EBV重激活的研究进展
Research Progress on EBV Reactivation
DOI: 10.12677/ACM.2024.143725, PDF, HTML, XML, 下载: 55  浏览: 88 
作者: 李 由, 李用国*:重庆医科大学附属第一医院感染科,重庆
关键词: EBV潜伏期重新激活免疫治疗EBV Latency Reactivation Immunity Treatment
摘要: EB病毒(Epstein-Barr Virus, EBV)是一种在人群中广泛存在的病毒,它在人类生命周期中的某个时刻几乎无一例外地会感染到每个人。EBV通常能在人体B细胞和上皮细胞中建立长期潜伏感染,且在特定条件下可能重新激活。EBV的重激活与多种肿瘤性疾病相关,包括淋巴瘤和胃肠癌等。虽然目前没有官方批准的治疗方法,但已有研究显示某些抗病毒药物和质子泵抑制剂能有效抑制EBV的复制。但对于潜伏感染的治疗效果有限,因此需要更多研究来开发新的治疗策略。
Abstract: Epstein-Barr Virus (EBV) is a virus that is widely prevalent in the human population, infecting nearly everyone at some point during their lifetime. EBV typically establishes long-term latent in-fections in human B cells and epithelial cells, and can reactivate under certain conditions. Reacti-vation of EBV is associated with various tumorigenic diseases, including lymphomas and gastro-intestinal cancers. Although there are no officially approved treatments to date, studies have shown that certain antiviral drugs and proton pump inhibitors can effectively inhibit EBV replication. However, their effectiveness on latent infections is limited, necessitating further research to develop new therapeutic strategies.
文章引用:李由, 李用国. EBV重激活的研究进展[J]. 临床医学进展, 2024, 14(3): 467-473. https://doi.org/10.12677/ACM.2024.143725

1. 概述

EB病毒(Epstein-Barr Virus, EBV),又名人类疱疹病毒IV型(Herpesvirus 4, Human),是γ-疱疹病毒的一种。1964年,Epstein和Barr在非洲儿童的Burkitt淋巴瘤细胞中首次分离出此病毒,因而得名 [1] 。主要通过唾液进行传播,EBV以人类为其唯一宿主 [2] 。全球约85%至90%的成年人血清中可检测到EBV抗体。该病毒在急性感染后能在受感染的淋巴细胞中建立终身的稳定潜伏感染,这意味着大部分感染者能在无症状的情况下携带EBV [2] [3] 。然而,在某些特定生理及环境条件下,体内潜伏的病毒可能会被重新激活。

EB病毒的反复或持续激活可引发多种临床症状,如持续发热、淋巴结肿大,甚至可能促使B细胞永生化,从而触发多种肿瘤性疾病。近年研究表明,EBV在伯基特淋巴瘤(Burkitt Lymphomas, BL)、弥漫大B细胞淋巴瘤(Diffuse Large B-Cell Lymphomas, DLBCL)、霍奇金淋巴瘤(Hodgkin Lymphoma, HL)、原发性渗出性淋巴瘤(Primary Effusion Lymphoma, PEL)及浆母细胞淋巴瘤(Plasmablastic Lymphoma, PBL)等多种淋巴肿瘤中的检出率较高 [4] [5] [6] ,且与鼻咽癌 [7] 、胃肠癌 [8] 的发生有密切关联。然而,在临床实践中,对于EBV的再激活通常不予以足够的关注,特别是在免疫功能正常的个体中,检测率较低,即便确诊,也缺乏官方批准的治疗方法。本综述将详细阐述EBV感染及其重激活的致病机制,以及目前诊断和治疗研究的进展。

2. EBV的结构及功能

EBV,作为γ-疱疹病毒亚科的成员,隶属于疱疹病毒科。其病毒颗粒结构与其他疱疹病毒科病毒相似,具有双链DNA的核心结构,被二十面体的衣壳所包围,并由包膜所覆盖。衣壳与包膜之间的被膜区域含有多种糖蛋白,这些糖蛋白与包膜共同构成病毒的外层结构 [9] 。这些糖蛋白在病毒的多个生命周期阶段发挥关键作用,包括重激活、包膜的形成以及免疫逃避 [10] [11] 。此外,这些糖蛋白在病毒融合过程中起着至关重要的作用,并与病毒逃避免疫系统的机制密切相关 [12] 。

EBV主要攻击人体的B细胞和上皮细胞 [2] 。病毒进入细胞的机制是通过核心融合,这一过程涉及到EBV的多种糖蛋白,包括gB、gH和gL [12] 。在B细胞中,gH和gL与gp42共同形成gH/gL/gp42的异源三聚体,其中gp42能与B细胞表面的人类白细胞抗原(HLA) II类分子发生相互作用,促使病毒与细胞的融合 [13] 。EBV在初期的复制(裂解)阶段后,其基因组以多拷贝质粒形式环化并长期存留在B细胞核中。几乎所有被EBV感染的B细胞都处于潜伏状态,并表现出细胞永生化的特性 [14] 。同时,EBV也能感染上皮细胞,特别是口腔和鼻咽部的上皮细胞 [15] 。在这些细胞中,EBV的gH和gL形成异源二聚体,在早期阶段与上皮细胞表面的整合素αVβ5、αVβ6或αVβ8结合 [15] 。在上皮细胞中,EBV通常处于激活状态,这可能与某些上皮性肿瘤的发生有关,例如鼻咽癌 [7] 。

综上所述,EBV在人体中展现出多样化的细胞寄生性,其对B细胞和上皮细胞的感染是引发疾病的关键机制之一。

3. EBV感染潜伏期的建立和维持

B淋巴细胞中的EBV感染可表现为感染的潜伏期或裂解期 [16] 。在潜伏期,EBV的基因组DNA以闭合环状质粒的形态存在于宿主细胞核内,其行为类似于宿主染色体DNA。在这一状态下,病毒仅在宿主细胞分裂时依赖宿主细胞的酶系统进行基因复制,而在其他时间几乎不组装或产生病毒颗粒,这有利于EBV逃避宿主的免疫监视 [17] 。

在B细胞中,EBV的潜伏期与多达12个潜伏基因的表达有关。EBV感染B淋巴细胞后刺激其分化成记忆B细胞,这些记忆B细胞成为EBV的储存库。EBV蛋白的协同表达,尤其是潜伏膜蛋白(LMP1、LMP2A、LMP2B)和EBV核抗原(EBNA1、EBNA2、EBNA3A、EBNA3B、EBNA3C),对这一过程起到促进作用。基于蛋白质表达模式,潜伏期可分为四种不同的模式:0型、I型、II型或III型,每种模式都与B细胞感染的不同阶段及特定的淋巴增殖性疾病相关。类型I潜伏状态与Burkitt淋巴瘤有关,类型II潜伏状态可在与EBV相关的鼻咽癌、霍奇金淋巴瘤以及T细胞淋巴瘤中发现,而类型III潜伏状态则出现在淋巴母细胞瘤细胞系中 [18] [19] [20] 。

4. EB病毒再激活及裂解循环

潜伏感染期间的环状EB病毒在特定刺激下可转变为线性形态,从而进入裂解复制阶段 [17] 。在此阶段,病毒基因大量表达,基因组开始复制,并完成病毒颗粒的组装,最终释放大量病毒颗粒以继续感染宿主细胞 [17] 。这一过程被称为EBV的重激活(reactivation)。

在EBV的潜伏期,BZLF1编码的Zta和BRFL1编码的Rta受到高度抑制。潜伏期的重新激活依赖于这些区域的启动 [21] 。环状EBV通过去甲基化修饰病毒基因组中特定的DNA序列,导致这两种基因过度表达,从而调控潜伏状态的EBV进入裂解周期 [22] 。最新研究指出,EBV重激活相关区域的启动与B细胞受体信号通路有关。大多数EBV感染的细胞系在细胞表面都能表达Ig,而细胞膜表面Ig的交联是引起B细胞中潜伏感染的EBV重激活至裂解复制的重要途径 [23] 。在一些Burkitt’s淋巴瘤(BL)中,Anti-Ig通过交联B细胞表面受体激活了BCR信号通路,介导了EBV的重激活,并激活了PI3K、ERK及MAPK等信号通路 [24] 。此外,EBV的潜伏膜蛋白LMP2A作为BCR的模拟物,能够有效抑制BCR信号通路的正常传导 [25] [26] ,并参与调节宿主细胞的生存 [27] 。

体外实验显示,多种B细胞激活剂,如佛波酯(TPA)、抗免疫球蛋白(anti-Ig)、离子载体和丁酸钠,可以诱导EBV重激活 [24] [28] 。在体内,EBV的重激活常见于免疫功能低下的状态,例如接受免疫抑制治疗或艾滋病患者。EBV还可以作为机会性病毒,在共同感染下重新激活。例如,一项研究评估了在巨细胞病毒(CMV)和免疫抑制或化疗治疗环境下EBV的重新激活,发现在同时检测到CMVDNA的患者中,有52.7%的患者检测到EBVDNA,而在未检测到CMVDNA的患者中,只有14.8%的患者检测到EBVDNA [29] 。

值得注意的是,临床中存在大量EB病毒无症状感染患者,在使用某些药物如托珠单抗(tocilizumab)时,可能出现EB病毒重激活的情况。托珠单抗是一种广泛应用于治疗类风湿性关节炎、Castleman病、幼年特发性关节炎及重症新冠肺炎等疾病的人源化抗IL-6R抗体,具有显著的临床疗效 [30] [31] 。Norihiro Nishimoto等人在研究人源化抗IL-6受体抗体MRA在RA患者中的安全性和有效性时,报道了一例致死性慢性活动性EBV感染重激活的患者 [32] 。SARA BONINSEGNA等报道了使用托珠单抗后发生EBV急性非结石性胆囊炎的患者 [33] ,而Josef S Smolen等在研究托珠单抗疗效时,报道了一例使用过程中EBV重激活的患者 [34] 。这些研究表明,托珠单抗可以激活潜伏感染的EB病毒,并可能产生严重后果,这可能与托珠单抗抑制IL-6在抗病毒免疫中的作用有关 [35] 。

总结来说,EBV的重激活与多种分子机制有关,包括其遗传物质的结构转变、特定基因的表达调控以及与宿主细胞信号通路的相互作用。而影响EBV重激活的因素则包括宿主免疫功能低下、合并其他病原微生物感染以及一些药物如托珠单抗的影响。尽管目前对EBV重激活过程中的分子通路有了一定的认识,但关于体内引发病毒重激活的具体机制仍不完全清晰,需要进一步的研究和探索。

5. EBV重激活的检查手段

EB病毒(EBV)特异性抗体检测涉及其五种抗原成分及相对应的抗体,包括:衣壳抗原IgM抗体(VCA-IgM)、衣壳抗原IgG抗体(VCA-IgG)、早期抗原抗体(EA-IgG)、核心抗原抗体(EBNA-IgG)以及淋巴细胞决定的膜抗原抗体和膜抗原抗体。

在临床诊断中,常用EBV VCA IgG和EBNA1 IgG来检测过去是否曾感染EBV。这两种抗体在初次感染EBV后不久即可检测为阳性,并通常终生保持。阳性结果指示了既往EBV感染的存在。若EBV VCA IgG呈阳性而EBNA1 IgG呈阴性,则可能表明既往感染,此情况下患者可能处于免疫抑制状态或从未产生过EBNA1 IgG [36] 。

至于EBV的重激活,通常通过检测EBV EA-D IgG或EBV VCA IgM来确定 [37] [38] [39] 。血清中EBV DNA的定量实时聚合酶链式反应(PCR)检测也可用于识别循环病毒DNA的存在。在EBV的初次感染或重激活过程中,通常可在不同时间点检测到EBV EA-D IgG、EBV VCA IgM以及血清EBV DNA,因此,确诊EBV重激活状态需要综合运用多种检测方法 [40] [41] 。

6. EBV感染的治疗进展

虽然目前还没有专门针对EB病毒感染的药物获得批准,但是一些药物如抗病毒药物、抗血小板药物(双嘧达莫)以及质子泵抑制剂已被发现能有效抑制EB病毒的复制。这些药物的抗EBV活性主要是为了预防病毒的复制,对于感染的潜伏期则未显示显著影响。

核苷类似物阿昔洛韦主要用于治疗由单纯疱疹病毒(Herpes Simplex Virus,HSV)和水痘带状疱疹病毒(Varicella Zoster Virus, VZV)引起的感染。其抗病毒机制是通过阿昔洛韦三磷酸与疱疹病毒DNA聚合酶之间的高亲和力相互作用实现的,此亲和力显著高于其与宿主细胞DNA聚合酶的亲和力。在病毒DNA链中,三磷酸阿昔洛韦的掺入导致DNA链延伸不可逆转地中断。然而,阿昔洛韦对EB病毒的活性较其对HSV和VZV的活性低,但研究仍表明它能减少EB病毒的复现。相较之下,更昔洛韦显示出更强的抗EBV活性,但由于其较高的毒性,使得其在普通人群中的应用受到限制 [42] 。

最近的研究评估了两种前药,即富马酸替诺福韦二吡呋酯(TDF)和富马酸替诺福韦艾拉酚胺(TAF),在治疗EBV复活方面的效果。研究中,在丙酸钠刺激下诱导裂解周期的EBV阳性HH514-16细胞系,在接受TDF和TAF处理后,两组均展现了病毒拷贝数显著减少,减幅超过99.9%。然而,对于潜伏感染的EB病毒细胞,TAF/TDF的处理未能显示出治疗效果。此外,TAF和TDF的半数最大抑制浓度(IC50)值低于更昔洛韦和阿昔洛韦。进一步的实验表明,这两种药物的活性形式,即替诺福韦二磷酸,通过与dATP直接竞争抑制EBV DNA聚合酶 [43] 。

双嘧达莫作为治疗EB病毒感染的潜在药物选择正受到研究评估。研究中观察到,当双嘧达莫作用于经过抗体重激活的Akata细胞时,能够抑制病毒颗粒的产生,且这种抑制作用与双嘧达莫剂量成正相关。尽管对潜伏感染的细胞没有明显影响,但双嘧达莫显著减弱了Akata细胞中EBV裂解感染的复制。在多种细胞系中,双嘧达莫显著抑制了即刻早期和早期基因的转录。值得注意的是,当细胞在过量的腺苷或胸腺嘧啶存在下与双嘧达莫共同处理时,其抑制效应被逆转,这表明双嘧达莫可能通过抑制核苷运输来发挥其抗病毒作用 [44] 。

此外,一些治疗胃食道疾病的药物,如质子泵抑制剂(拉唑类化合物),也被认为可能具有抗病毒能力。例如,泰托拉唑能以剂量依赖的方式抑制病毒颗粒的释放,明显减少了被感染细胞上清液中的病毒颗粒和表面可检测到的病毒颗粒 [45] 。西咪替丁作为第一个H2受体拮抗剂,已知具有多种抗癌活性。虽然有报道称西咪替丁对慢性EBV再激活患者可能有益,但这一说法尚未在正式的临床试验中得到验证。西咪替丁的潜在机制可能包括抑制T辅助抑制细胞,从而增强CD8+ T细胞的细胞毒性和抗增殖活性 [46] [47] 。

这些发现表明,尽管当前没有专门针对EB病毒的药物,但已有的药物可在一定程度上抑制病毒的复制,为EBV感染的治疗提供了可能的途径。然而,对于潜伏感染的治疗,这些药物的效果有限,因此在研究和开发新的治疗策略方面仍有很大的空间。

7. 总结

EBV是一种高度流行的病毒,通常能在人体B细胞和上皮细胞中建立潜伏感染,并可能在特定条件下重新激活,引发多种疾病。它与多种淋巴肿瘤和癌症有关,但目前缺乏专门的治疗方法。尽管如此,已有药物,如抗病毒药物和质子泵抑制剂,显示出抑制EBV复制的潜能。然而,这些药物对潜伏感染的治疗效果有限,需要更多研究来开发有效治疗策略。

NOTES

*通讯作者。

参考文献

[1] Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt’s Lym-phoma. The Lancet, 283, 702-703.
https://doi.org/10.1016/S0140-6736(64)91524-7
[2] Shannon-Lowe, C. and Rowe, M. (2014) Epstein Barr Virus Entry; Kissing and Conjugation. Current Opinion in Virology, 4, 78-84.
https://doi.org/10.1016/j.coviro.2013.12.001
[3] Vetsika, E.K. and Callan, M. (2004) Infectious Mononucleosis and Epstein-Barr Virus. Expert Reviews in Molecular Medicine, 6, 1-16.
https://doi.org/10.1017/S1462399404008440
[4] Cesarman, E. (2011) Gammaherpesvirus and Lymphoproliferative Disorders in Immunocompromised Patients. Cancer Letters, 305, 163-174.
https://doi.org/10.1016/j.canlet.2011.03.003
[5] Ok, C.Y., Li, L. and Young, K.H. (2015) EBV-Driven B-Cell Lymphoproliferative Disorders: From Biology, Classification and Differential Diagnosis to Clinical Management. Ex-perimental & Molecular Medicine, 47, e132.
https://doi.org/10.1038/emm.2014.82
[6] Thorley-Lawson, D.A., Hawkins, J.B., Tracy, S.I. and Shapiro, M. (2013) The Pathogenesis of Epstein-Barr Virus Persistent Infection. Current Opinion in Virology, 3, 227-232.
https://doi.org/10.1016/j.coviro.2013.04.005
[7] Yang, Z., Wang, J., Zhang, Z. and Tang, F. (2019) Epstein-Barr Virus-Encoded Products Promote Circulating Tumor Cell Generation: A Novel Mechanism of Nasopharyngeal Carci-noma Metastasis. OncoTargets and Therapy, 12, 11793-11804.
https://doi.org/10.2147/OTT.S235948
[8] Iizasa, H., Nanbo, A., Nishikawa, J., Jinushi, M. and Yoshiyama, H. (2012) Epstein-Barr Virus (EBV)-Associated Gastric Carcinoma. Viruses, 4, 3420-3439.
https://doi.org/10.3390/v4123420
[9] Machón, C., Fàbrega-Ferrer, M., Zhou, D., Cuervo, A., Carrascosa, JL., Stuart, D.I., et al. (2019) Atomicstructure of the Epstein-Barr Virus Portal. Nature Communications, 10, Article No. 3891.
https://doi.org/10.1038/s41467-019-11706-8
[10] He, H.P., Luo, M., Cao, Y.L., Lin, Y.X., Zhang, H., Zhang, X., et al. (2020) Structure of Epstein-Barr Virus Tegument Protein Complex BBRF2-BSRF1 Reveals Its Potential Role in Viral Envelopment. Nature Communications, 11, Article No. 5405.
https://doi.org/10.1038/s41467-020-19259-x
[11] Chen, T., Wang, Y., Xu, Z., Zou, X., Wang, P., Ou, X., et al. (2019) Epstein-Barr Virus Tegument Protein BGLF2 Inhibits NF-κB Activity by Preventing P65 Ser536 Phosphoryla-tion. The FASEB Journal, 33, 10563-10576.
https://doi.org/10.1096/fj.201901196RR
[12] Hutt-Fletcher, L.M. (2015) EBV Glycoproteins: Where Are We Now? Future Medicine, 10, 1155-1162.
https://doi.org/10.2217/fvl.15.80
[13] Kirschner, A.N., Sorem, J., Longnecker, R. and Jardetzky, T.S. (2009) Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry. Structure, 17, 223-233.
https://doi.org/10.1016/j.str.2008.12.010
[14] Ohga, S., Nomura, A., Takada, H. and Hara, T. (2002) Immuno-logical Aspects of Epstein-Barr Virus Infection. Critical Reviews in Oncology/Hematology, 44, 203-215.
https://doi.org/10.1016/S1040-8428(02)00112-9
[15] Hutt-Fletcher, L.M. and Chesnokova, L.S. (2010) Integrins as Triggers of Epstein-Barr Virus Fusion and Epithelial Cell Infection. Virulence, 1, 395-398.
https://doi.org/10.4161/viru.1.5.12546
[16] Inagaki, T., Sato, Y., Ito, J., Takaki, M., Okuno, Y., Yaguchi, M., et al. (2020) Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency during B-Cell Infection. Frontiers in Microbiology, 11, Article 575255.
https://doi.org/10.3389/fmicb.2020.575255
[17] Tsurumi, T., Fujita, M. and Kudoh, A. (2005) Latent and Lytic Epstein-Barr Virus Replication Strategies. Reviews in Medical Virology, 15, 3-15.
https://doi.org/10.1002/rmv.441
[18] Morscio, J. and Tousseyn, T. (2016) Recent Insights in the Pathogenesis of Post-Transplantation Lymphoproliferative Disorders. World Journal of Transplantation, 6, 505-516.
https://doi.org/10.5500/wjt.v6.i3.505
[19] Kempkes, B. and Robertson, E.S. (2015) Epstein-Barr Virus Latency: Current and Future Perspectives. Current Opinion in Virology, 14, 138-144.
https://doi.org/10.1016/j.coviro.2015.09.007
[20] Elgui De Oliveira, D., Müller-Coan, B.G. and Pagano, J.S. (2016) Viral Carcinogenesis beyond Malignant Transformation: EBV in the Progression of Human Cancers. Trends in Microbiology, 24, 649-664.
https://doi.org/10.1016/j.tim.2016.03.008
[21] Lupey-Green, L.N., Moquin, S.A., Martin, K.A., McDevitt, S.M., Hulse, M., Caruso, L.B., et al. (2017) PARP1 Restricts Epstein Barr Virus Lytic Reactivation by Binding the BZLF1 Promoter. Virology, 507, 220-230.
https://doi.org/10.1016/j.virol.2017.04.006
[22] Dunmire, S.K., Verghese, P.S. and Balfour, H.H. (2018) Primary Epstein-Barr Virus Infection. Journal of Clinical Virology, 102, 84-92.
https://doi.org/10.1016/j.jcv.2018.03.001
[23] Takada, K. (1984) Cross-Linking of Cell Surface Immunoglobulins Induces Epstein-Barr Virus in Burkitt Lymphoma Lines. International Journal of Cancer, 33, 27-32.
https://doi.org/10.1002/ijc.2910330106
[24] Kenney, S.C. and Mertz, J.E. (2014) Regulation of the Latent-Lytic Switch in Epstein-Barr Virus. Seminars in Cancer Biology, 26, 60-68.
https://doi.org/10.1016/j.semcancer.2014.01.002
[25] Seo, M.D., Park, S.J., Kim, H.J. and Lee, B.J. (2007) Iden-tification of the WW Domain-Interaction Sites in the Unstructured N-Terminal Domain of EBV LMP 2A. FEBS Letters, 581, 65-70.
https://doi.org/10.1016/j.febslet.2006.11.078
[26] Incrocci, R., Hussain, S., Stone, A., Bieging, K., Alt, L.A.C., Fay, M.J., et al. (2015) Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A)-Mediated Changes in Fas Expression and Fas-Dependent Apoptosis: Role of Lyn/Syk Activation. Cellular Immunology, 297, 108-119.
https://doi.org/10.1016/j.cellimm.2015.08.001
[27] Ma, Y., Walsh, M.J., Bernhardt, K., Ashbaugh, C.W., Trudeau, S.J., Ashbaugh, I.Y., et al. (2017) CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency Factors. Cell Host Microbe, 21, 580-591.E7.
https://doi.org/10.1016/j.chom.2017.04.005
[28] Murata, T. and Tsurumi, T. (2014) Switching of EBV Cycles between Latent and Lytic States. Reviews in Medical Virology, 24, 142-153.
https://doi.org/10.1002/rmv.1780
[29] Hatayama, Y., Hashimoto, Y. and Motokura, T. (2020) Frequent Co-Reactivation of Epstein-Barr Virus in Patients with Cytomegalovirus Viremia under Immunosuppressive Therapy and/or Chemotherapy. Journal of International Medical Research, 48, 1-11.
https://doi.org/10.1177/0300060520972880
[30] Parums, D.V. (2021) Editorial: Tocilizumab, a Humanized Therapeutic IL-6 Receptor (IL-6R) Monoclonal Antibody, and Future Combination Therapies for Severe COVID-19. Medical Science Monitor, 27, e933973.
https://doi.org/10.12659/MSM.933973
[31] Venkiteshwaran, A. (2009) Tocilizumab. mAbs, 1, 432-438.
https://doi.org/10.4161/mabs.1.5.9497
[32] Nishimoto, N., Yoshizaki, K., Miyasaka, N., Yamamoto, K., Kawai, S., Takeuchi, T., et al. (2004) Treatment of Rheumatoid Arthritis with Humanized Anti-Interleukin-6 Receptor Antibody: A Multicenter, Double-Blind, Placebo-Controlled Trial. Arthritis & Rheumatology, 50, 1761-1769.
https://doi.org/10.1002/art.20303
[33] Boninsegna, S., Storato, S., Riccardi, N., Soprana, M., Oliboni, E., Tamarozzi, F., et al. (2021) Epstein-Barr Virus (EBV) Acute Acalculous Cholecystitis in an Immunocompromised Adult Patient: A Case Report and a Literature Review of a Neglected Clinical Presentation. Journal of Preventive Medicine and Hygiene, 62, E237-E242.
[34] Smolen, J.S., Beaulieu, A., Rubbert-Roth, A., Ramos-Remus, C., Rovensky, J., Alecock, E., et al. (2008) Effect of Interleukin-6 Receptor Inhibition with Tocilizumab in Patients with Rheumatoid Arthritis (OPTION Study): A Double-Blind, Placebo-Controlled, Randomised Trial. The Lancet, 371, 987-997.
https://doi.org/10.1016/S0140-6736(08)60453-5
[35] Ramshaw, I.A., Ramsay, A.J., Karupiah, G., Rolph, M.S., Mahalingam, S. and Ruby, J.C. (1997) Cytokines and Immunity to Viral Infections. Immunological Reviews, 159, 119-135.
https://doi.org/10.1111/j.1600-065X.1997.tb01011.x
[36] Bauer, G. (2001) Simplicity through Com-plexity: Immunoblot with Recombinant Antigens as the New Gold Standard in Epstein-Barr Virus Serology. Clinical Laboratory, 47, 223-230.
[37] Straus, S.E., Tosato, G., Armstrong, G., Lawley, T., Preble, O.T., Henle, W., et al. (1985) Persisting Illness and Fatigue in Adults with Evidence of Epstein-Barr Virus Infection. Annals of Internal Med-icine, 102, 7-16.
https://doi.org/10.7326/0003-4819-102-1-7
[38] Stowe, R.P., Pierson, D.L., Feeback, D.L. and Barrett, A.D. (2000) Stress-Induced Reactivation of Epstein-Barr Virus in Astronauts. Neuroimmunomodulation, 8, 51-58.
https://doi.org/10.1159/000026453
[39] Schaade, L., Kleines, M. and Häusler, M. (2001) Application of Vi-rus-Specific Immunoglobulin M (IgM), IgG, and IgA Antibody Detection with a Polyantigenic Enzyme-Linked Immunosorbent Assay for Diagnosis of Epstein-Barr Virus Infections in Childhood. Journal of Clinical Microbiology, 39, 3902-3905.
https://doi.org/10.1128/JCM.39.11.3902-3905.2001
[40] Lam, W.K.J., Jiang, P., Chan, K.C.A., Cheng, S.H., Zhang, H., Peng, W., et al. (2018) Sequencing-Based Counting and Size Profiling of Plasma Epstein-Barr Virus DNA Enhance Population Screening of Nasopharyngeal Carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 115, E5115-E5124.
https://doi.org/10.1073/pnas.1804184115
[41] Chan, K.C.A., Woo, J.K.S., King, A., Zee, B.C.Y., Lam, W.K.J., Chan, S.L., et al. (2017) Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. The New England Journal of Medicine, 377, 513-522.
https://doi.org/10.1056/NEJMoa1701717
[42] Pagano, J.S., Whitehurst, C.B. and Andrei, G. (2018) Antiviral Drugs for EBV. Cancers, 10, Article 197.
https://doi.org/10.3390/cancers10060197
[43] Drosu, N.C., Edelman, E.R. and Housman, D.E. (2020) Tenofovir Prodrugs Potently Inhibit Epstein-Barr Virus Lytic DNA Replication by Targeting the Viral DNA Polymerase. Pro-ceedings of the National Academy of Sciences of the United States of America, 117, 12368-12374.
https://doi.org/10.1073/pnas.2002392117
[44] Thomé, M.P., Borde, C., Larsen, A.K., Henriques, J.A.P., Lenz, G., Escargueil, A.E., et al. (2019) Dipyridamole as a New Drug to Prevent Epstein-Barr Virus Reactivation. Antiviral Re-search, 172, Article ID: 104615.
https://doi.org/10.1016/j.antiviral.2019.104615
[45] Watanabe, S.M., Ehrlich, L.S., Strickland, M., Li, X., Soloveva, V., Goff, A.J., et al. (2020) Selective Targeting of Virus Replication by Proton Pump Inhibitors. Scientific Reports, 10, Article No. 4003.
https://doi.org/10.1038/s41598-020-60544-y
[46] Jafarzadeh, A., Nemati, M., Khorramdelazad, H. and Hassan, Z.M. (2019) Immunomodulatory Properties of Cimetidine: Its Therapeutic Potentials for Treatment of Immune-Related Diseases. International Immunopharmacology, 70, 156-166.
https://doi.org/10.1016/j.intimp.2019.02.026
[47] Pantziarka, P., Bouche, G., Meheus, L., Sukhatme, V. and Sukhatme, V.P. (2014) Repurposing Drugs in Oncology (ReDO)—Cimetidine as an Anti-Cancer Agent. Ecancermedicalscience, 8, 485.
https://doi.org/10.3332/ecancer.2014.485