25羟维生素D与肺部相关疾病的研究进展
Research Progress of 25 Hydroxyvitamin D and Lung Related Diseases
DOI: 10.12677/ACM.2024.142320, PDF, HTML, XML, 下载: 86  浏览: 149 
作者: 拜克也:新疆医科大学研究生学院,新疆 乌鲁木齐;陈丽萍*:新疆维吾尔自治区人民医院呼吸与危重症医学中心,新疆 乌鲁木齐
关键词: 25羟维生素D哮喘肺纤维化肺癌25 Hydroxyvitamin D Asthma Pulmonary Fibrosis Lung Cancer
摘要: 维生素D缺乏是一个公共卫生问题,影响着全世界超过10亿人,由于许多因素,维生素D水平低的人的比例显著增加。维生素D负责调节钙和磷酸盐的代谢,维持健康的矿化骨骼。研究表明,作为维生素D的活性形式,1,25-二羟基维生素D对先天和适应性免疫系统的多种成分以及内皮膜稳定性具有免疫活性。许多研究表明,血清25-羟基维生素D水平低与多种免疫相关疾病和病症的发展有关,如银屑病、1型糖尿病、多发性硬化症、类风湿性关节炎、结核病、败血症和呼吸道感染。1,25(OH)D只有与细胞核中的维生素D受体结合才能发挥其生物学作用。VDR存在于小肠上皮细胞、肾细胞、骨细胞等经典靶细胞以及视网膜、垂体、肌肉、乳腺、卵巢、脾、肺等各种组织中,参与调节骨代谢、钙磷代谢平衡等经典生理功能。它还可以通过免疫调节、炎症抑制、抗纤维化和诱导抗菌肽在各种肺部疾病的发生和发展中发挥重要作用。
Abstract: Vitamin D deficiency is a public health problem that affects more than 1 billion people worldwide, and the proportion of people with low vitamin D levels has increased significantly due to a number of factors. Vitamin D is responsible for regulating calcium and phosphate metabolism and main-taining healthy mineralized bones. Studies have shown that, as the active form of vitamin D, 1,25- dihydroxyvitamin D exerts immune activity on multiple components of the innate and adaptive immune system as well as endothelial membrane stability. Many studies have shown that low se-rum 25-hydroxyvitamin D levels are associated with the development of a variety of immune-rela- ted diseases and conditions such as psoriasis, type 1 diabetes, multiple sclerosis, rheumatoid ar-thritis, tuberculosis, sepsis, and respiratory infections. 1,25(OH)D can exert its biological effect only when it combines with vitamin D receptors in the nucleus. VDR exists in classic target cells such as small intestine epithelial cells, kidney cells and bone cells, as well as various tissues such as retina, pituitary, muscle, breast, ovary, spleen and lung, and can participate in classic physiological func-tions of regulating bone metabolism and calcium and phosphorus metabolic balance. It can also play an important role in the occurrence and development of various lung diseases through im-mune regulation, inflammatory inhibition, anti-fibrosis and induction of antimicrobial peptides.
文章引用:拜克也, 陈丽萍. 25羟维生素D与肺部相关疾病的研究进展[J]. 临床医学进展, 2024, 14(2): 2279-2284. https://doi.org/10.12677/ACM.2024.142320

1. 25羟维生素D与哮喘

哮喘又称支气管哮喘,是一种常见的慢性呼吸系统疾病,影响着全世界数百万人,其患病率持续上升。维生素D因其免疫调节作用而被认为是哮喘发病机制的潜在环境因素 [1] 。血清总免疫球蛋白E (IgE)或特异性IgE升高是哮喘疾病的特点 [2] ,同时研究表明哮喘患者存在明显的Th1/Th2细胞平衡紊乱现象 [3] ,作为2型炎症介导的哮喘的主要介质,TH2个细胞在哮喘患者的肺部被慢性激活,导致2型细胞因子(例如IL-5和IL-13)的分泌增加。此外,TH2记忆细胞已被描述为在过敏性哮喘的发病机制中起重要作用。25-羟维生素D3 (1,25-(OH)2D3)是维生素D的主要活性代谢产物,可抑制Th2型细胞因子的释放及哮喘发病时Th2细胞的过度活化,而这一过程是通过25-羟维生素D3刺激Treg细胞分泌IL-10发挥作用的 [4] 。

作为迄今发现的具有最强抗原呈递功能的免疫细胞,树突状细胞(DC)在免疫反应的发生及发展中发挥关键作用 [5] [6] 。研究表明,维生素D抑制DC细胞的分化及成熟是通过下调共同刺激因子、MHC II分子和IL-12的表达 [7] 。研究表明1,25-二羟维生素D处理的DC回输到致敏小鼠可诱导对抗原的免疫耐受,避免过敏性气道炎症的发生 [8] 。Rock是Rho激酶下游靶效应分子,分别存在于肺、肝脏、骨骼肌、心脏等组织器官中 [9] ,在机体的各项调节功能中起重要作用。一项动物研究结果表明Rho/Rock激酶信号通路可通过介导ASM收缩、成肌纤维细胞分化和ASMCs成熟、气道壁间质细胞增殖和迁移以及炎症细胞的迁移,在哮喘等慢性气道炎症疾病的发生过程中发挥重要作用 [10] 。

纤溶酶原激活物抑制剂-1 (PAI-1)与哮喘严重程度和气道重塑有关 [11] [12] [13] 。PAI-1抑制细胞外基质蛋白溶解作用,导致细胞外基质沉积,产生哮喘气道重塑;PAI-1还能促进新生血管的形成,并和肥大细胞、嗜酸性粒细胞形成复杂的调节网络参与气道重塑。有研究证实PAI.14G等位基因可能与气道重塑有关,且患有哮喘和过敏性鼻炎的土耳其儿童较健康者携带PAI-14G等位基因的机率高 [14] 。另外也有研究提示1,25(OH)2D3可能通过下调PAI.1水平来改善气道重塑,但不能逆转 [15] 。Th17细胞因子在哮喘,包括激素抵抗性哮喘的发病机制中起重要作用,严重哮喘患者Thl7细胞因子水平增加。Thl7不能被类固醇激素抑制,而1,25-(OH)2D3可通过T细胞和DCs介导的通路抑制Thl7细胞因子的产生,表明维生素D对于哮喘患者可增强类固醇的效应。研究发现,维生素D可增强激素抵抗性哮喘和激素敏感性哮喘患者单核细胞的抗炎效应,并可增强激素的作用。此外有研究表明1,25-(OH)2D3可直接抑制气道平滑肌细胞的增殖 [16] 。转化生长因子p1是参与纤维化的细胞因子网络中公认的诱导成纤维细胞向成纤维肌细胞转化和活化的最强烈的细胞因子,而研究已证实1,25-(OH)D,能抑制其诱导的这种成肌纤维细胞的转化和活化 [17] 。

2. 25羟维生素D与肺纤维化

肺纤维化是以细胞外基质过度沉积和肺实质破坏为特点的异质性终末期间质性肺疾病。导致肺纤维化的因素包括遗传性疾病、自身免疫性疾病、职业暴露、毒素、药物、辐射以及最近的SARS-CoV-2感染。特发性肺纤维化(IPF)是最具侵袭性的形式,在病理学上可能与其他形式难以区分,特别是在晚期。IPF临床特点主要以干咳和进行性呼吸困难为主,对肺功能有严重影响呼吸功能。IPF的发病率和流行率逐年上升,影响到全世界约500万人,并反映出重大的健康负担。IPF患者中无肺移植患者的中位生存期为3年,是预后最严重的非肺癌疾病。IPF的启动主要是由于上皮细胞的反复损伤和修复不足导致成纤维细胞的过度激活和随后的纤维化。尽管IPF相关的研究越来越多,但其发病机制仍然难以捉摸。

转化生长因子-β1 (TGF-β1)在上皮损伤、肌成纤维细胞的增殖和分化及细胞外基质的产生起核心作用,是重要的促纤维化因子 [18] ,动物研究表明各种纤维化疾病中的TGF-β含量是升高的 [19] 。TGF-β作为各种因素所致EMT的共同上游调控因子,有抑制细胞连接蛋白,破坏上皮细胞完整性和极性的作用。TGF-β通过Smad通路及Wnt/β-catenin促进肌成纤维细胞的形成,诱导EMT,引起肺纤维化 [20] [21] [22] 。研究表明长期维生素D缺乏诱发小鼠肺EMT和肺间质纤维化 [23] ,而补充活性维生素D3,可以减轻肺间质纤维化早期炎性反应并抑制肺EMT [24] 。Allan M. Ramirez等人研究发现维生素D可以抑制促纤维化因子TGF-β引起的肺成纤维细胞及上皮细胞纤维化表型改变 [25] ,活性型维生素D3通过抑制BLM所致肺组织炎症反应、间接阻断肺上皮TGF-β/Smad2/3通路激活 [26] [27] 。

氧化/抗氧化失衡在肺纤维化的发生发展中起着重要的作用。研究表明给予抗氧化药物可以减轻肺纤维化程度。而活性维生素D3具有抗氧化作用,在氧自由基诱导的生物损伤中,可以保护细胞免受活性氧增加和氧化应激引起的细胞死亡,这一作用可能是通过上调PKD1的表达,提高PKD1抗氧化的能力,保护线粒体免受活性氧的损害 [24] 。

基质金属蛋白酶(MMP)是体内降解细胞外基质的主要酶类,miR-29可调节多种基质金属蛋白酶,MMP3基因敲除小鼠可以保护小鼠避免博来霉素诱导的肺纤维化。研究发现活性维生素D3可通过促进miR-29a表达,来调节多种基质金属蛋白酶,发挥抑制肺纤维化作用 [28] 。

3. 25羟维生素D与肺癌

在全球范围内,肺癌病例和死亡人数正在上升。2018年,GLOBOCAN估计有209万新病例(占癌症病例总数的11.6%)和176万死亡病例(占癌症死亡总数的18.4%),比2012年报告的比率(180万新病例和160万死亡病例)高 [29] [30] ,使其成为男性和女性中最常见的癌症和癌症死亡原因 [31] ,在女性中,第三大最常见的癌症类型和第二大最常见的癌症死亡原因。尽管肺癌的临床诊治方法已得到不断提高与更新,出现了靶向药物,但因大部分患者就诊时已进展至中晚期,错过了最佳的手术时机,故通过放、化疗、生物制剂及基因靶向治疗等综合治疗后,患者的整体预后仍不理想,5年存活率不到15%。

研究表明肺癌患者血清25羟维生素D水平降低 [32] ,也有研究表明低水平25羟维生素D人群患肺癌的风险相对较低。Mohr及Grant等的研究发现太阳紫外线辐射可增加体内维生素D的产生,其与肺癌病死率呈负相关。1,25-(OH)2D3发挥其生物学活性需要通过与其受体(VDR)特异性结合,VDR在细胞质中的表达随肺癌组织恶性程度的升高而减少。有研究发现肺癌患者的血清25(OH)D水平进一步下降,且肿瘤的恶性程度越高、组织分化越低以及出现淋巴结或远端转移时,血清25(OH)D水平越低 [33] 。研究发现高水平血清25(OH)D的患者恶性肿瘤的死亡风险大大降低,VDR的表达与人类癌细胞株的分化程度有关,它可以作为预测癌症病人临床治疗预后的生物学指标之一 [34] [35] 。动物实验结果表明1,25羟维生素D的抗肿瘤作用与其抑制肿瘤细胞转移、侵袭和血管生成相关。

氧化应激与DNA损伤在肺癌的发生发展中发挥重要作用。研究发现,25羟维生素D作为一种抗氧化剂,能保护细胞免受氧化应激损伤,可诱导细胞分化、抑制细胞增殖、促进肿瘤细胞凋亡、稳定细胞染色体结构,从而防止细胞DNA链的断裂和解聚。充足的25羟维生素D可能有减轻肺鳞癌氧化应激及DNA损伤的作用,起到对肺鳞癌患者的保护作用,可预防肺鳞癌的发生发展。

4. 25羟维生素D与慢性阻塞性肺病

慢性阻塞性肺疾病(COPD)是多种炎症细胞、炎症介质介导的慢性气道炎症,其特征是进行性气流受限,气道不完全可逆阻塞,发病机制主要与炎症机制、氧化–抗氧化失衡及免疫机制相关,2013年发布的《全球疾病负担报告》将慢性阻塞性肺病列为美国第五大常见死因;慢性阻塞性肺病(COPD)是导致残疾调整生命年(DALYs,衡量健康时间的指标)的原因之一,仅次于缺血性心脏病 [36] 。由于整个人口正在老龄化,影响老年人的疾病,特别是糖尿病和慢性阻塞性肺病,预计将变得更加普遍。近年来研究表明维生素D在免疫调节、抗感染、抗增殖等方面发挥作用,维生素D不仅可以下调气道的炎症免疫反应,还可以激发支气管平滑肌细胞诱导产生自分泌、收缩和重塑的过程。有研究表明,补充维生素D可减少COPD患者急性加重次数、延缓COPD恶化进程、改善重度COPD患者的肺功能 [37] [38] 。

COPD患者维生素水平偏低,影响患者的生活质量,且患者的肺功能与维生素D水平具有相关性,因此维生素D可用于预测病情和预后 [39] [40] 。TNF-α在COPD的发病机制中发挥重要作用,研究表明在COPD患者中25(OH)D水平与TNFα呈负相关 [41] [42] 。FEV1/预计值及FEV1/FVC等对COPD的诊断、病情进展程度及预后均具有重要的意义,王丽娟等的研究发现在COPD患者中25(OH)D与FEV1/预计值及FEV1/FVC均呈正相关,血清25(OH)D可能通过影响COPD患者的肺功能指标和炎性因子水平参与疾病发生、发展,其水平与疾病的进展呈负相关。尽管COPD患者补充维生素D能否改善肺功能、减少急性加重次数已引起广泛关注,但目前尚无一致结论。

NOTES

*通讯作者。

参考文献

[1] Abi-Ayad, M., Nedjar, I. and Chabni, N. (2023) Association between 25-Hydroxy Vitamin D and Lung Function (FEV1, FVC, FEV1/FVC) in Children and Adults with Asthma: A Systematic Review. Lung India, 40, 449-456.
https://doi.org/10.4103/lungindia.lungindia_213_23
[2] Neutze, D., Evans, K.L., Koenig, M., Castelli, G. and Mounsey, A. (2018) PURLs: Does Fish Oil during Pregnancy Help Prevent Asthma in Kids? The Journal of Family Practice, 67, 100-102.
[3] Bui, T.T., Piao, C.H., Kim, S.M., Song, C.H., Shin, H.S., Lee, C.H. and Chai, O.H. (2017) Citrus tachibana Leaves Ethanol Extract Alleviates Airway Inflammation by the Modulation of Th1/Th2 Imbalance via Inhibiting NF-κB Signaling and Histamine Secretion in a Mouse Model of Allergic Asthma. Journal of Medicinal Food, 20, 676-684.
https://doi.org/10.1089/jmf.2016.3853
[4] Sulaiman, I., Lim, J.C., Soo, H.L. and Stanslas, J. (2016) Molecularly targeted Therapies for Asthma: Current Development, Challenges and Potential Clinical Translation. Pulmonary Phar-macology & Therapeutics, 40, 52-68.
https://doi.org/10.1016/j.pupt.2016.07.005
[5] Lee, S. and Kim, T.D. (2023) Breakthroughs in Cancer Immuno-therapy: An Overview of T Cell, NK Cell, M, and DC-Based Treatments. International Journal of Molecular Sciences, 24, Article 17634.
https://doi.org/10.3390/ijms242417634
[6] Shafqat, A., Khan, J.A., Alkachem, A.Y., Sabur, H., Alkattan, K., Ya-qinuddin, A. and Sing, G.K. (2023) How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. International Journal of Molecular Sciences, 24, Article 17583.
https://doi.org/10.3390/ijms242417583
[7] Ao, T., Kikuta, J. and Ishii, M. (2021) The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules, 11, Article 1624.
https://doi.org/10.3390/biom11111624
[8] 夏俊波, 宋云熙, 曾雪峰, 王彦, 王长征. 1,25二-羟维生素D_3处理树突状细胞在过敏性气道炎症中的作用[J]. 第三军医大学学报, 2008(8): 743-745.
[9] Amano, M., Nakayama, M. and Kaibuchi, K. (2010) Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity. Cytoskeleton, 67, 545-554.
https://doi.org/10.1002/cm.20472
[10] Possa, S.S., Charafeddine, H.T., Righetti, R.F., da Silva, P.A., Almeida-Reis, R., Saraiva-Romanholo, B.M., Perini, A., Prado, C.M., Leick-Maldonado, E.A., Martins, M.A. and Tibério Ide, F. (2012) Rho-Kinase Inhibition Attenuates Airway Responsiveness, Inflammation, Matrix Remodeling, and Oxidative Stress Activation Induced by Chronic Inflammation. American Journal of Physiology-Lung Cellular and Mo-lecular Physiology, 303, L939-L952.
https://doi.org/10.1152/ajplung.00034.2012
[11] Zheng, L., Li, X., Song, Q., Hou, C., Chen, X. and Li, B. (2019) PAI-1 Gene Polymorphism Was Associated with an Increased Risk of Allergic Diseases: Evidence from a Me-ta-Analysis of 14 Case-Control Studies. International Archives of Allergy and Immunology, 180, 255-263.
https://doi.org/10.1159/000502522
[12] Tang, R., Lyu, X., Li, H. and Sun, J. (2023) The 4G/5G Polymorphism of Plasminogen Activator Inhibitor Type 1 Is a Predictor of Allergic Cough. Frontiers in Genetics, 14, Article 1139813.
https://doi.org/10.3389/fgene.2023.1139813
[13] Lampalo, M., Jukić, I., Bingulac-Popović, J., Safić, H., Ferara, N. and Popović-Grle, S. (2018) The Role of Pai-1 Gene 4g/5g Polymorphism and Diagnostic Value of Biomarkers in Aller-gic and Non-Allergic Asthma Phenotype. Acta clinica Croatica, 57, 96-102.
https://doi.org/10.20471/acc.2018.57.01.11
[14] Ozbek, O.Y., Belgin Atac, F., Ogus, E. and Ozbek, N. (2009) Plasminogen Activator Inhibitor-I Gene 4G/5G Polymorphismin Turkish Children with Asthma and Allergic Rhinitis. Allergy and Asthma Proceedings, 2, 13-19.
[15] 林志, 张焕萍. 1, 25二羟维生素D3对哮喘大鼠气道重塑及纤溶酶原激活物抑制剂-1的影响[J]. 中国比较医学杂志, 2012, 22(3): 28-31.
[16] 宋颖芳, 赖国祥, 柳德灵, 等. 1, 25-二羟维生素D3抑制慢性哮喘模型小鼠肺组织α-滑肌肌动蛋白的表达及气道重塑[J]. 实用医学杂志, 2012, 28(21): 3517-3520.
[17] Ramirez, A.M., Wongtrakool, C., Welch, T., et al. (2010) Vitamin D Inhibition of Pro-Fibrotic Effects of Transforming Growth Factor β1 in Lung Fibroblasts and Epithelial Cells. The Journal of Steroid Biochemistry and Molecular Biology, 118, 142-150.
https://doi.org/10.1016/j.jsbmb.2009.11.004
[18] Li, X., Ma, L., Huang, K., et al. (2021) Regorafenib-Attenuated, Bleomycin-Induced Pulmonary Fibrosis by Inhibiting the TGF-β1 Signaling Pathway. International Journal of Molecular Sciences, 22, Article 1985.
[19] Takemasa, A., Ish II, Y. and Fukuda, T. (2012) A Neutrophil Elastase Inhibitor Prevents Bleomycin-Induced Pulmonary Fibrosis in Mice. European Respiratory Journal, 40, 1475-1482.
https://doi.org/10.1183/09031936.00127011
[20] Kang, H. (2017) Role of Micro RNAs in TGF-β Signaling Pathway-Mediated Pulmonary Fibrosis. International Journal of Molecular Sciences, 18, Article 2527.
https://doi.org/10.3390/ijms18122527
[21] Schneider, D.J., et al. (2012) Cadherin-11 Contributes to Pulmonary Fibrosis: Potential Role in TGF-β Production and Epithelial to Mesenchymal Transition. The FASEB Journal, 26, 503-512.
https://doi.org/10.1096/fj.11-186098
[22] Ricca, C., Aillon, A., Viano, M., et al. (2019) Vitamin D Inhib-its the Epithelial-Mesenchymal Transition by a Negative Feedback Regulation of TGF-β Activity. The Journal of Steroid Biochemistry and Molecular Biology, 187, 97-105.
https://doi.org/10.1016/j.jsbmb.2018.11.006
[23] Shi, Y., Liu, T., Yao, L., et al. (2017) Chronic Vitamin D Defi-ciency Induces Lung Fibrosis through Activation of the Renin-Angiotensin System. Scientific Reports, 7, Article No. 3312.
https://doi.org/10.1038/s41598-017-03474-6
[24] 倪娜, 刘乃国, 高海洋, 等. 大鼠肺纤维化和活性维生素D3干预后P32和PKD1的表达及作用研究[J]. 中国现代医学杂志, 2018, 28(7): 23-29.
[25] Ramirez, A.M., et al. (2010) Vitamin D Inhibition of Pro-Fibrotic Effects of Transforming Growth Factor β1 in Lung Fibroblasts and Epi-thelial Cells. The Journal of Steroid Biochemistry and Molecular Biology, 118, 142-150.
https://doi.org/10.1016/j.jsbmb.2009.11.004
[26] Tan, Z.X., Chen, Y.H., Xu, S., et al. (2016) Calcitriol Inhibits Bleomycin-Induced Early Pulmonary Inflammatory Response and Epithelial-Mesenchymal Transition in Mice. Toxicolo-gy Letters, 240, 161-171.
https://doi.org/10.1016/j.toxlet.2015.10.022
[27] 李瑟若. 维生素D缺乏通过加剧TGF-β/Smad2/3介导的上皮—间质转化加重博莱霉素诱导的肺纤维化[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2020.
[28] 许梦婷. 活性维生素D_3对肺纤维化大鼠的治疗意义和作用机制的研究[D]: [硕士学位论文]. 滨州: 滨州医学院, 2017.
[29] Torre, L.A., Siegel, R.L. and Jemal, A. (2016) Lung Cancer Statistics. In: Ahmad, A. and Gadgeel, S., Eds., Lung Cancer and Personalized Medicine, Springer, Cham, 1-19.
https://doi.org/10.1007/978-3-319-24223-1_1
[30] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[31] Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J. and Jemal, A. (2015) Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87-108.
https://doi.org/10.3322/caac.21262
[32] 谢雅丽, 李国平. 肺鳞癌患者血清25羟维生素D水平及其与氧化应激、DNA损伤的关系[J]. 山东医药, 2018, 58(6): 50-52.
[33] 邱海山, 屈莹莹, 赖卫民. 血清1, 25-二羟维生素D3水平与肺癌的相关性分析[J]. 解放军预防医学杂志, 2019, 37(4): 140-141.
[34] Arayici, M.E., Basbinar, Y. and El-lidokuz, H. (2023) Vitamin D Intake, Serum 25-Hydroxyvitamin-D (25(OH)D) Levels, and Cancer Risk: A Comprehen-sive Meta-Meta-Analysis Including Meta-Analyses of Randomized Controlled Trials and Observational Epidemiological Studies. Nutrients, 15, Article 2722.
https://doi.org/10.3390/nu15122722
[35] Qian, M., Lin, J., Fu, R., Qi, S., Fu, X., Yuan, L. and Qian, L. (2021) The Role of Vitamin D Intake on the Prognosis and Incidence of Lung Cancer: A Sys-tematic Review and Meta-Analysis. Journal of Nutritional Science and Vitaminology, 67, 273-282.
https://doi.org/10.3177/jnsv.67.273
[36] Viegi, G., Maio, S., Fasola, S. and Baldacci, S. (2020) Global Burden of Chronic Respiratory Diseases. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 33, 171-177.
https://doi.org/10.1089/jamp.2019.1576
[37] Khan, D.M., Ullah, A., Randhawa, F.A., et al. (2017) Role of vitamin D in Reducing Number of Acute Exacerbations in Chronic Obstructive Pulmonary Disease (COPD) Patients. Pakistan Journal of Medical Sciences, 33, 610-614.
https://doi.org/10.12669/pjms.333.12397
[38] Wang, Y., Wang, J., Chen, L., Zhang, H., Yu, L., Chi, Y., Chen, M. and Cai, Y. (2022) Efficacy of Vitamin D Supplementation on COPD and Asthma Control: A Systematic Review and Meta-Analysis. Journal of Global Health Science, 12, Article ID: 04100.
https://doi.org/10.7189/jogh.12.04100
[39] Afzal, S., Lange, P., Bojesen, S.E., et al. (2014) Plasma 25-Hydroxyvitamin D, Lung Function and Risk of Chronic Obstructive Pulmonary Disease. Thorax, 69, 24-31.
https://doi.org/10.1136/thoraxjnl-2013-203682
[40] Sundar, I.K., Hwang, J.W., Wu, S., et al. (2011) Deletion of Vitamin D Receptor Leads to Premature Emphysema/ COPD by Increased Matrix Metalloproteinases and Lymphoid Aggregates Formation. Biochemical and Biophysical Research Communications, 406, 127-133.
https://doi.org/10.1016/j.bbrc.2011.02.011
[41] 卢滨, 贾金广, 李利华,等. 血清25-(OH)D水平与慢性阻塞性肺疾病 患者肺功能及炎症反应的关系[J]. 中国老年学杂志, 2017, 37(1): 140-142.
[42] Tan, Z.X., Chen, Y.H., Xu, S., et al. (2016) Calcitriol Inhibits Tumor Necrosis Factor α and Macrophage Inflammatory Protein-2 during Lipopoly-saccharide-Induced Acute Lung Injury in Mice. Steroids, 112, 81-87.
https://doi.org/10.1016/j.steroids.2016.05.005