促炎细胞因子与卒中后抑郁:讨论与思考
Pro-Inflammatory Cytokines and Post-Stroke Depression: Discussion and Thought
摘要: 脑卒中后抑郁症是脑卒中后最常见的精神疾病之一,属于创伤后应激障碍,是一种以持续情绪低落、兴趣下降为特征的心境障碍。它可能对患者生活的不同领域产生或大或小的负面影响。炎症作为机体生长发育和疾病进展中不可缺少的一部分,在脑卒中后抑郁中也起着重要作用,全身性炎症导致脑卒中风险增加和脑卒中后预后不良,这已被许多学者证实。当然,在炎症反应过程中有促炎细胞因子和炎性细胞因子的参与,促炎细胞因子可以帮助激活多种类型的免疫细胞,促进炎症的发生和发展,它们与抑郁症的病因密切相关,如果与其他诱发因素结合,反应会导致炎症过程延长,长期各轴不平衡,导致压力、疼痛、情绪变化,进而加重焦虑和抑郁。抑郁症的病理生理机制复杂多样,脑卒中后抑郁的机制尚未阐明,本文探讨促炎细胞因子与脑卒中后抑郁的关系,希望进一步解释脑卒中后抑郁的机制。
Abstract: Post-stroke depression is one of the most common mental illnesses after stroke, which belongs to post-traumatic stress disorder, and is a mood disorder characterized by persistent low mood and decreased interest. It can have a negative impact, large or small, on different areas of the patient’s life. As an indispensable part of the body’s growth and development and the progression of the dis-ease, inflammation also plays an important role in post-stroke depression, and systemic inflamma-tion leads to an increased risk of stroke and poor prognosis after stroke, which has been confirmed by many scholars. Of course, in the inflammatory response process has the participation of pro-inflammatory cytokines and inflammatory cytokines, pro-inflammatory cytokines can help ac-tivate a variety of types of immune cells to promote the occurrence and development of inflamma-tion, they are very closely related to the cause of depression, if combined with other predisposing factors, the response will lead to prolonged inflammatory processes, long-term imbalance of various axes, resulting in stress, pain, mood changes, and then aggravate anxiety and depression. The pathophysiological mechanism of depression is complex and diverse, and the mechanism of post-stroke depression has not yet been elucidated, this article discusses the relationship between pro-inflammatory cytokines and post-stroke depression, hoping to further explain the mechanism of post-stroke depression.
文章引用:胡顺鑫, 冯雷, 杨中弘. 促炎细胞因子与卒中后抑郁:讨论与思考[J]. 临床医学进展, 2024, 14(1): 2197-2210. https://doi.org/10.12677/ACM.2024.141309

1. 介绍

抑郁症是一种常见的精神疾病,严重限制了人类心理社会功能的进展,降低了生活质量。在2008年,世界卫生组织将抑郁症列为全球疾病负担的第三大原因,预计到2031年,抑郁症将排在第一位 [1] 。抑郁症常表现为显着且持续的情绪低落、思维迟钝、意志力下降,严重影响人们的日常生活。虽然抑郁症的病理生理学研究取得了长足的进步,但目前还没有完整、系统的模型可以描述抑郁症。不同的应激源,如疾病、创伤,生活和学习压力,可能会导致不同的抑郁症病理生理机制。脑卒中是由脑梗塞、脑出血和蛛网膜下腔出血等血管原因引起的中枢神经系统急性局灶性损伤引起的神经功能缺损,是全球致残和死亡的主要原因 [2] 。在中国,脑卒中是居民的第一死因,死亡率远高于癌症和心血管疾病。脑卒中可分为缺血性脑卒中和出血性脑卒中,其中,缺血性脑卒中在我国最为常见,约占75%~90% [3] 。通常,脑卒中后患者可能因脑损伤而出现许多后遗症,其中脑卒中后精神障碍是最常见的后遗症之一,主要为抑郁症,我们称之为脑卒中后抑郁症(Post-stroke depression, PSD)。虽然目前先进的医疗手段已经大大提高了脑卒中患者的生存率和生活质量,但脑卒中后抑郁症仍然会长期陪伴患者,给他们带来很大的困扰 [4] [5] 。炎症在机体发育和疾病进展过程中起着重要作用。如我们所熟知的肥胖,大多由于不健康的饮食导致,在进食这类食物过程中,机体会产生或多或少的炎症反应 [6] 。另外,肥胖是一种多因素的疾病,与高脂肪饮食以及肠道菌群的改变之间存在密切联系 [7] 。有证据表明,肠道菌群的破坏会激活肠道的适应性和先天免疫力,并通过置换免疫原性细菌产物来增加炎症水平。虽然炎症是机体对外来病原体入侵的正常和自动防御反应,但过度的炎症反应会导致一系列疾病,如肥胖的产生 [7] 。然后,“肥胖微生物群”间接影响下丘脑基因表达,并通过增加全身炎症和小胶质细胞活化来促进暴饮暴食,从而影响迷走神经活动 [8] 。脂肪组织的炎症会促进血管生成。血管生成是组织重塑和肥胖发展的关键事件。通过提高循环中的炎性细胞因子,全身地促进能量消耗。炎症反应还会引起胰岛素抵抗和高血糖。因此,及时调节炎症对于机体健康发育至关重要 [9] 。且在这一生长过程中,机体会遇到多种外来的侵袭,身体可以记住过去与过敏原、病原体、伤口和刺激物的接触,并对下一次经历做出更快的反应有助于我们应对新的威胁 [10] 。炎症或炎症过程是免疫系统激活的结果,常表现为局部发热、发红、肿胀、疼痛,或全身表现为发热和身体机能和稳态的破坏,其中促炎细胞因子、抗炎细胞因子和某些细胞在此过程中起着极其重要的作用,如:IL-6、肿瘤坏死因子、IL-1b和干扰素、IL-10和巨噬细胞和小胶质细胞等 [11] 。卒中后抑郁症是中风后最常见的精神疾病之一。它属于创伤后应激障碍,是一种以持续抑郁和兴趣低落为特征的情绪障碍。这种疾病的发病机制尚未完全阐明,但越来越多的学者证明炎症或炎症反应起着重要作用。由于炎症反应可能调节脑卒中期间的神经可塑性,而神经可塑性的变化可能与脑卒中后抑郁症的发病机制有关,因此脑卒中诱导的脑中免疫反应也可能影响脑卒中后抑郁症的病程。另外,我们发现,在卒中后抑郁期间,几种炎症标志物、促炎细胞因子和促炎/抗炎比值增加,补体表达降低 [12] 。在本文中,我们描述了两种不同类型的卒中(缺血性和出血性),并总结了促炎细胞因子在整个卒中中的作用。然后,我们阐述了卒中后抑郁症,并总结了促炎细胞因子对卒中后抑郁症的影响。

2. 缺血性卒中

缺血性脑卒中又称脑梗塞,占脑卒中发病率的绝大部分,其中,颈内动脉系统脑梗死占80%,颈内动脉是闭塞的常见血管。由于脑组织供血不足,将发生组织功能的可逆性丧失,如果超过大脑可以承受的缺血时间,毛细血管释放的氧气扩散到脑细胞线粒体所需的有效氧分压梯度消失,脑细胞缺氧会导致细胞膜离子泵失效导致细胞内和细胞外离子平衡的破坏,并发生脑细胞水肿、坏死等一系列不可逆的损伤 [13] 。例如,缺氧通过miR-212-3p/MCM2轴抑制脑微血管内皮细胞的细胞周期进程和细胞增殖 [14] 。另外,缺氧可以通过缺氧诱导因子1-α/Epas1信号介导的少突胶质细胞前体细胞中血管内皮生长因子的表达,从而影响血脑屏障的通透性,进一步影响脑细胞的生存环境,引发脑细胞的坏死、水肿 [15] 。在脑组织在发生缺血缺氧的时候,会诱导铁死亡的发生,如会导致丙二醛的升高,谷胱甘肽和超氧化物歧化酶活性的降低以及大量活性氧的产生,从而使得脑细胞坏死和水肿的产生及进一步加重 [16] 。根据目前已知的局部脑组织缺血性坏死机制,脑梗死可分为脑血栓形成、脑栓塞和血流动力学机制引起的脑梗死三种病理生理类型。脑血栓形成和脑栓塞是由脑供血动脉急性闭塞或严重狭窄引起的,约占所有急性脑梗死的80%~90%。在血流动力学机制引起的脑梗死中,供动脉无急性闭塞或严重狭窄,这是由于近端大血管严重狭窄合并血压下降,导致局部脑组织灌注不足,导致缺血性坏死,约占所有急性脑梗死的10%~20%。在缺血性卒中中,与炎症最相关的成分是小胶质细胞和星形胶质细胞、趋化因子和细胞因子以及浸润外周血细胞 [17] 。在脑梗死中,梗死区的病理变化之一是反应性星形胶质细胞增生和胶质瘢痕形成,以及驻留小胶质细胞和浸润性单核细胞/巨噬细胞的激活 [18] 。局部炎症涉及星形胶质细胞、活化的常驻小胶质细胞、中性粒细胞和浸润性单核细胞或单核细胞来源的巨噬细胞(MDM),并上调促炎因子IL-6、一氧化氮合酶-2、IL-1β、肿瘤坏死因子-α (TNF-α)和抗炎因子(CCL22、YM1、CXCL13、转化生长因子β、CD163)的表达 [19] [20] 。根据神经炎症的严重程度以及促炎和抗炎信号的调节,神经炎症可能在中风损伤和康复中发挥积极和消极的作用。

3. 出血性卒中

狭义上的脑出血是指非创伤性脑出血,约占我国所有脑卒中的10%~25%,即使发生率远低于脑梗死,其病死率也远高于脑梗死。常见病因有颅内动脉瘤破裂和高血压合并小动脉硬化,颅内小动脉长期在高血压作用下慢性病灶破裂,最常见的受累动脉是豆动脉,常发生在壳核和基底核的内囊区,在此期间由于血液的快速积聚会出现颅内压增高,意识障碍和一些身体症状,严重者可能危及生命 [21] 。脑出血的发病机制复杂,主要包括血肿占位效应引起的神经和神经胶质细胞机械性骨折、兴奋性氨基酸毒性、ROS等小分子水平升高引起的自由基对颅内细胞的破坏、血管内炎症细胞(中性粒细胞、巨噬细胞等)和脑组织中活化的小胶质细胞引起的炎症,以及多种机制引起的细胞凋亡 [22] [23] 。小胶质细胞是脑出血后引起继发性损伤的主要细胞类型,因为它们释放细胞因子、趋化因子、前列腺素、蛋白酶、亚铁和其他免疫活性物质,延迟脑出血的恢复 [24] [25] 。在脑出血后脑组织的炎症反应中,最基本的标志物是小胶质细胞的激活和炎症细胞的浸润 [26] 。血肿释放的白细胞和巨噬细胞浸润并阻断微血管,从而降低脑灌注,破坏血脑屏障,TNF-α和IL-1β等细胞毒性分子对神经元造成损害 [27] 。血肿附近脑组织中的小胶质细胞和星形胶质细胞可能调节脑出血后脑细胞的可塑性 [28] ,星形胶质细胞HO-1的过表达显示出明显的神经保护作用 [29] 。

4. 抑郁症和卒中后抑郁

脑卒中后抑郁症是脑卒中后最常见的精神疾病之一,约占脑卒中幸存者的1/3,是脑卒中的一种创伤后应激障碍,是一种以持续性情绪低落、兴趣下降为特征的心境障碍。可对患者生活的不同领域产生或大或小的负面影响,严重影响患者的死亡率、功能结局、康复效果和生活质量,脑卒中后抑郁症患者的死亡风险比非抑郁症患者高1.22~1.41倍 [30] [31] 。许多学者对脑卒中后抑郁症的病变进行了研究,但结果并不一致。张等人的一项前瞻性研究表明,后肢、膝关节内囊和颞叶皮质–皮质下区域的病变可能与PSD的发生有关 [32] 。在Robinson等人关于PSD病变的两项早期研究中,左额叶或左基底神经节病变的脑卒中患者发生重度或轻度抑郁的频率明显高于其他病变患者,缺血性损伤前缘与左额叶极的距离与皮质和皮质下区域抑郁的严重程度显着相关。PSD与左额叶和左基底神经节病变的相关性仅限于脑卒中后的前2个月,抑郁严重程度仅在脑卒中后的前6个月与左大脑半球病变前缘到额极的距离显着相关 [33] [34] 。对于PSD的治疗,目前上市的抗抑郁药可以改善PSD的抑郁症状,但目前还没有明确的方案,其中5-羟色胺药物更受欢迎。PSD的病理生理机制尚未完全阐明,在许多学者的研究中,已经表明PSD的发生和发展与炎症密不可分。炎性细胞因子可引起炎症、脑卒中康复和多种生长因子失调导致PSD,神经炎症通过刺激IL-33/NF-κB轴抑制脑源性神经营养因子的表达,从而激活引起抑郁症的途径,Yirmiya等人也认为神经炎症是抑郁症的根本原因之一 [35] [36] 。

5. 颅内免疫

人类在生长发育过程中一直受到免疫系统的保护,免受各种感染的侵袭,炎症和炎症反应是免疫系统激活的结果。免疫系统有三个屏障,皮肤和粘膜形成第一道屏障,当然血脑屏障也是其中的一部分,可以抵抗一些抗原;第二道屏障由体内的各种炎症细胞组成,第三道防线是细胞免疫和体液免疫,可以产生各种抗体和细胞因子。颅内免疫集中在第二和第三屏障。进入体内的抗原可被巨噬细胞、B淋巴细胞等抗原呈递细胞识别,进而通过T细胞介导的细胞免疫、TNF-α、IL-2、IFN等和B细胞介导的体液免疫参与多种炎症因子的分泌,产生抗体,共同参与消除抗原的过程 [37] 。参与大脑内免疫反应的主要细胞是小胶质细胞和巨噬细胞,小胶质细胞被认为是对不同脑损伤的神经炎症反应前沿的前哨细胞。由于血脑屏障的存在,外周循环白细胞难以进入颅骨,但脑缺血炎症的特征是血脑屏障(BBB)的破坏,外周血白细胞的渗透,胶质细胞的活化,以及损伤细胞释放损伤相关分子模式(DAMP)以激活免疫细胞,而活化的免疫细胞又释放炎性细胞因子和细胞毒性介质,导致缺血性损伤加重 [38] 。

5.1. 小胶质细胞

小胶质细胞来源于间充质来源,起源于卵黄囊来源的红髓祖细胞,小胶质细胞在围产期和产后阶段迅速扩增,到第二周结束时完全定植于大脑,通过自我更新维持,且在稳态下未发现循环单核细胞的募集 [39] [40] [41] 。小胶质细胞通过调节突触可塑性或冗余突触的吞噬作用来动态塑造神经回路。脑出血或缺血后,小胶质细胞会被激活,成为影响神经元和其他脑细胞的神经元。急性小胶质细胞活化是炎症、保护、恢复和毒性过程的主要协调者和执行者,通常通过清除入侵的病原体和细胞碎片来促进组织修复;而持续的小胶质细胞活化会导致慢性神经元炎症,从而加重病情 [42] 。给予已知会激活小胶质细胞的免疫刺激,例如内毒素(脂多糖),会导致抑郁症状,其严重程度与血液中炎性细胞因子水平升高高度相关 [43] [44] 。在应激作用下,血脑屏障的通透性会增加,使外周细胞因子通过血脑屏障增加,异常触发小胶质细胞的促炎反应。其中,TNF-α、IL-1β、IL-6和IL-8已被确定为介导外周免疫细胞–脑通讯的主要细胞因子,并与抑郁症和中风后抑郁症有关 [45] [46] [47] [48] 。在Wang等人的研究中,在长期慢性应激中观察到NLRP3炎症小体的激活和炎症介质的上调,这可能是由于不同类型的小胶质细胞的激活,这些小胶质细胞产生促炎细胞因子或抗炎细胞因子,从而介导慢性轻度应激诱导的抑郁和焦虑样行为以及海马神经炎症 [49] 。在PSD小鼠模型中,小胶质细胞可以促进海马中促炎细胞因子(IL-1、TNF-α、iNOS和IL-1β)的表达 [50] 。

5.2. 炎性细胞因子

细胞因子是由各种免疫细胞(如巨噬细胞、神经胶质细胞、肥大细胞等)分泌的低分子量蛋白,作为与免疫系统反应相关的通讯网络的重要介质参与免疫,负责动态调节免疫细胞的成熟、生长和反应 [51] 。此外,细胞因子在发育、代谢、衰老和癌症的调节中发挥着多种作用。它们包括干扰素、趋化因子、淋巴因子、白细胞介素、转化生长因子-β、集落刺激因子和肿瘤坏死因子,其特点是功能冗余和多效性。血清、血液、粪便、唾液、汗液等多种生物体液中细胞因子水平的变化,为多种疾病的诊断、分期和预后提供有价值的信息。对于免疫反应,细胞因子可分为促炎细胞因子和抗炎细胞因子,其中促炎细胞因子包括IL-1β、IL-6、IL-8和TNF-α等,促进炎症反应。反应并激活免疫细胞,IL-1受体拮抗剂(IL-1ra)、IL-4、IL-10、IL-13、白血病抑制因子(LIF)、INF-α和TGF-β是抗炎细胞因子。当然,并不意味着某种细胞因子只是促炎或抗炎细胞因子。例如,IL-6既是促炎细胞因子又是抗炎细胞因子。病理状况,例如本文提到的中风,可能导致促炎细胞因子的过量产生,这可能对中枢神经系统产生不利影响。特别是,它们可能损害神经元结构和功能,导致神经可塑性缺陷以及神经系统感知、响应和适应外部或内部刺激的能力降低。神经可塑性或神经元可塑性是指神经系统对环境挑战的反应和适应性,包括一系列可能导致神经元重塑、新突触形成和新神经元诞生的功能和结构机制 [52] 。

促炎细胞因子的血药浓度,包括白细胞介素1β (IL-1β)、白细胞介素6 (IL-6)、肿瘤坏死因子-α (TNF-α)和其他急性期蛋白、C反应蛋白、触珠蛋白和新蝶呤 [53] 。在几项荟萃分析中发现,抑郁症患者C反应蛋白、IL-3、IL-6、IL-12、IL-18、sIL-2R和肿瘤坏死因子-α的平均水平升高,尤其是TNF-α和IL-6以及IL-1β,表明促炎细胞因子与抑郁症之间存在很强的关系 [54] [55] 。

5.2.1. IL-6

白细胞介素6 (IL-6)在感染和组织损伤后快速、短暂地产生,它通过刺激急性期反应、造血和免疫反应来促进宿主防御,是一种非常重要的促炎细胞因子。尽管IL-6的表达受到转录和转录后机制的严格控制,但也有特殊情况,例如IL-6的连续合成失调,对慢性炎症和自身免疫有负面影响 [56] 。人IL-6由184个氨基酸组成,具有两个潜在的N-糖基化位点和四个半胱氨酸残基,大小为21~26 kDa,核心蛋白约为20 kDa [56] 。Hirano T等人率先发现一些星形细胞瘤和胶质瘤细胞系在IL-1β刺激下表达IL-6,这促使人们猜测IL-6可能在中枢神经系统中发挥作用,其中IL-6可以诱导大鼠嗜铬细胞瘤PC12细胞系的神经元分化,有点类似于神经营养因子 [57] 。IL-6的作用被其可溶性受体亚基sgp130和sIL-6R修饰,并且IL-6炎症反应的诱导可能通过sgp130 (一种潜在的IL-6拮抗剂)的瞬时下调而增强 [58] 。ICH患者24小时内IL-6水平与血肿扩大风险较高相关,可作为90天后功能预后不良的标志物 [59] 。在Kang等人的一项前瞻性研究中,发现较高的IL-6和IL-18水平与中风后早期(2周内)和慢性期(1年内)抑郁症有关 [60] 。有趣的是,一系列研究发现,星形胶质细胞-IL-6/IL-17还可以促进脑卒中后的血管生成和神经功能恢复 [61] [62] [63] 。

5.2.2. IL-1β

IL-1有两个因子,IL-1α和IL-1β,它们首先经过大小为31 kDa的前体多肽,然后在半胱天冬酶1加工后转化为分子量为17 kDa的物质 [64] [65] 。它们通过IL-1R-1信号通路产生类似的促炎反应,主要由单核细胞和巨噬细胞产生,其他细胞类型(包括中性粒细胞、内皮细胞、淋巴细胞、平滑肌细胞和成纤维细胞)数量较少 [66] 。IL-1β的主要作用是刺激免疫细胞产生促炎细胞因子,激活小胶质细胞,调节生长因子的活性 [67] 。IL-1可诱导外周炎症介质,如白细胞介素-6、IL-1受体拮抗剂(IL-1Ra)的增加,可显着降低血浆IL-6和血浆C反应蛋白水平,抑制脑卒中急性缺血性外周炎症反应 [68] 。在Li等人的研究中,敲除IL-1β缓解了脂多糖诱导的小鼠记忆缺陷和焦虑抑郁样行为,并消除了神经肽(Neuropeptides, VGF)和脑源性神经营养因子(Brain-derived Neurotrophic Factor, BDNF)毕竟脂多糖诱导的外周炎症反应在啮齿动物的神经精神功能障碍中起着重要作用 [69] 。Goshen等人证明,大脑IL-1通过激活肾上腺皮质和抑制暴露于刺激后的海马神经发生来介导小鼠慢性应激诱导的抑郁 [70] 。核因子-κB (NF-κB)的激活直接影响海马体中的细胞和神经发生,或通过其受体(IL-1R1)的直接相互作用。Natsuki的研究小组发现,IL-6依赖性激活蓝斑神经元诱导抑郁样行为,IL-1β诱导的瘦素水平增加增强α1肾上腺素受体介导的抑郁样行为 [71] 。银杏内酯B (GB)通过抑制STAT3通路减轻抑郁样行为并降低IL-1β的表达。反映STAT通路和IL-1β在抑郁症中起着不可或缺的作用 [72] 。许多杆菌还可以通过调节肠道微生物群和核因子-κB (NF-κB)激活来抑制IL-1、TNF-α和BDNF表达,从而缓解焦虑/抑郁和认知障碍 [73] [74] [75] 。

5.2.3. TNF-α

肿瘤坏死因子-α (TNF-α)是巨噬细胞/单核细胞在急性炎症过程中产生的一种炎性细胞因子,大小为17kDa,负责细胞中的各种信号转导事件,导致坏死或凋亡。已知肿瘤坏死因子-α通过肿瘤坏死因子-R1和肿瘤坏死因子-R2介导其作用。TNF-R1在所有细胞类型上表达,而TNF-R2主要在造血细胞和内皮细胞上表达 [76] [77] 。许多炎症细胞除了具有有害作用外,还可以参与脑损伤后的组织重塑,TNF-α被认为是这种双重作用细胞因子之一,然而,它在中风后早期上调是有害的,加剧了组织损伤并恶化了中风患者的预后 [78] 。TNF-α通过NF-κB信号通路调节系统性红斑狼疮伴抑郁症中的小胶质细胞活化,小胶质细胞衍生的TNF-α介导内皮坏死,加重缺血性脑卒中细胞凋亡后血脑屏障破坏 [79] 。低剂量TNF-α引起神经元快速而严重的线粒体功能障碍,这种神经毒性作用由TNF-R1介导,导致半胱氨酸酶的激活和线粒体膜电位的崩溃,线粒体释放细胞色素c,激活线粒体诱导的细胞凋亡。已知TNF-α会加重梗死面积,这可能是由于TNF-α在不断发展的缺血核心中释放导致ATP产生显着和快速减少 [80] 。

6. 脑源性神经营养因子

脑源性神经营养因子是中枢神经系统中最丰富、分布最广的神经营养因子,由神经(如肌肉)和星形胶质细胞支配的组织产生,在神经系统的生长和分化过程以及认知中起着非常重要的作用 [81] 。BDNF的功能由复杂的下游信号级联系统介导,通过两个受体系统,酪氨酸激酶B (TrkB)和p75NTR (一种神经营养因子受体)。BDNF与TrkB结合激活细胞内区域,引起TrkB自磷酸化增强,进而激活Ras-MAPK通路,最后在CAMP反应组件结合蛋白(CREB)丝氨酸位点激活CREB。CREB通过增加BDNF基因和抗凋亡蛋白基因BCL-2的表达来促进神经细胞的存活,增加突触可塑性和神经发生 [82] [83] 。抑郁症样行为被认为与明显的可塑性损伤和神经损伤有关,例如内侧前额叶皮层(mPFC)和海马的神经元萎缩和突触丢失 [84] 。

“抑郁症神经营养假说”认为,低水平的脑源性神经营养因子与重度抑郁症(MDD)有关,并已被世界各地的学者验证。在卒中后抑郁症患者中,血清BDNF水平较低,脑源性神经营养因子水平在卒中后抑郁症患者的死后脑组织中显着降低,表明BDNF可能是PSD的独立预测因子 [85] [86] [87] [88] 。荟萃分析研究表明,卒中早期血清BDNF浓度显着降低可能使患者易患PSD [53] [89] 。

鉴于脑源性神经营养因子作为神经可塑性的重要介质的作用,许多人认为促炎细胞因子和BDNF之间存在一些特定的联系,基于它们对神经发生的积极影响与有害影响相比,并进行研究以证实。研究表明,炎症显着影响脑源性神经营养因子在大脑中的表达。海马体中IL-1β敲低显着减弱了LPS诱导的小鼠记忆缺陷以及焦虑和抑郁样行为。此外,IL-1β敲低改善了LPS诱导的氧化和神经炎症反应,并消除了VGF和BDNF的下调 [69] 。腹腔注射IL-1β或LPS后,大鼠海马及部分皮质区脑源性神经营养因子表达水平显着降低 [90] [91] 。在外周免疫过程中,BDNF增加活化的外周血单个核细胞中细胞IL-2、IL-17和IFN-γ表达以及IL-2和IFN-γ分泌 [91] 。缺氧和TNF-α可降低海马神经元中BDNF的表达 [92] 。同时,研究发现BDNF可以抑制脂多糖(LPS)刺激的巨噬细胞中白细胞介素-1β、肿瘤坏死因子α和白细胞介素6的分泌 [93] 。这让人不禁怀疑BDNF和促炎细胞因子之间是否存在“负反馈”信号。

7. 卒中后抑郁的治疗

PSD的治疗尚无完整的指南或完善的治疗方案,采用药物治疗和心理治疗来治疗PSD,此外,三环类抗抑郁药(TCAs)、选择性5-羟色胺再摄取抑制剂(SSRIs)、5-羟色胺和去甲肾上腺素再摄取抑制剂(SNRIs)和单胺氧化酶抑制剂是目前主流的抗抑郁药,似乎对PSD的防治有很好的效果。认知行为疗法(CBT)也被认为对抑郁症有效。简短的社会心理行为干预可以显着改善抑郁症长达2年,并且比单独的常规护理更有效 [94] [95] 。中药对PSD的治疗也有一定的效果,如:柴虎舒干粉(CHSG)、舒肝解肝胶囊、柴虎家龙骨牡蛎汤,以及最常见的中医治疗方法——针灸,对PSD的治疗都有着有一定的效果 [96] [97] [98] 。

8. 总结

总之,我们试图找到促炎细胞因子与卒中后抑郁症之间的关系,越来越多的证据表明促炎细胞因子和脑源性神经营养因子是PSD的标志物和潜在的治疗靶点。尽管已经有很多研究证实了它们在PSD中的作用,但仍有许多未知的工作需要完成,例如1) 促炎细胞因子以及BDNF如何影响PSD的症状。2) 目前缺乏多种细胞因子、免疫细胞亚群和微生物群落物种的功能来预测PSD的可能性。3) 脑卒中部位是否对促炎细胞因子和BDNF的表达和分泌有影响。因此,我们需要进一步的研究、更多的队列研究以及更详细和一致的PSD诊断标准,来进行疾病的诊断和治疗。

基金项目

lncRNA MEG3在烟雾病中的作用机制(2022YXNS137)。

NOTES

*通讯作者。

参考文献

[1] Malhi, G.S. and Mann, J.J. (2018) Depression. The Lancet, 392, 2299-2312.
https://linkinghub.elsevier.com/retrieve/pii/S0140673618319482
https://doi.org/10.1016/S0140-6736(18)31948-2
[2] Sacco, R.L., Kasner, S.E., Broderick, J.P., et al. (2013) An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 44, 2064-2089.
https://www.ahajournals.org/doi/10.1161/STR.0b013e318296aeca
[3] Wang, W., Jiang, B., Sun, H., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China: Results from a Nationwide Population-Based Survey of 480,687 Adults. Circulation, 135, 759-771.
https://doi.org/10.1161/CIRCULATIONAHA.116.025250
[4] Ayerbe, L., Ayis, S., Rudd, A.G., et al. (2011) Natural History, Predictors, and Associations of Depression 5 Years after Stroke: The South London Stroke Register. Stroke, 42, 1907-1911.
https://www.ahajournals.org/doi/10.1161/STROKEAHA.110.605808
https://doi.org/10.1161/STROKEAHA.110.605808
[5] Mitchell, A.J., Sheth, B., Gill, J., et al. (2017) Prevalence and Predictors of Post-Stroke Mood Disorders: A Meta-Analysis and Meta-Regression of Depression, Anxiety and Ad-justment Disorder. General Hospital Psychiatry, 47, 48-60.
https://linkinghub.elsevier.com/retrieve/pii/S0163834317301433
https://doi.org/10.1016/j.genhosppsych.2017.04.001
[6] Suhett, L.G., Hermsdorff, H.H.M., Cota, B.C., et al. (2021) Dietary Inflammatory Potential, Cardiometabolic Risk and Inflammation in Children and Adolescents: A System-atic Review. Critical Reviews in Food Science and Nutrition, 61, 407-416.
https://www.tandfonline.com/doi/full/10.1080/10408398.2020.1734911
https://doi.org/10.1080/10408398.2020.1734911
[7] Vetrani, C., Di Nisio, A., Paschou, S.A., et al. (2022) From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients, 14, Article 2103.
https://www.mdpi.com/2072-6643/14/10/2103
https://doi.org/10.3390/nu14102103
[8] Zheng, D., Liwinski, T. and Elinav, E. (2020) Interaction between Micro-biota and Immunity in Health and Disease. Cell Research, 30, 492-506.
https://www.nature.com/articles/s41422-020-0332-7
https://doi.org/10.1038/s41422-020-0332-7
[9] Bagheri, S., Zolghadri, S. and Stanek, A. (2022) Beneficial Effects of Anti-Inflammatory Diet in Modulating Gut Microbiota and Controlling Obesity. Nutrients, 14, Article 3985.
https://www.mdpi.com/2072-6643/14/19/3985
https://doi.org/10.3390/nu14193985
[10] Naik, S. and Fuchs, E. (2022) Inflammatory Memory and Tissue Adapta-tion in Sickness and in Health. Nature, 607, 249-255.
https://www.nature.com/articles/s41586-022-04919-3
https://doi.org/10.1038/s41586-022-04919-3
[11] Leslie, M. (2015) Inflammation’s Stop Signals. Science, 347, 18-21.
https://www.science.org/doi/10.1126/science.347.6217.18
[12] Levada, O.A. and Troyan, A.S. (2018) Post-stroke Depression Biomarkers: A Narrative Review. Frontiers in Neurology, 9, Article 577.
https://www.frontiersin.org/article/10.3389/fneur.2018.00577/full
https://doi.org/10.3389/fneur.2018.00577
[13] Busl, K.M. and Greer, D.M. (2010) Hypoxic-Ischemic Brain Injury: Pathophysiology, Neuropathology and Mechanisms. NeuroRehabilitation, 26, 5-13.
https://doi.org/10.3233/NRE-2010-0531
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/NRE-2010-0531
[14] Shi, Q., Li, S., Lyu, Q., et al. (2023) Hypoxia Inhibits Cell Cycle Progression and Cell Proliferation in Brain Microvascular Endothelial Cells via the MiR-212-3p/MCM2 Axis. International Journal of Molecular Sciences, 24, Article 2788.
https://www.mdpi.com/1422-0067/24/3/2788
https://doi.org/10.3390/ijms24032788
[15] Manukjan, N., Majcher, D., Leenders, P., et al. (2023) Hypoxic Oli-godendrocyte Precursor Cell-Derived VEGFA Is Associated with Blood-Brain Barrier Impairment. Acta Neuropatho-logica Communications, 11, Article No. 128.
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-023-01627-5
https://doi.org/10.1186/s40478-023-01627-5
[16] Peeples, E.S. and Genaro-Mattos, T.C. (2022) Ferroptosis: A Promising Therapeutic Target for Neonatal Hypoxic-Ischemic Brain Injury. International Journal of Molecular Sciences, 23, Article 7420.
https://www.mdpi.com/1422-0067/23/13/7420
https://doi.org/10.3390/ijms23137420
[17] Pivonkova, H. and Anderova, M. (2018) Altered Homeostatic Func-tions in Reactive Astrocytes and Their Potential as a Therapeutic Target after Brain Ischemic Injury. Current Pharmaceu-tical Design, 23, 5056-5074. http://www.eurekaselect.com/154077/article
https://doi.org/10.2174/1381612823666170710161858
[18] Verma, R., Cronin, C.G., Hudobenko, J., et al. (2017) Deletion of the P2X4 Receptor Is Neuroprotective Acutely, but Induces a Depressive Phenotype during Recovery from Ischemic Stroke. Brain, Behavior, and Immunity, 66, 302-312.
https://linkinghub.elsevier.com/retrieve/pii/S0889159117303847
https://doi.org/10.1016/j.bbi.2017.07.155
[19] Miró-Mur, F., Pérez-De-Puig, I., Ferrer-Ferrer, M., et al. (2016) Immature Monocytes Recruited to the Ischemic Mouse Brain Differentiate into Macrophages with Features of Alternative Activation. Brain, Behavior, and Immunity, 53, 18-33.
https://linkinghub.elsevier.com/retrieve/pii/S0889159115004341
https://doi.org/10.1016/j.bbi.2015.08.010
[20] Wattananit, S., Tornero, D., Graubardt, N., et al. (2016) Mono-cyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. The Jour-nal of Neuroscience, 36, 4182-4195.
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.4317-15.2016
https://doi.org/10.1523/JNEUROSCI.4317-15.2016
[21] Aronowski, J. and Zhao, X. (2011) Molecular Patho-physiology of Cerebral Hemorrhage: Secondary Brain Injury. Stroke, 42, 1781-1786.
https://www.ahajournals.org/doi/10.1161/STROKEAHA.110.596718
https://doi.org/10.1161/STROKEAHA.110.596718
[22] Chen, S., Yang, Q., Chen, G., et al. (2015) An Update on Inflammation in the Acute Phase of Intracerebral Hemorrhage. Translational Stroke Research, 6, 4-8. http://link.springer.com/10.1007/s12975-014-0384-4
https://doi.org/10.1007/s12975-014-0384-4
[23] Xi, G. and Keep, R.F. (2012) Intracerebral Hemorrhage: Mecha-nisms and Therapies. Translational Stroke Research, 3, 1-3. http://link.springer.com/10.1007/s12975-012-0189-2
https://doi.org/10.1007/s12975-012-0189-2
[24] Xue, M. and Yong, V.W. (2020) Neuroinflammation in Intracere-bral Haemorrhage: Immunotherapies with Potential for Translation. The Lancet Neurology, 19, 1023-1032.
https://linkinghub.elsevier.com/retrieve/pii/S1474442220303641
https://doi.org/10.1016/S1474-4422(20)30364-1
[25] Zhao, X., Wu, T., Chang, C.F., et al. (2015) Toxic Role of Prostaglandin E2 Receptor EP1 after Intracerebral Hemorrhage in Mice. Brain, Behavior, and Immunity, 46, 293-310.
https://linkinghub.elsevier.com/retrieve/pii/S0889159115000318
https://doi.org/10.1016/j.bbi.2015.02.011
[26] Xiong, X.Y. and Yang, Q.W. (2015) Rethinking the Roles of In-flammation in the Intracerebral Hemorrhage. Translational Stroke Research, 6, 339-341. http://link.springer.com/10.1007/s12975-015-0402-1
https://doi.org/10.1007/s12975-015-0402-1
[27] Blum, F.E. and Zuo, Z. (2013) Volatile Anesthetics-Induced Neuroinflammatory and Anti-Inflammatory Responses. Medical Gas Research, 3, Article No. 16. http://medicalgasresearch.biomedcentral.com/articles/10.1186/2045-9912-3-16
https://doi.org/10.1186/2045-9912-3-16
[28] Chen-Roetling, J., Kamalapathy, P., Cao, Y., et al. (2017) Astrocyte Heme Oxygenase-1 Reduces Mortality and Improves Outcome after Collagenase-Induced Intracerebral Hemorrhage. Neurobiology of Disease, 102, 140-146.
https://linkinghub.elsevier.com/retrieve/pii/S0969996117300566
https://doi.org/10.1016/j.nbd.2017.03.008
[29] Martins, C.A., Neves, L.T., De Oliveira, M.M.B.P., et al. (2020) Neuroprotective Effect of ACTH on Collagenase-Induced Peri-Intraventricular Hemorrhage in Newborn Male Rats. Sci-entific Reports, 10, Article No. 17734.
https://www.nature.com/articles/s41598-020-74712-7
https://doi.org/10.1038/s41598-020-74712-7
[30] Ayerbe, L., Ayis, S., Crichton, S.L., et al. (2014) Explanatory Factors for the Increased Mortality of Stroke Patients with Depression. Neurology, 83, 2007-2012.
https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000001029
https://doi.org/10.1212/WNL.0000000000001029
[31] Hackett, M.L., Yapa, C., Parag, V., et al. (2005) Frequency of Depression after Stroke: A Systematic Review of Observational Studies. Stroke, 36, 1330-1340.
https://www.ahajournals.org/doi/10.1161/01.STR.0000165928.19135.35
https://doi.org/10.1161/01.STR.0000165928.19135.35
[32] Zhang, T., Jing, X., Zhao, X., et al. (2012) A Prospec-tive Cohort Study of Lesion Location and Its Relation to Post-Stroke Depression among Chinese Patients. Journal of Af-fective Disorders, 136, E83-E87.
https://linkinghub.elsevier.com/retrieve/pii/S0165032711003338
https://doi.org/10.1016/j.jad.2011.06.014
[33] Bowden, V.M. (1992) A Reappraisal of Post-Stroke Depression, Intra- and Inter-Hemispheric Lesion Location Using Meta Analysis. JAMA: The Journal of the American Medical Asso-ciation, 268, 1473-1474. http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.1992.03490110111047
https://doi.org/10.1001/jama.1992.03490110111047
[34] Starkstein, S.E., Robinson, R.G. and Price, T.R. (1987) Comparison of Cortical and Subcortical Lesions in the Production of Poststroke Mood Disorders. Brain, 110, 1045-1059.
https://doi.org/10.1093/brain/110.4.1045
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/110.4.1045
[35] Yirmiya, R., Rimmerman, N. and Reshef, R. (2015) Depression as a Microglial Disease. Trends in Neurosciences, 38, 637-658.
https://linkinghub.elsevier.com/retrieve/pii/S0166223615001769
https://doi.org/10.1016/j.tins.2015.08.001
[36] Zhuang, X., Zhan, B., Jia, Y., et al. (2022) IL-33 in the Basolateral Amygdala Integrates Neuroinflammation into Anxiogenic Circuits via Modulating BDNF Expression. Brain, Behavior, and Immunity, 102, 98-109.
https://linkinghub.elsevier.com/retrieve/pii/S0889159122000484
https://doi.org/10.1016/j.bbi.2022.02.019
[37] Maier, S.F. and Watkins, L.R. (1998) Cytokines for Psychologists: Implications of Bidirectional Immune-to-Brain Communication for Understanding Behavior, Mood, and Cognition. Psy-chological Review, 105, 83-107.
https://doi.org/10.1037/0033-295X.105.1.83
[38] Anrather, J. and Iadecola, C. (2016) Inflammation and Stroke: An Overview. Neurotherapeutics, 13, 661-670. http://link.springer.com/10.1007/s13311-016-0483-x
https://doi.org/10.1007/s13311-016-0483-x
[39] Ginhoux, F., Lim, S., Hoeffel, G., et al. (2013) Origin and Dif-ferentiation of Microglia. Frontiers in Cellular Neuroscience, 7, Article 45. http://journal.frontiersin.org/article/10.3389/fncel.2013.00045/abstract
https://doi.org/10.3389/fncel.2013.00045
[40] Jenkins, S.J. and Hume, D.A. (2014) Homeostasis in the Mononu-clear Phagocyte System. Trends in Immunology, 35, 358-367.
https://linkinghub.elsevier.com/retrieve/pii/S1471490614001112
https://doi.org/10.1016/j.it.2014.06.006
[41] Thion, M.S., Ginhoux, F. and Garel, S. (2018) Microglia and Early Brain Development: An Intimate Journey. Science, 362, 185-189.
https://www.science.org/doi/10.1126/science.aat0474
https://doi.org/10.1126/science.aat0474
[42] Rodríguez-Gómez, J.A., Kavanagh, E., Engskog-Vlachos, P., et al. (2020) Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 9, Article 1717.
https://www.mdpi.com/2073-4409/9/7/1717
https://doi.org/10.3390/cells9071717
[43] Harrison, N.A., Brydon, L., Walker, C., et al. (2009) Inflammation Causes Mood Changes through Alterations in Subgenual Cingulate Activity and Mesolimbic Connectivity. Biological Psychiatry, 66, 407-414.
https://linkinghub.elsevier.com/retrieve/pii/S0006322309003965
https://doi.org/10.1016/j.biopsych.2009.03.015
[44] Krabbe, K.S., Reichenberg, A., Yirmiya, R., et al. (2005) Low-Dose Endotoxemia and Human Neuropsychological Functions. Brain, Behavior, and Immunity, 19, 453-460.
https://doi.org/10.1016/j.bbi.2005.04.010
https://linkinghub.elsevier.com/retrieve/pii/S0889159105000760
[45] Li, Y.C., Chou, Y.C., Chen, H.C., et al. (2019) Interleukin-6 and Interleukin-17 Are Related to Depression in Patients with Rheumatoid Arthritis. International Journal of Rheumatic Diseases, 22, 980-985.
https://onlinelibrary.wiley.com/doi/10.1111/1756-185X.13529
https://doi.org/10.1111/1756-185X.13529
[46] Pollak, T.A., Drndarski, S., Stone, J.M., et al. (2018) The Blood-Brain Barrier in Psychosis. The Lancet Psychiatry, 5, 79-92.
https://doi.org/10.1016/S2215-0366(17)30293-6
[47] Wohleb, E.S., Franklin, T., Iwata, M., et al. (2016) Integrat-ing Neuroimmune Systems in the Neurobiology of Depression. Nature Reviews Neuroscience, 17, 497-511.
https://www.nature.com/articles/nrn.2016.69
https://doi.org/10.1038/nrn.2016.69
[48] Wu, D., Zhang, G., Zhao, C., et al. (2020) Interleukin-18 from Neurons and Microglia Mediates Depressive Behaviors in Mice with Post-Stroke Depression. Brain, Behavior, and Immunity, 88, 411-420.
https://linkinghub.elsevier.com/retrieve/pii/S0889159120301185
https://doi.org/10.1016/j.bbi.2020.04.004
[49] Wang, Y.L., Han, Q.Q., Gong, W.Q., et al. (2018) Microglial Acti-vation Mediates Chronic Mild Stress-Induced Depressive- and Anxiety-Like Behavior in Adult Rats. Journal of Neu-roinflammation, 15, Article No. 21.
https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-018-1054-3
https://doi.org/10.1186/s12974-017-1039-7
[50] Wei, L., Guo, J., Yu, X., et al. (2021) Role and Characteristics of Hippocampal Region Microglial Activation in Poststroke Depression. Journal of Affective Disorders, 291, 270-278.
https://linkinghub.elsevier.com/retrieve/pii/S0165032721004663
https://doi.org/10.1016/j.jad.2021.05.022
[51] Alderton, G. and Scanlon, S.T. (2021) Inflammation: An Expanding View. Science, 374, 1068-1069.
https://www.science.org/doi/10.1126/science.abn1721
https://doi.org/10.1126/science.abn1721
[52] Calabrese, F., Rossetti, A.C., Racagni, G., et al. (2014) Brain-Derived Neurotrophic Factor: A Bridge between Inflammation and Neuroplasticity. Frontiers in Cellular Neuroscience, 8, Article No. 430. http://journal.frontiersin.org/article/10.3389/fncel.2014.00430/abstract
https://doi.org/10.3389/fncel.2014.00430
[53] Xu, H.B., Xu, Y.H., He, Y., et al. (2018) Decreased Serum Brain-Derived Neurotrophic Factor May Indicate the Development of Poststroke Depression in Patients with Acute Is-chemic Stroke: A Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 27, 709-715.
https://linkinghub.elsevier.com/retrieve/pii/S1052305717305542
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.10.003
[54] Dowlati, Y., Herrmann, N., Swardfager, W., et al. (2010) A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry, 67, 446-457.
https://linkinghub.elsevier.com/retrieve/pii/S0006322309012293
https://doi.org/10.1016/j.biopsych.2009.09.033
[55] Osimo, E.F., Pillinger, T., Rodriguez, I.M., et al. (2020) In-flammatory Markers in Depression: A Meta-Analysis of Mean Differences and Variability in 5166 Patients and 5083 Controls. Brain, Behavior, and Immunity, 87, 901-909.
https://doi.org/10.1016/j.bbi.2020.02.010
[56] Schmidt-Arras, D. and Rose-John, S. (2016) IL-6 Pathway in the Liver: from Physiopathology to Therapy. Journal of Hepatology, 64, 1403-1415.
https://linkinghub.elsevier.com/retrieve/pii/S0168827816000830
https://doi.org/10.1016/j.jhep.2016.02.004
[57] Maeda, Y., Matsumoto, M., Hori, O., et al. (1994) Hypox-ia/Reoxygenation-Mediated Induction of Astrocyte Interleukin 6: A Paracrine Mechanism Potentially Enhancing Neuron Survival. Journal of Experimental Medicine, 180, 2297-2308.
https://rupress.org/jem/article/180/6/2297/25664/Hypoxiareoxygenationmediated-induction-of
https://doi.org/10.1084/jem.180.6.2297
[58] Acalovschi, D., Wiest, T., Hartmann, M., et al. (2003) Multiple Levels of Regulation of the Interleukin-6 System in Stroke. Stroke, 34, 1864-1869.
https://www.ahajournals.org/doi/10.1161/01.STR.0000079815.38626.44
https://doi.org/10.1161/01.STR.0000079815.38626.44
[59] Leasure, A.C., Kuohn, L.R., Vanent, K.N., et al. (2021) Association of Serum IL-6 (Interleukin 6) with Functional Outcome after Intracerebral Hemorrhage. Stroke, 52, 1733-1740.
https://doi.org/10.1161/STROKEAHA.120.032888
https://www.ahajournals.org/doi/10.1161/STROKEAHA.120.032888
[60] Kang, H.J., Bae, K.Y., Kim, S.W., et al. (2016) Effects of Interleukin-6, Interleukin-18, and Statin Use, Evaluated at Acute Stroke, on Post-Stroke Depression during 1-Year Follow-Up. Psychoneuroendocrinology, 72, 156-160.
https://linkinghub.elsevier.com/retrieve/pii/S0306453016302062
https://doi.org/10.1016/j.psyneuen.2016.07.001
[61] Chen, J.Y., Yu, Y., Yuan, Y., et al. (2017) Enriched Housing Promotes Post-Stroke Functional Recovery through Astrocytic HMGB1-IL-6-Mediated Angiogenesis. Cell Death Dis-covery, 3, Article 17054.
https://www.nature.com/articles/cddiscovery201754
https://doi.org/10.1038/cddiscovery.2017.54
[62] Chen, X., Liu, L., Zhong, Y., et al. (2023) Enriched Environment Promotes Post-Stroke Angiogenesis through Astrocytic Interleukin-17A. Frontiers in Behavioral Neuroscience, 17, Ar-ticle 1053877.
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1053877/full
https://doi.org/10.3389/fnbeh.2023.1053877
[63] Wu, X., Liu, S., Hu, Z., et al. (2018) Enriched Housing Promotes Post-Stroke Neurogenesis through Calpain 1-STAT3/HIF-1α/VEGF Signaling. Brain Research Bulletin, 139, 133-143.
https://linkinghub.elsevier.com/retrieve/pii/S0361923017306226
https://doi.org/10.1016/j.brainresbull.2018.02.018
[64] Franchi, L., Eigenbrod, T., Muñoz-Planillo, R., et al. (2009) The Inflammasome: A Caspase-1-Activation Platform That Regulates Immune Responses and Disease Pathogenesis. Nature Immunology, 10, 241-247.
https://www.nature.com/articles/ni.1703
https://doi.org/10.1038/ni.1703
[65] Gabay, C., Lamacchia, C. and Palmer, G. (2010) IL-1 Pathways in Inflamma-tion and Human Diseases. Nature Reviews Rheumatology, 6, 232-241.
https://www.nature.com/articles/nrrheum.2010.4
https://doi.org/10.1038/nrrheum.2010.4
[66] Dinarello, C.A. (2013) Overview of the Interleukin-1 Family of Lig-ands and Receptors. Seminars in Immunology, 25, 389-393.
https://linkinghub.elsevier.com/retrieve/pii/S1044532313000821
https://doi.org/10.1016/j.smim.2013.10.001
[67] Audet, M.C. and Anisman, H. (2013) Interplay between Pro-Inflammatory Cytokines and Growth Factors in Depressive Illnesses. Frontiers in Cellular Neuroscience, 7, Article 68. http://journal.frontiersin.org/article/10.3389/fncel.2013.00068/abstract
https://doi.org/10.3389/fncel.2013.00068
[68] Smith, C.J., Hulme, S., Vail, A., et al. (2018) SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial. Stroke, 49, 1210-1216.
https://www.ahajournals.org/doi/10.1161/STROKEAHA.118.020750
https://doi.org/10.1161/STROKEAHA.118.020750
[69] Li, M., Li, C., Yu, H., et al. (2017) Lentivirus-Mediated Interleukin-1β (IL-1β) Knock-Down in the Hippocampus Alleviates Lipopolysaccharide (LPS)-Induced Memory Deficits and Anxiety- and Depression-Like Behaviors in Mice. Journal of Neuroinflammation, 14, Article No. 190.
https://doi.org/10.1186/s12974-017-0964-9 http://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0964-9
[70] Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., et al. (2008) Brain Interleukin-1 Mediates Chronic Stress-Induced Depression in Mice via Adrenocortical Activation and Hippocampal Neurogenesis Suppression. Molecular Psychiatry, 13, 717-728.
https://www.nature.com/articles/4002055
https://doi.org/10.1038/sj.mp.4002055
[71] Kurosawa, N., Shimizu, K. and Seki, K. (2016) The Development of Depression-Like Behavior Is Consolidated by IL-6-Induced Activation of Locus Coeruleus Neurons and IL-1β-Induced Elevated Leptin Levels in Mice. Psychopharmacology, 233, 1725-1737. http://link.springer.com/10.1007/s00213-015-4084-x
https://doi.org/10.1007/s00213-015-4084-x
[72] Ge, Y., Xu, W., Zhang, L., et al. (2020) Ginkgolide B Attenuates Myocardial Infarction-Induced Depression-Like Behaviors via Repressing IL-1β in Central Nervous System. Interna-tional Immunopharmacology, 85, Article 106652.
https://linkinghub.elsevier.com/retrieve/pii/S1567576920305464
https://doi.org/10.1016/j.intimp.2020.106652
[73] Jang, S.E., Lim, S.M., Jeong, J.J., et al. (2018) Gastrointestinal Inflammation by Gut Microbiota Disturbance Induces Memory Impairment in Mice. Mucosal Immunology, 11, 369-379.
https://linkinghub.elsevier.com/retrieve/pii/S1933021922005153
https://doi.org/10.1038/mi.2017.49
[74] Lee, D.Y., Shin, Y.J., Kim, J.K., et al. (2021) Alleviation of Cognitive Impairment by Gut Microbiota Lipopolysaccharide Production-Suppressing Lactobacillus plantarum and Bifidobacte-rium Longum in Mice. Food & Function, 12, 10750-10763. http://xlink.rsc.org/?DOI=D1FO02167B
https://doi.org/10.1039/D1FO02167B
[75] Yun, S.W., Park, H.S., Shin, Y.J., et al. (2023) Lactobacillus gasseri NK109 and Its Supplement Alleviate Cognitive Impairment in Mice by Modulating NF-κB Activation, BDNF Expres-sion, and Gut Microbiota Composition. Nutrients, 15, Article 790.
https://www.mdpi.com/2072-6643/15/3/790
https://doi.org/10.3390/nu15030790
[76] Aggarwal, B.B., Gupta, S.C. and Kim, J.H. (2012) Historical Perspec-tives on Tumor Necrosis Factor and Its Superfamily: 25 Years Later, a Golden Journey. Blood, 119, 651-665.
https://ashpublications.org/blood/article/119/3/651/135109/Historical-perspectives-on-tumor-necrosis-factor
https://doi.org/10.1182/blood-2011-04-325225
[77] Maddahi, A., Kruse, L.S., Chen, Q.W., et al. (2011) The Role of Tumor Necrosis Factor-α and TNF-α Receptors in Cerebral Arteries Following Cerebral Ischemia in Rat. Journal of Neuroinflammation, 8, Article No. 107.
https://doi.org/10.1186/1742-2094-8-107
[78] Kriz, J. and Lalancette-Hébert, M. (2009) Inflammation, Plasticity and Real-Time Imaging after Cerebral Ischemia. Acta Neuropathologica, 117, 497-509. http://link.springer.com/10.1007/s00401-009-0496-1
https://doi.org/10.1007/s00401-009-0496-1
[79] Chen, A.Q., Fang, Z., Chen, X.L., et al. (2019) Microglia-Derived TNF-α Mediates Endothelial Necroptosis Aggravating Blood Brain-Barrier Disruption after Ischemic Stroke. Cell Death & Disease, 10, Article No. 487.
https://www.nature.com/articles/s41419-019-1716-9
https://doi.org/10.1038/s41419-019-1716-9
[80] Doll, D.N., Rellick, S.L., Barr, T.L., et al. (2015) Rapid Mito-chondrial Dysfunction Mediates TNF-Alpha-Induced Neurotoxicity. Journal of Neurochemistry, 132, 443-451.
https://onlinelibrary.wiley.com/doi/10.1111/jnc.13008
https://doi.org/10.1111/jnc.13008
[81] Lima Giacobbo, B., Doorduin, J., Klein, H.C., et al. (2019) Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular Neurobiology, 56, 3295-3312. http://link.springer.com/10.1007/s12035-018-1283-6
https://doi.org/10.1007/s12035-018-1283-6
[82] Bramham, C.R. and Messaoudi, E. (2005) BDNF Function in Adult Synaptic Plasticity: The Synaptic Consolidation Hypothesis. Progress in Neurobiology, 76, 99-125.
https://doi.org/10.1016/j.pneurobio.2005.06.003
[83] Mizui, T., Ishikawa, Y., Kumanogoh, H., et al. (2016) Neu-robiological Actions by Three Distinct Subtypes of Brain-Derived Neurotrophic Factor: Multi-Ligand Model of Growth Factor Signaling. Pharmacological Research, 105, 93-98.
https://linkinghub.elsevier.com/retrieve/pii/S1043661815302589
https://doi.org/10.1016/j.phrs.2015.12.019
[84] Duman, R.S. and Aghajanian, G.K. (2012) Synaptic Dysfunction in Depression: Potential Therapeutic Targets. Science, 338, 68-72.
https://www.science.org/doi/10.1126/science.1222939
https://doi.org/10.1126/science.1222939
[85] Khan, M.S., Wu, G.W.Y., Reus, V.I., et al. (2019) Low Serum Brain-Derived Neurotrophic Factor Is Associated with Suicidal Ideation in Major Depressive Disorder. Psychiatry Re-search, 273, 108-113.
https://linkinghub.elsevier.com/retrieve/pii/S0165178118319668
https://doi.org/10.1016/j.psychres.2019.01.013
[86] Molendijk, M.L., Bus, B.A.A., Spinhoven, P., et al. (2011) Serum Levels of Brain-Derived Neurotrophic Factor in Major Depressive Disorder: State-Trait Issues, Clinical Features and Pharmacological Treatment. Molecular Psychiatry, 16, 1088-1095.
https://www.nature.com/articles/mp201098
https://doi.org/10.1038/mp.2010.98
[87] Sheldrick, A., Camara, S., Ilieva, M., et al. (2017) Brain-Derived Neu-rotrophic Factor (BDNF) and Neurotrophin 3 (NT3) Levels in Post-Mortem Brain Tissue from Patients with Depression Compared to Healthy Individuals—A Proof of Concept Study. European Psychiatry, 46, 65-71.
https://doi.org/10.1016/j.eurpsy.2017.06.009
https://www.cambridge.org/core/product/identifier/S0924933800068541/type/journal_article
[88] Zhou, Z., Lu, T., Xu, G., et al. (2011) Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Is Associated with Post-Stroke De-pression but Not with BDNF Gene Val66Met Polymorphism. Clinical Chemistry and Laboratory Medicine, 49, 185-189.
https://www.degruyter.com/document/doi/10.1515/CCLM.2011.039/html
https://doi.org/10.1515/CCLM.2011.039
[89] Kim, Y.K., Na, K.S., Shin, K.H., et al. (2007) Cytokine Imbalance in the Pathophysiology of Major Depressive Disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 1044-1053.
https://linkinghub.elsevier.com/retrieve/pii/S027858460700098X
https://doi.org/10.1016/j.pnpbp.2007.03.004
[90] Schnydrig, S., Korner, L., Landweer, S., et al. (2007) Peripheral Lipopolysaccharide Administration Transiently Affects Expression of Brain-Derived Neurotrophic Factor, Corticotropin and Proopiomelanocortin in Mouse Brain. Neuroscience Letters, 429, 69-73.
https://linkinghub.elsevier.com/retrieve/pii/S0304394007010762
https://doi.org/10.1016/j.neulet.2007.09.067
[91] Lai, N.S., Yu, H.C., Huang Tseng, H.Y., et al. (2021) Increased Serum Levels of Brain-Derived Neurotrophic Factor Contribute to Inflammatory Responses in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 22, Article 1841.
https://www.mdpi.com/1422-0067/22/4/1841
https://doi.org/10.3390/ijms22041841
[92] Tao, W., Zhang, X., Ding, J., et al. (2022) The Effect of Propofol on Hypoxia- and TNF-α-Mediated BDNF/TrkB Pathway Dysregulation in Primary Rat Hippocampal Neurons. CNS Neu-roscience & Therapeutics, 28, 761-774.
https://onlinelibrary.wiley.com/doi/10.1111/cns.13809
https://doi.org/10.1111/cns.13809
[93] Yu, H.C., Huang, H.B., Huang Tseng, H.Y., et al. (2022) Brain-Derived Neurotrophic Factor Suppressed Proinflammatory Cytokines Secretion and Enhanced MicroRNA(MiR)-3168 Expres-sion in Macrophages. International Journal of Molecular Sciences, 23, Article 570.
https://www.mdpi.com/1422-0067/23/1/570
https://doi.org/10.3390/ijms23010570
[94] Barer, D. (2010) A Brief Psychosocial-Behavioral Intervention Reduced Depression after Stroke More than Usual Care. Annals of Internal Medicine, 152, JC3.
https://doi.org/10.7326/0003-4819-152-6-201003160-02010 http://annals.org/article.aspx?doi=10.7326/0003-4819-152-6-201003160-02010
[95] Mitchell, P.H., Veith, R.C., Beck-er, K.J., et al. (2009) Brief Psychosocial-Behavioral Intervention with Antidepressant Reduces Poststroke Depression Significantly More than Usual Care with Antidepressant: Living Well with Stroke: Randomized, Controlled Trial. Stroke, 40, 3073-3078.
https://doi.org/10.1161/STROKEAHA.109.549808
https://www.ahajournals.org/doi/10.1161/STROKEAHA.109.549808
[96] Gao, Z., Wang, Y. and Yu, H. (2022) A Chinese Classical Prescription Chaihu Shugan Powder in Treatment of Post-Stroke Depression: An Overview. Me-dicina, 59, Article 55.
https://www.mdpi.com/1648-9144/59/1/55
https://doi.org/10.3390/medicina59010055
[97] Kwon, C.Y., Lee, B., Chung, S.Y., et al. (2019) Efficacy and Safety of Sihogayonggolmoryeo-Tang (Saikokaryukotsuboreito, Chai-Hu-Jia-Long-Gu-Mu-Li-Tang) for Post-Stroke Depression: A Systematic Review and Meta-Analysis. Scientific Reports, 9, Article No. 14536.
https://www.nature.com/articles/s41598-019-51055-6
https://doi.org/10.1038/s41598-019-51055-6
[98] Wu, T., Yue, T., Yang, P., et al. (2022) Notable Efficacy of Shugan Jieyu Capsule in Treating Adult with Post-Stroke Depression: A PRISMA-Compliant Meta-Analysis of Ran-domized Controlled Trials. Journal of Ethnopharmacology, 294, Article 115367.
https://linkinghub.elsevier.com/retrieve/pii/S0378874122004068
https://doi.org/10.1016/j.jep.2022.115367