan, W.I. (2015) The Role of Serotonin and Its Receptors in Activation of Immune Responses and Inflammation. Acta Physi-ologica (Oxford), 213, 561-574.
https://doi.org/10.1111/apha.12430
[3] Liu, B.N., Liu, X.T., Liang, Z.H., et al. (2021) Gut Microbiota in Obesity. World Journal of Gastroenterology, 27, 3837-3850.
https://doi.org/10.3748/wjg.v27.i25.3837
[4] Scheithauer, T., Rampanelli, E., Nieuwdorp, M., et al. (2020) Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 11, Arti-cle ID: 571731.
https://doi.org/10.3389/fimmu.2020.571731
[5] 李雷, 张帆, 赵进和, 等. 老年2型糖尿病患者相关炎症因子及肠道菌群多样性变化研究[C]//浙江省医学会中毒学分会. 2019年浙江省医学会中毒学学术大会论文汇编. 湖州: 湖州市第三人民医院老年病科, 2019: 7.
https://doi.org/10.26914/c.cnkihy.2019.102476
[6] Patil, R. and Arvindekar, A. (2021) Glycation of Gut Proteins Initiates Microbial Dysbiosis and Can Promote Establishment of Diabetes in Experimental Animals. Microbial Patho-genesis, 152, Article ID: 104589.
https://doi.org/10.1016/j.micpath.2020.104589
[7] Zhou, Z., Sun, B., Yu, D., et al. (2022) Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 834485.
https://doi.org/10.3389/fcimb.2022.834485
[8] Saito, T., Hayashida, H. and Furugen, R. (2007) Comment on: Cani et al. (2007) Metabolic Endotoxemia Initiates Obesity and Insulin Resistance: Diabetes 56: 1761-1772. Diabetes, 56, e20.
https://doi.org/10.2337/db07-1181
[9] He, F.F. and Li, Y.M. (2020) Role of Gut Microbiota in the Devel-opment of Insulin Resistance and the Mechanism Underlying Polycystic Ovary Syndrome: A Review. Journal of Ovari-an Research, 13, Article No. 73.
https://doi.org/10.1186/s13048-020-00670-3
[10] Al-Ishaq, R.K., Samuel, S.M. and Büsselberg, D. (2023) The In-fluence of Gut Microbial Species on Diabetes Mellitus. International Journal of Molecular Sciences, 24, Article No. 8118.
https://doi.org/10.3390/ijms24098118
[11] Iatcu, C.O., Steen, A. and Covasa, M. (2021) Gut Microbiota and Complications of Type-2 Diabetes. Nutrients, 14, Article No. 166.
https://doi.org/10.3390/nu14010166
[12] McGlone, E.R. and Bloom, S.R. (2019) Bile Acids and the Metabolic Syndrome. Annals of Clinical Biochemistry, 56, 326-337.
https://doi.org/10.1177/0004563218817798
[13] Sonne, D.P., van Nierop, F.S., Kulik, W., et al. (2016) Postprandial Plasma Concentrations of Individual Bile Acids and FGF-19 in Patients with Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101, 3002-3009.
https://doi.org/10.1210/jc.2016-1607
[14] Wang, S., Deng, Y., Xie, X., et al. (2018) Plasma Bile Acid Changes in Type 2 Diabetes Correlated with Insulin Secretion in Two-Step Hyperglycemic Clamp. Journal of Diabetes, 10, 874-885.
https://doi.org/10.1111/1753-0407.12771
[15] Versteeg, B., Himschoot, M., van den Broek, I.V., et al. (2015) Urogenital Chlamydia trachomatis Strain Types, Defined by High-Resolution Multilocus Sequence Typing, in Relation to Ethnicity and Urogenital Symptoms among a Young Screening Population in Amsterdam, The Netherlands. Sexually Transmitted Infections, 91, 415-422.
https://doi.org/10.1136/sextrans-2014-051790
[16] Sachdev, S., Wang, Q., Billington, C., et al. (2016) FGF 19 and Bile Acids Increase Following Roux-en-Y Gastric Bypass but Not After Medical Management in Patients with Type 2 Diabetes. Obesity Surgery, 26, 957-965.
[17] Wu, Y., Zhou, A., Tang, L., et al. (2020) Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes. Journal of Diabetes Research, 2020, Article ID: 6138438.
https://doi.org/10.1155/2020/6138438
[18] Katafuchi, T. and Makishima, M. (2022) Molecular Basis of Bile Ac-id-FXR-FGF15/19 Signaling Axis. International Journal of Molecular Sciences, 23, Article No. 6046.
https://doi.org/10.3390/ijms23116046
[19] Chávez-Talavera, O., Wargny, M., Pichelin, M., et al. (2020) Bile Acids Associate with Glucose Metabolism, but Do Not Predict Conversion from Impaired Fasting Glucose to Diabetes. Metab-olism, 103, Article ID: 154042.
https://doi.org/10.1016/j.metabol.2019.154042
[20] Lu, J., Wang, S., Li, M., et al. (2021) Association of Serum Bile Acids Profile and Pathway Dysregulation with the Risk of Developing Diabetes among Normoglycemic Chinese Adults: Findings from the 4C Study. Diabetes Care, 44, 499-510.
https://doi.org/10.2337/dc20-0884
[21] Sayin, S.I., Wahlström, A., Felin, J., et al. (2013) Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 17, 225-235.
https://doi.org/10.1016/j.cmet.2013.01.003
[22] Moore, R.H., Chothe, P. and Swaan, P.W. (2013) Transmembrane Domain V Plays a Stabilizing Role in the Function of Human Bile Acid Transporter SLC10A2. Biochemistry, 52, 5117-5124.
https://doi.org/10.1021/bi400028q
[23] Hu, X., Bonde, Y., Eggertsen, G., et al. (2014) Muricholic Bile Acids Are Potent Regulators of Bile Acid Synthesis via a Positive Feedback Mechanism. Journal of Internal Medicine, 275, 27-38.
https://doi.org/10.1111/joim.12140
[24] Sorribas, M., Jakob, M.O., Yilmaz, B., et al. (2019) FXR Modulates the Gut-Vascular Barrier by Regulating the Entry Sites for Bacterial Translocation in Experimental Cirrhosis. Journal of Hepatology, 71, 1126-1140.
https://doi.org/10.1016/j.jhep.2019.06.017
[25] Zhang, Y., Hagedorn, C.H. and Wang, L. (2011) Role of Nuclear Receptor SHP in Metabolism and Cancer. Biochimica et Biophysica Acta, 1812, 893-908.
https://doi.org/10.1016/j.bbadis.2010.10.006
[26] Ma, K., Saha, P.K., Chan, L., et al. (2006) Farnesoid X Receptor Is Essential for Normal Glucose Homeostasis. Journal of Clinical Investigation, 116, 1102-1109.
https://doi.org/10.1172/JCI25604
[27] Marcelin, G., Jo, Y.-H., Li, X.S., et al. (2013) Central Action of FGF19 Reduces Hypothalamic AGRP/NPY Neuron Activity and Improves Glucose Metabolism. Molecular Metabolism, 3, 19-28.
[28] Zhou, M., Luo, J., Chen, M., et al. (2017) Mouse Species-Specific Control of Hepatocarcinogenesis and Metabolism by FGF19/FGF15. Journal of Hepatology, 66, 1182-1192.
https://doi.org/10.1016/j.jhep.2017.01.027
[29] Wahlström, A., Sayin, S.I., Marschall, H.U., et al. (2016) Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 24, 41-50.
https://doi.org/10.1016/j.cmet.2016.05.005
[30] Sacks, D., Baxter, B., Campbell, B., et al. (2018) Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. In-ternational Journal of Stroke, 13, 612-632.
https://doi.org/10.1016/j.jvir.2017.11.026
[31] 邹步, 唐莹, 杨文玲, 等. 肠道菌群-FXR轴在代谢性疾病中的作用[J]. 中国病理生理杂志, 2019, 35(9): 1716-1720.
[32] 龚彤, 陈国芳, 刘超. 肠道菌群——胆汁酸通路对代谢性疾病的影响[J]. 中国糖尿病杂志, 2019, 27(12): 953-955.
[33] Suh, J.M., Jonker, J.W., Ahmadian, M., et al. (2014) Endocrinization of FGF1 Produces a Neomorphic and Potent Insulin Sensitizer. Nature, 513, 436-439.
https://doi.org/10.1038/nature13540
[34] 肖丹, 邵勇. 胆汁酸膜受体TGR5与代谢相关疾病的研究进展[J]. 肝脏, 2013, 18(11): 776-779.
[35] Pathak, P., Xie, C., Nichols, R.G., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588.
https://doi.org/10.1002/hep.29857
[36] Tomaro-Duchesneau, C., LeValley, S.L., Roeth, D., et al. (2020) Discovery of a Bacterial Peptide as a Modulator of GLP-1 and Metabolic Disease. Scientific Reports, 10, Article No. 4922.
https://doi.org/10.1038/s41598-020-61112-0
[37] Deng, L., Yang, Y. and Xu, G. (2022) Empagliflozin Amelio-rates Type 2 Diabetes Mellitus-Related Diabetic Nephropathy via Altering the Gut Microbiota. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1867, Article ID: 159234.
https://doi.org/10.1016/j.bbalip.2022.159234
[38] Huang, S., Ma, S., Ning, M., et al. (2019) TGR5 Agonist Ame-liorates Insulin Resistance in the Skeletal Muscles and Improves Glucose Homeostasis in Diabetic Mice. Metabolism, 99, 45-56.
https://doi.org/10.1016/j.metabol.2019.07.003
[39] Chen, B., Bai, Y., Tong, F., et al. (2023) Glycoursodeoxycholic Acid Regulates Bile Acids Level and Alters Gut Microbiota and Glycolipid Metabolism to Attenuate Diabetes. Gut Mi-crobes, 15, Article ID: 2192155.
https://doi.org/10.1080/19490976.2023.2192155
[40] Qiu, P., Ishimoto, T., Fu, L., et al. (2022) The Gut Microbi-ota in Inflammatory Bowel Disease. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 733992.
https://doi.org/10.3389/fcimb.2022.733992
[41] Vettorazzi, J.F., Ribeiro, R.A., Borck, P.C., et al. (2016) The Bile Acid TUDCA Increases Glucose-Induced Insulin Secretion via the cAMP/PKA Pathway in Pancreatic Beta Cells. Me-tabolism, 65, 54-63.
https://doi.org/10.1016/j.metabol.2015.10.021
[42] Castellanos-Jankiewicz, A., Guzmán-Quevedo, O., Fénelon, V.S., et al. (2021) Hypothalamic Bile Acid-TGR5 Signaling Protects from Obesity. Cell Metabolism, 33, 1483-1492.e10.
https://doi.org/10.1016/j.cmet.2021.04.009
[43] Mantovani, A., Dalbeni, A., Peserico, D., et al. (2021) Plasma Bile Acid Profile in Patients with and without Type 2 Diabetes. Metabolites, 11, Article No. 453.
https://doi.org/10.3390/metabo11070453
[44] Zhang, L., Wu, W., Lee, Y.K., et al. (2018) Spatial Heterogeneity and Co-Occurrence of Mucosal and Luminal Microbiome across Swine Intestinal Tract. Frontiers in Microbiology, 9, Article No. 48.
https://doi.org/10.3389/fmicb.2018.00048
[45] Ðanić, M., Stanimirov, B., Pavlović, N., et al. (2018) Pharmaco-logical Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Frontiers in Pharma-cology, 9, Article No. 1382.
https://doi.org/10.3389/fphar.2018.01382