|
[1]
|
Malhi, G.S. and Mann, J.J. (2018) Depression. The Lancet, 392, 2299-2312.
https://linkinghub.elsevier.com/retrieve/pii/S0140673618319482 [Google Scholar] [CrossRef]
|
|
[2]
|
Sacco, R.L., Kasner, S.E., Broderick, J.P., et al. (2013) An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 44, 2064-2089. https://www.ahajournals.org/doi/10.1161/STR.0b013e318296aeca
|
|
[3]
|
Wang, W., Jiang, B., Sun, H., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China: Results from a Nationwide Population-Based Survey of 480,687 Adults. Circulation, 135, 759-771. [Google Scholar] [CrossRef]
|
|
[4]
|
Ayerbe, L., Ayis, S., Rudd, A.G., et al. (2011) Natural History, Predictors, and Associations of Depression 5 Years after Stroke: The South London Stroke Register. Stroke, 42, 1907-1911.
https://www.ahajournals.org/doi/10.1161/STROKEAHA.110.605808 [Google Scholar] [CrossRef]
|
|
[5]
|
Mitchell, A.J., Sheth, B., Gill, J., et al. (2017) Prevalence and Predictors of Post-Stroke Mood Disorders: A Meta-Analysis and Meta-Regression of Depression, Anxiety and Ad-justment Disorder. General Hospital Psychiatry, 47, 48-60. https://linkinghub.elsevier.com/retrieve/pii/S0163834317301433 [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Suhett, L.G., Hermsdorff, H.H.M., Cota, B.C., et al. (2021) Dietary Inflammatory Potential, Cardiometabolic Risk and Inflammation in Children and Adolescents: A System-atic Review. Critical Reviews in Food Science and Nutrition, 61, 407-416. https://www.tandfonline.com/doi/full/10.1080/10408398.2020.1734911 [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Vetrani, C., Di Nisio, A., Paschou, S.A., et al. (2022) From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients, 14, Article 2103. https://www.mdpi.com/2072-6643/14/10/2103 [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zheng, D., Liwinski, T. and Elinav, E. (2020) Interaction between Micro-biota and Immunity in Health and Disease. Cell Research, 30, 492-506. https://www.nature.com/articles/s41422-020-0332-7 [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bagheri, S., Zolghadri, S. and Stanek, A. (2022) Beneficial Effects of Anti-Inflammatory Diet in Modulating Gut Microbiota and Controlling Obesity. Nutrients, 14, Article 3985. https://www.mdpi.com/2072-6643/14/19/3985 [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Naik, S. and Fuchs, E. (2022) Inflammatory Memory and Tissue Adapta-tion in Sickness and in Health. Nature, 607, 249-255. https://www.nature.com/articles/s41586-022-04919-3 [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Leslie, M. (2015) Inflammation’s Stop Signals. Science, 347, 18-21.
https://www.science.org/doi/10.1126/science.347.6217.18
|
|
[12]
|
Levada, O.A. and Troyan, A.S. (2018) Post-stroke Depression Biomarkers: A Narrative Review. Frontiers in Neurology, 9, Article 577. https://www.frontiersin.org/article/10.3389/fneur.2018.00577/full [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Busl, K.M. and Greer, D.M. (2010) Hypoxic-Ischemic Brain Injury: Pathophysiology, Neuropathology and Mechanisms. NeuroRehabilitation, 26, 5-13.
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/NRE-2010-0531 [Google Scholar] [CrossRef]
|
|
[14]
|
Shi, Q., Li, S., Lyu, Q., et al. (2023) Hypoxia Inhibits Cell Cycle Progression and Cell Proliferation in Brain Microvascular Endothelial Cells via the MiR-212-3p/MCM2 Axis. International Journal of Molecular Sciences, 24, Article 2788. https://www.mdpi.com/1422-0067/24/3/2788 [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Manukjan, N., Majcher, D., Leenders, P., et al. (2023) Hypoxic Oli-godendrocyte Precursor Cell-Derived VEGFA Is Associated with Blood-Brain Barrier Impairment. Acta Neuropatho-logica Communications, 11, Article No. 128.
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-023-01627-5 [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Peeples, E.S. and Genaro-Mattos, T.C. (2022) Ferroptosis: A Promising Therapeutic Target for Neonatal Hypoxic-Ischemic Brain Injury. International Journal of Molecular Sciences, 23, Article 7420.
https://www.mdpi.com/1422-0067/23/13/7420 [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Pivonkova, H. and Anderova, M. (2018) Altered Homeostatic Func-tions in Reactive Astrocytes and Their Potential as a Therapeutic Target after Brain Ischemic Injury. Current Pharmaceu-tical Design, 23, 5056-5074.
http://www.eurekaselect.com/154077/article [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Verma, R., Cronin, C.G., Hudobenko, J., et al. (2017) Deletion of the P2X4 Receptor Is Neuroprotective Acutely, but Induces a Depressive Phenotype during Recovery from Ischemic Stroke. Brain, Behavior, and Immunity, 66, 302-312. https://linkinghub.elsevier.com/retrieve/pii/S0889159117303847 [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Miró-Mur, F., Pérez-De-Puig, I., Ferrer-Ferrer, M., et al. (2016) Immature Monocytes Recruited to the Ischemic Mouse Brain Differentiate into Macrophages with Features of Alternative Activation. Brain, Behavior, and Immunity, 53, 18-33. https://linkinghub.elsevier.com/retrieve/pii/S0889159115004341 [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wattananit, S., Tornero, D., Graubardt, N., et al. (2016) Mono-cyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. The Jour-nal of Neuroscience, 36, 4182-4195.
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.4317-15.2016 [Google Scholar] [CrossRef]
|
|
[21]
|
Aronowski, J. and Zhao, X. (2011) Molecular Patho-physiology of Cerebral Hemorrhage: Secondary Brain Injury. Stroke, 42, 1781-1786. https://www.ahajournals.org/doi/10.1161/STROKEAHA.110.596718 [Google Scholar] [CrossRef]
|
|
[22]
|
Chen, S., Yang, Q., Chen, G., et al. (2015) An Update on Inflammation in the Acute Phase of Intracerebral Hemorrhage. Translational Stroke Research, 6, 4-8. http://link.springer.com/10.1007/s12975-014-0384-4 [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xi, G. and Keep, R.F. (2012) Intracerebral Hemorrhage: Mecha-nisms and Therapies. Translational Stroke Research, 3, 1-3. http://link.springer.com/10.1007/s12975-012-0189-2 [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xue, M. and Yong, V.W. (2020) Neuroinflammation in Intracere-bral Haemorrhage: Immunotherapies with Potential for Translation. The Lancet Neurology, 19, 1023-1032.
https://linkinghub.elsevier.com/retrieve/pii/S1474442220303641 [Google Scholar] [CrossRef]
|
|
[25]
|
Zhao, X., Wu, T., Chang, C.F., et al. (2015) Toxic Role of Prostaglandin E2 Receptor EP1 after Intracerebral Hemorrhage in Mice. Brain, Behavior, and Immunity, 46, 293-310.
https://linkinghub.elsevier.com/retrieve/pii/S0889159115000318 [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xiong, X.Y. and Yang, Q.W. (2015) Rethinking the Roles of In-flammation in the Intracerebral Hemorrhage. Translational Stroke Research, 6, 339-341. http://link.springer.com/10.1007/s12975-015-0402-1 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Blum, F.E. and Zuo, Z. (2013) Volatile Anesthetics-Induced Neuroinflammatory and Anti-Inflammatory Responses. Medical Gas Research, 3, Article No. 16.
http://medicalgasresearch.biomedcentral.com/articles/10.1186/2045-9912-3-16 [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen-Roetling, J., Kamalapathy, P., Cao, Y., et al. (2017) Astrocyte Heme Oxygenase-1 Reduces Mortality and Improves Outcome after Collagenase-Induced Intracerebral Hemorrhage. Neurobiology of Disease, 102, 140-146.
https://linkinghub.elsevier.com/retrieve/pii/S0969996117300566 [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Martins, C.A., Neves, L.T., De Oliveira, M.M.B.P., et al. (2020) Neuroprotective Effect of ACTH on Collagenase-Induced Peri-Intraventricular Hemorrhage in Newborn Male Rats. Sci-entific Reports, 10, Article No. 17734.
https://www.nature.com/articles/s41598-020-74712-7 [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ayerbe, L., Ayis, S., Crichton, S.L., et al. (2014) Explanatory Factors for the Increased Mortality of Stroke Patients with Depression. Neurology, 83, 2007-2012. https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000001029 [Google Scholar] [CrossRef]
|
|
[31]
|
Hackett, M.L., Yapa, C., Parag, V., et al. (2005) Frequency of Depression after Stroke: A Systematic Review of Observational Studies. Stroke, 36, 1330-1340. https://www.ahajournals.org/doi/10.1161/01.STR.0000165928.19135.35 [Google Scholar] [CrossRef]
|
|
[32]
|
Zhang, T., Jing, X., Zhao, X., et al. (2012) A Prospec-tive Cohort Study of Lesion Location and Its Relation to Post-Stroke Depression among Chinese Patients. Journal of Af-fective Disorders, 136, E83-E87.
https://linkinghub.elsevier.com/retrieve/pii/S0165032711003338 [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bowden, V.M. (1992) A Reappraisal of Post-Stroke Depression, Intra- and Inter-Hemispheric Lesion Location Using Meta Analysis. JAMA: The Journal of the American Medical Asso-ciation, 268, 1473-1474.
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.1992.03490110111047 [Google Scholar] [CrossRef]
|
|
[34]
|
Starkstein, S.E., Robinson, R.G. and Price, T.R. (1987) Comparison of Cortical and Subcortical Lesions in the Production of Poststroke Mood Disorders. Brain, 110, 1045-1059.
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/110.4.1045 [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yirmiya, R., Rimmerman, N. and Reshef, R. (2015) Depression as a Microglial Disease. Trends in Neurosciences, 38, 637-658. https://linkinghub.elsevier.com/retrieve/pii/S0166223615001769 [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhuang, X., Zhan, B., Jia, Y., et al. (2022) IL-33 in the Basolateral Amygdala Integrates Neuroinflammation into Anxiogenic Circuits via Modulating BDNF Expression. Brain, Behavior, and Immunity, 102, 98-109.
https://linkinghub.elsevier.com/retrieve/pii/S0889159122000484 [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Maier, S.F. and Watkins, L.R. (1998) Cytokines for Psychologists: Implications of Bidirectional Immune-to-Brain Communication for Understanding Behavior, Mood, and Cognition. Psy-chological Review, 105, 83-107. [Google Scholar] [CrossRef]
|
|
[38]
|
Anrather, J. and Iadecola, C. (2016) Inflammation and Stroke: An Overview. Neurotherapeutics, 13, 661-670.
http://link.springer.com/10.1007/s13311-016-0483-x [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ginhoux, F., Lim, S., Hoeffel, G., et al. (2013) Origin and Dif-ferentiation of Microglia. Frontiers in Cellular Neuroscience, 7, Article 45. http://journal.frontiersin.org/article/10.3389/fncel.2013.00045/abstract [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Jenkins, S.J. and Hume, D.A. (2014) Homeostasis in the Mononu-clear Phagocyte System. Trends in Immunology, 35, 358-367. https://linkinghub.elsevier.com/retrieve/pii/S1471490614001112 [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Thion, M.S., Ginhoux, F. and Garel, S. (2018) Microglia and Early Brain Development: An Intimate Journey. Science, 362, 185-189. https://www.science.org/doi/10.1126/science.aat0474 [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Rodríguez-Gómez, J.A., Kavanagh, E., Engskog-Vlachos, P., et al. (2020) Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 9, Article 1717. https://www.mdpi.com/2073-4409/9/7/1717 [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Harrison, N.A., Brydon, L., Walker, C., et al. (2009) Inflammation Causes Mood Changes through Alterations in Subgenual Cingulate Activity and Mesolimbic Connectivity. Biological Psychiatry, 66, 407-414.
https://linkinghub.elsevier.com/retrieve/pii/S0006322309003965 [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Krabbe, K.S., Reichenberg, A., Yirmiya, R., et al. (2005) Low-Dose Endotoxemia and Human Neuropsychological Functions. Brain, Behavior, and Immunity, 19, 453-460.
https://linkinghub.elsevier.com/retrieve/pii/S0889159105000760 [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, Y.C., Chou, Y.C., Chen, H.C., et al. (2019) Interleukin-6 and Interleukin-17 Are Related to Depression in Patients with Rheumatoid Arthritis. International Journal of Rheumatic Diseases, 22, 980-985.
https://onlinelibrary.wiley.com/doi/10.1111/1756-185X.13529 [Google Scholar] [CrossRef]
|
|
[46]
|
Pollak, T.A., Drndarski, S., Stone, J.M., et al. (2018) The Blood-Brain Barrier in Psychosis. The Lancet Psychiatry, 5, 79-92. [Google Scholar] [CrossRef]
|
|
[47]
|
Wohleb, E.S., Franklin, T., Iwata, M., et al. (2016) Integrat-ing Neuroimmune Systems in the Neurobiology of Depression. Nature Reviews Neuroscience, 17, 497-511. https://www.nature.com/articles/nrn.2016.69 [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wu, D., Zhang, G., Zhao, C., et al. (2020) Interleukin-18 from Neurons and Microglia Mediates Depressive Behaviors in Mice with Post-Stroke Depression. Brain, Behavior, and Immunity, 88, 411-420.
https://linkinghub.elsevier.com/retrieve/pii/S0889159120301185 [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, Y.L., Han, Q.Q., Gong, W.Q., et al. (2018) Microglial Acti-vation Mediates Chronic Mild Stress-Induced Depressive- and Anxiety-Like Behavior in Adult Rats. Journal of Neu-roinflammation, 15, Article No. 21.
https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-018-1054-3 [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wei, L., Guo, J., Yu, X., et al. (2021) Role and Characteristics of Hippocampal Region Microglial Activation in Poststroke Depression. Journal of Affective Disorders, 291, 270-278.
https://linkinghub.elsevier.com/retrieve/pii/S0165032721004663 [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Alderton, G. and Scanlon, S.T. (2021) Inflammation: An Expanding View. Science, 374, 1068-1069.
https://www.science.org/doi/10.1126/science.abn1721 [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Calabrese, F., Rossetti, A.C., Racagni, G., et al. (2014) Brain-Derived Neurotrophic Factor: A Bridge between Inflammation and Neuroplasticity. Frontiers in Cellular Neuroscience, 8, Article No. 430.
http://journal.frontiersin.org/article/10.3389/fncel.2014.00430/abstract [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Xu, H.B., Xu, Y.H., He, Y., et al. (2018) Decreased Serum Brain-Derived Neurotrophic Factor May Indicate the Development of Poststroke Depression in Patients with Acute Is-chemic Stroke: A Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 27, 709-715. https://linkinghub.elsevier.com/retrieve/pii/S1052305717305542 [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Dowlati, Y., Herrmann, N., Swardfager, W., et al. (2010) A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry, 67, 446-457. https://linkinghub.elsevier.com/retrieve/pii/S0006322309012293 [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Osimo, E.F., Pillinger, T., Rodriguez, I.M., et al. (2020) In-flammatory Markers in Depression: A Meta-Analysis of Mean Differences and Variability in 5166 Patients and 5083 Controls. Brain, Behavior, and Immunity, 87, 901-909. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Schmidt-Arras, D. and Rose-John, S. (2016) IL-6 Pathway in the Liver: from Physiopathology to Therapy. Journal of Hepatology, 64, 1403-1415. https://linkinghub.elsevier.com/retrieve/pii/S0168827816000830 [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Maeda, Y., Matsumoto, M., Hori, O., et al. (1994) Hypox-ia/Reoxygenation-Mediated Induction of Astrocyte Interleukin 6: A Paracrine Mechanism Potentially Enhancing Neuron Survival. Journal of Experimental Medicine, 180, 2297-2308. https://rupress.org/jem/article/180/6/2297/25664/Hypoxiareoxygenationmediated-induction-of [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Acalovschi, D., Wiest, T., Hartmann, M., et al. (2003) Multiple Levels of Regulation of the Interleukin-6 System in Stroke. Stroke, 34, 1864-1869. https://www.ahajournals.org/doi/10.1161/01.STR.0000079815.38626.44 [Google Scholar] [CrossRef]
|
|
[59]
|
Leasure, A.C., Kuohn, L.R., Vanent, K.N., et al. (2021) Association of Serum IL-6 (Interleukin 6) with Functional Outcome after Intracerebral Hemorrhage. Stroke, 52, 1733-1740.
https://www.ahajournals.org/doi/10.1161/STROKEAHA.120.032888 [Google Scholar] [CrossRef]
|
|
[60]
|
Kang, H.J., Bae, K.Y., Kim, S.W., et al. (2016) Effects of Interleukin-6, Interleukin-18, and Statin Use, Evaluated at Acute Stroke, on Post-Stroke Depression during 1-Year Follow-Up. Psychoneuroendocrinology, 72, 156-160.
https://linkinghub.elsevier.com/retrieve/pii/S0306453016302062 [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Chen, J.Y., Yu, Y., Yuan, Y., et al. (2017) Enriched Housing Promotes Post-Stroke Functional Recovery through Astrocytic HMGB1-IL-6-Mediated Angiogenesis. Cell Death Dis-covery, 3, Article 17054.
https://www.nature.com/articles/cddiscovery201754 [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Chen, X., Liu, L., Zhong, Y., et al. (2023) Enriched Environment Promotes Post-Stroke Angiogenesis through Astrocytic Interleukin-17A. Frontiers in Behavioral Neuroscience, 17, Ar-ticle 1053877.
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1053877/full [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wu, X., Liu, S., Hu, Z., et al. (2018) Enriched Housing Promotes Post-Stroke Neurogenesis through Calpain 1-STAT3/HIF-1α/VEGF Signaling. Brain Research Bulletin, 139, 133-143.
https://linkinghub.elsevier.com/retrieve/pii/S0361923017306226 [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Franchi, L., Eigenbrod, T., Muñoz-Planillo, R., et al. (2009) The Inflammasome: A Caspase-1-Activation Platform That Regulates Immune Responses and Disease Pathogenesis. Nature Immunology, 10, 241-247.
https://www.nature.com/articles/ni.1703 [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Gabay, C., Lamacchia, C. and Palmer, G. (2010) IL-1 Pathways in Inflamma-tion and Human Diseases. Nature Reviews Rheumatology, 6, 232-241. https://www.nature.com/articles/nrrheum.2010.4 [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Dinarello, C.A. (2013) Overview of the Interleukin-1 Family of Lig-ands and Receptors. Seminars in Immunology, 25, 389-393. https://linkinghub.elsevier.com/retrieve/pii/S1044532313000821 [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Audet, M.C. and Anisman, H. (2013) Interplay between Pro-Inflammatory Cytokines and Growth Factors in Depressive Illnesses. Frontiers in Cellular Neuroscience, 7, Article 68.
http://journal.frontiersin.org/article/10.3389/fncel.2013.00068/abstract [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Smith, C.J., Hulme, S., Vail, A., et al. (2018) SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial. Stroke, 49, 1210-1216.
https://www.ahajournals.org/doi/10.1161/STROKEAHA.118.020750 [Google Scholar] [CrossRef]
|
|
[69]
|
Li, M., Li, C., Yu, H., et al. (2017) Lentivirus-Mediated Interleukin-1β (IL-1β) Knock-Down in the Hippocampus Alleviates Lipopolysaccharide (LPS)-Induced Memory Deficits and Anxiety- and Depression-Like Behaviors in Mice. Journal of Neuroinflammation, 14, Article No. 190.
http://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0964-9 [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., et al. (2008) Brain Interleukin-1 Mediates Chronic Stress-Induced Depression in Mice via Adrenocortical Activation and Hippocampal Neurogenesis Suppression. Molecular Psychiatry, 13, 717-728. https://www.nature.com/articles/4002055 [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Kurosawa, N., Shimizu, K. and Seki, K. (2016) The Development of Depression-Like Behavior Is Consolidated by IL-6-Induced Activation of Locus Coeruleus Neurons and IL-1β-Induced Elevated Leptin Levels in Mice. Psychopharmacology, 233, 1725-1737. http://link.springer.com/10.1007/s00213-015-4084-x [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Ge, Y., Xu, W., Zhang, L., et al. (2020) Ginkgolide B Attenuates Myocardial Infarction-Induced Depression-Like Behaviors via Repressing IL-1β in Central Nervous System. Interna-tional Immunopharmacology, 85, Article 106652.
https://linkinghub.elsevier.com/retrieve/pii/S1567576920305464 [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Jang, S.E., Lim, S.M., Jeong, J.J., et al. (2018) Gastrointestinal Inflammation by Gut Microbiota Disturbance Induces Memory Impairment in Mice. Mucosal Immunology, 11, 369-379.
https://linkinghub.elsevier.com/retrieve/pii/S1933021922005153 [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Lee, D.Y., Shin, Y.J., Kim, J.K., et al. (2021) Alleviation of Cognitive Impairment by Gut Microbiota Lipopolysaccharide Production-Suppressing Lactobacillus plantarum and Bifidobacte-rium Longum in Mice. Food & Function, 12, 10750-10763. http://xlink.rsc.org/?DOI=D1FO02167B [Google Scholar] [CrossRef]
|
|
[75]
|
Yun, S.W., Park, H.S., Shin, Y.J., et al. (2023) Lactobacillus gasseri NK109 and Its Supplement Alleviate Cognitive Impairment in Mice by Modulating NF-κB Activation, BDNF Expres-sion, and Gut Microbiota Composition. Nutrients, 15, Article 790. https://www.mdpi.com/2072-6643/15/3/790 [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Aggarwal, B.B., Gupta, S.C. and Kim, J.H. (2012) Historical Perspec-tives on Tumor Necrosis Factor and Its Superfamily: 25 Years Later, a Golden Journey. Blood, 119, 651-665.
https://ashpublications.org/blood/article/119/3/651/135109/Historical-perspectives-on-tumor-necrosis-factor [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Maddahi, A., Kruse, L.S., Chen, Q.W., et al. (2011) The Role of Tumor Necrosis Factor-α and TNF-α Receptors in Cerebral Arteries Following Cerebral Ischemia in Rat. Journal of Neuroinflammation, 8, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Kriz, J. and Lalancette-Hébert, M. (2009) Inflammation, Plasticity and Real-Time Imaging after Cerebral Ischemia. Acta Neuropathologica, 117, 497-509. http://link.springer.com/10.1007/s00401-009-0496-1 [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Chen, A.Q., Fang, Z., Chen, X.L., et al. (2019) Microglia-Derived TNF-α Mediates Endothelial Necroptosis Aggravating Blood Brain-Barrier Disruption after Ischemic Stroke. Cell Death & Disease, 10, Article No. 487.
https://www.nature.com/articles/s41419-019-1716-9 [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Doll, D.N., Rellick, S.L., Barr, T.L., et al. (2015) Rapid Mito-chondrial Dysfunction Mediates TNF-Alpha-Induced Neurotoxicity. Journal of Neurochemistry, 132, 443-451. https://onlinelibrary.wiley.com/doi/10.1111/jnc.13008 [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Lima Giacobbo, B., Doorduin, J., Klein, H.C., et al. (2019) Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular Neurobiology, 56, 3295-3312.
http://link.springer.com/10.1007/s12035-018-1283-6 [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Bramham, C.R. and Messaoudi, E. (2005) BDNF Function in Adult Synaptic Plasticity: The Synaptic Consolidation Hypothesis. Progress in Neurobiology, 76, 99-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Mizui, T., Ishikawa, Y., Kumanogoh, H., et al. (2016) Neu-robiological Actions by Three Distinct Subtypes of Brain-Derived Neurotrophic Factor: Multi-Ligand Model of Growth Factor Signaling. Pharmacological Research, 105, 93-98.
https://linkinghub.elsevier.com/retrieve/pii/S1043661815302589 [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Duman, R.S. and Aghajanian, G.K. (2012) Synaptic Dysfunction in Depression: Potential Therapeutic Targets. Science, 338, 68-72. https://www.science.org/doi/10.1126/science.1222939 [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Khan, M.S., Wu, G.W.Y., Reus, V.I., et al. (2019) Low Serum Brain-Derived Neurotrophic Factor Is Associated with Suicidal Ideation in Major Depressive Disorder. Psychiatry Re-search, 273, 108-113.
https://linkinghub.elsevier.com/retrieve/pii/S0165178118319668 [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Molendijk, M.L., Bus, B.A.A., Spinhoven, P., et al. (2011) Serum Levels of Brain-Derived Neurotrophic Factor in Major Depressive Disorder: State-Trait Issues, Clinical Features and Pharmacological Treatment. Molecular Psychiatry, 16, 1088-1095. https://www.nature.com/articles/mp201098 [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Sheldrick, A., Camara, S., Ilieva, M., et al. (2017) Brain-Derived Neu-rotrophic Factor (BDNF) and Neurotrophin 3 (NT3) Levels in Post-Mortem Brain Tissue from Patients with Depression Compared to Healthy Individuals—A Proof of Concept Study. European Psychiatry, 46, 65-71.
https://www.cambridge.org/core/product/identifier/S0924933800068541/type/journal_article [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Zhou, Z., Lu, T., Xu, G., et al. (2011) Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Is Associated with Post-Stroke De-pression but Not with BDNF Gene Val66Met Polymorphism. Clinical Chemistry and Laboratory Medicine, 49, 185-189. https://www.degruyter.com/document/doi/10.1515/CCLM.2011.039/html [Google Scholar] [CrossRef]
|
|
[89]
|
Kim, Y.K., Na, K.S., Shin, K.H., et al. (2007) Cytokine Imbalance in the Pathophysiology of Major Depressive Disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 1044-1053.
https://linkinghub.elsevier.com/retrieve/pii/S027858460700098X [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Schnydrig, S., Korner, L., Landweer, S., et al. (2007) Peripheral Lipopolysaccharide Administration Transiently Affects Expression of Brain-Derived Neurotrophic Factor, Corticotropin and Proopiomelanocortin in Mouse Brain. Neuroscience Letters, 429, 69-73. https://linkinghub.elsevier.com/retrieve/pii/S0304394007010762 [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Lai, N.S., Yu, H.C., Huang Tseng, H.Y., et al. (2021) Increased Serum Levels of Brain-Derived Neurotrophic Factor Contribute to Inflammatory Responses in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 22, Article 1841. https://www.mdpi.com/1422-0067/22/4/1841 [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Tao, W., Zhang, X., Ding, J., et al. (2022) The Effect of Propofol on Hypoxia- and TNF-α-Mediated BDNF/TrkB Pathway Dysregulation in Primary Rat Hippocampal Neurons. CNS Neu-roscience & Therapeutics, 28, 761-774.
https://onlinelibrary.wiley.com/doi/10.1111/cns.13809 [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Yu, H.C., Huang, H.B., Huang Tseng, H.Y., et al. (2022) Brain-Derived Neurotrophic Factor Suppressed Proinflammatory Cytokines Secretion and Enhanced MicroRNA(MiR)-3168 Expres-sion in Macrophages. International Journal of Molecular Sciences, 23, Article 570. https://www.mdpi.com/1422-0067/23/1/570 [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Barer, D. (2010) A Brief Psychosocial-Behavioral Intervention Reduced Depression after Stroke More than Usual Care. Annals of Internal Medicine, 152, JC3.
http://annals.org/article.aspx?doi=10.7326/0003-4819-152-6-201003160-02010 [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Mitchell, P.H., Veith, R.C., Beck-er, K.J., et al. (2009) Brief Psychosocial-Behavioral Intervention with Antidepressant Reduces Poststroke Depression Significantly More than Usual Care with Antidepressant: Living Well with Stroke: Randomized, Controlled Trial. Stroke, 40, 3073-3078.
https://www.ahajournals.org/doi/10.1161/STROKEAHA.109.549808 [Google Scholar] [CrossRef]
|
|
[96]
|
Gao, Z., Wang, Y. and Yu, H. (2022) A Chinese Classical Prescription Chaihu Shugan Powder in Treatment of Post-Stroke Depression: An Overview. Me-dicina, 59, Article 55. https://www.mdpi.com/1648-9144/59/1/55 [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Kwon, C.Y., Lee, B., Chung, S.Y., et al. (2019) Efficacy and Safety of Sihogayonggolmoryeo-Tang (Saikokaryukotsuboreito, Chai-Hu-Jia-Long-Gu-Mu-Li-Tang) for Post-Stroke Depression: A Systematic Review and Meta-Analysis. Scientific Reports, 9, Article No. 14536. https://www.nature.com/articles/s41598-019-51055-6 [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Wu, T., Yue, T., Yang, P., et al. (2022) Notable Efficacy of Shugan Jieyu Capsule in Treating Adult with Post-Stroke Depression: A PRISMA-Compliant Meta-Analysis of Ran-domized Controlled Trials. Journal of Ethnopharmacology, 294, Article 115367. https://linkinghub.elsevier.com/retrieve/pii/S0378874122004068 [Google Scholar] [CrossRef] [PubMed]
|