有机太阳能电池磁场效应研究进展
Progress in Magnetic Field Effects in Organic Photovoltaic Cell
DOI: 10.12677/EAA.2013.21003, PDF, HTML, XML, 下载: 4,670  浏览: 17,850  国家自然科学基金支持
作者: 张宜波, 申 燕:华中科技大学武汉光电国家实验室(筹),武汉;王鸣魁:华中科技大学武汉光电国家实验室(筹),格兰泽尔介观太阳能电池研究中心,武汉
关键词: 有机太阳能电池磁场效应单重态三重态 Organic Photovoltaic Cell; Magnetic Field Effects; Singlet; Triplet
摘要:

有机太阳能电池是一种廉价、清洁的发电技术,备受研究人员的广泛关注。目前有机太阳能电池能量转换效率(PCE)已经超过10%。有机半导体磁场效应的发现为研究有机太阳能电池工作机理、提高器件光电转化效率提供了一种新方法。这篇评述简述了有机太阳能电池单重态、三重态激发态的形成和分离过程,对有机半导体、体异质结太阳能电池、杂化太阳能电池的磁场效应研究进行了详细介绍,并对有机太阳能电池磁场效应研究发展方向进行了展望。

Abstract: Recently, organic photovoltaic cell (OPV), as new type of low cost, clean electricity generation technology, has attracted extensive attention. Recently the development of optoelectronics function materials used in OPV devices has led to remarkable solar photovoltaic power conversion efficiencies over 10%. The discovery of magnetic field effects on organic semiconductor materials has developed a new methodology to further improve the OPV’s photovoltaic efficiency. In this article, the formation and dissociation processes of singlet excited states and triplet excited states are reviewed. In particular the discussion will focus on the progress in the magnetic field effects in organic semiconductor materials bulk and hybrid solar cell. In the end, an outlook of magnetic field effects in OPV device is made.

文章引用:张宜波, 申燕, 王鸣魁. 有机太阳能电池磁场效应研究进展[J]. 电磁分析与应用, 2013, 2(1): 15-23. http://dx.doi.org/10.12677/EAA.2013.21003

参考文献

[1] E. Sean, D. S. Ginley. Organic-based photovoltaics: Toward low- cost power generation. MRS Bulletin, 2005, 30(1): 10-19.
[2] M. A. Green, et al. Solar cell efficiency tables (version 40). Progress in Photo-voltaics: Research and Applications, 2012, 20(5): 606-614.
[3] H. P. Schwob, D. F. Williams. A theory for magnetic-field effects of non-magnetic organic semiconducting materials. Bulletin of the American Physical Society, 1972, 17: 661.
[4] R. E. Merrifield. Theory of magnetic field effects on the mutual annihilation of triplet excitons. The Journal of Chemical Physics, 1968, 48(9): 4318.
[5] V. Ern, R. Merrifield, Magnetic field effect on triplet exciton quenching in or-ganic crystals. Physical Review Letters, 1968, 21(9): 609-611.
[6] E. L. Frankevich, I. A. Sokolik. On the mechanism of the magnetic field effect on anthracene photoconductivity. Solid State Communications, 1970, 8(4): 251.
[7] B. Hu, L. Yan and M. Shao. Magnetic-field effects in organic semiconducting materials and devices. Advanced Materials, 2009, 21(14-15): 1500-1516.
[8] Z. Xu, B. Hu. Photo-voltaic processes of singlet and triplet excited states in organic solar cells. Advanced Functional Materials, 2008, 18(17): 2611-2617.
[9] Z. Xu, Y. Wu and B. Hu. Dissociation processes of singlet and triplet excitons in organic photovoltaic cells. Applied Phys-ics Letters, 2006, 89(13): Article ID: 131116.
[10] Z. Xu, B. Hu and J. Howe. Improvement of photovoltaic response based on enhancement of spin-orbital coupling and triplet states in organic solar cells. Journal of Applied Physics, 2008. 103(4): Article ID: 043909.
[11] P. Peumans, S. Uchida and S. R. Forrest. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 2003, 425(6954): 158-162.
[12] S. E. Shaheen, et al. Fabrication of bulk heterojunction plastic solar cells by screen printing. Applied Physics Letters, 2001, 79(18): 2996.
[13] C. W. Tang. Two-layer organic photovoltaic cell. Applied Physics Letters, 1986, 48(2): 183.
[14] H. Kallmann, M. Pope. Photovoltaic effect in organic crystals. The Jour-nal of Chemical Physics, 1959, 30(2): 585.
[15] D. P. Craig, S. H. Walmskey. Excitons in molecular crystals. New York: Benjamin, 1968.
[16] M. Chandross, et al. Excitons in poly(para-phenylenevinylene). Physical Review B, 1994, 50(19): 14702-14705.
[17] E. Frankevich, et al. Polaron-pair generation in poly(phenylene vinylenes). Physical Review B, 1992, 46(15): 9320-9324.
[18] A. Kadashchuk, et al. Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers. Physical Review Letters, 2004, 93(6): Article ID: 066803.
[19] J. Frenkel. On pre-breakdown phenomena in insulators and electronic semi-conductors. Physical Review, 1938. 54(8): 647-648.
[20] L. Onsager. Initial re-combination of ions. Physical Review, 1938, 54(8): 554-557.
[21] W. Helfrich. Destruction of triplet excitons in anthracene by injected elec-trons. Physical Review Letters, 1966, 16(10): 401- 403.
[22] J. Lev-inson. Determination of the triplet exciton-trapped electron interaction rate constant in anthracene crystals. The Journal of Chemical Physics, 1970, 52(5): 2794.
[23] I. V. Tolstov, et al. On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS. Journal of Luminescence, 2005, 112(1-4): 368- 371.
[24] J. Kalinowski, J. Szmytkowski and W. Stampor. Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3. Chemical Physics Letters, 2003, 378(3-4): 380-387.
[25] P. Bobbert, et al. Bipolaron mechanism for organic magnetoresistance. Physical Review Letters, 2007, 99(21): Article ID: 216801.
[26] T.-H. Lee, et al. Modulations of photoinduced magneto-conductance for polymer diodes. Applied Physics Letters, 2008, 92(15): Article ID: 153303.
[27] U. E. Steiner, T. Ulrich. Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 1989, 89(1): 51- 147.
[28] Y. Lei, et al. Magnetoconductance of poly-mer-fullerene bulk heterojunction solar cells. Organic Electronics, 2009, 10(7): 1288- 1292.
[29] S. Majumdar, H. S. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho and R. Österbacka. Role of electron-hole pair formation in organic magnetoresistance. Physical Review B, 2009, 79(20): Article ID: 201202.
[30] F. Wang, H. Bässler and Z. Valy Vardeny. Magnetic field effects in π-conjugated polymer-fullerene blends: Evidence for multiple components. Physical Review Letters, 2008, 101(23): Article ID: 236805.
[31] Y. Lei. Progress in the mag-netic field effects in organic semiconductor devices. CSB, 2010. 55(24): 2361.
[32] M. Scharber, et al. Optical- and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene compos-ites. Physical Review B, 2003, 67(8): Article ID: 085202.
[33] H. Zang, Z. Xu and B. Hu. Magneto-Optical Investigations on the forma-tion and dissociation of intermolecular charge-transfer complexes at donor acceptor interfaces in bulk-heterojunction organic solar cells. Journal of Physical Chemistry B, 2010, 114(17): 5704-5709.
[34] J. Y. Kim, et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317(5835): 222-225.
[35] G. Li, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864-868.
[36] L. H. Nguyen, et al. Effects of annealing on the nano-morphology and performance of poly(alkylthiophene): Fullerene bulk-het- erojunction solar cells. Advanced Functional Materials, 2007, 17(7): 1071-1078.
[37] J. Jo, et al. Time-dependent morphology evo-lution by annealing processes on polymer: Fullerene blend solar cells. Advanced Functional Materials, 2009, 19(6): 866-874.
[38] T. M. Clarke, et al. Free energy control of charge photogeneration in polythiophene/fullerene solar cells: The influence of thermal annealing on P3HT/PCBM blends. Advanced Functional Materials, 2008, 18(24): 4029-4035.
[39] H. Zang, et al. Intra-molecular donor-acceptor inter-action effects on charge dissociation, charge transport, and charge collection in bulk-heterojunction organic solar cells. Advanced Energy Materials, 2011, 1(5): 923-929.
[40] H. Zang, I. N. B. Hu. Magnetic studies of photovoltaic processes in organic solar cells. Selected Topics in Quantum Electronics, 2010, 16: 6.