慢性疲劳综合征的免疫学相关现状
Immunological Related Status of Chronic Fatigue Syndrome
DOI: 10.12677/ACM.2018.84068, PDF, HTML, XML, 下载: 862  浏览: 1,249 
作者: 王 婕:青岛大学,山东 青岛;毛拥军:青岛大学附属医院,山东 青岛
关键词: 慢性疲劳综合征免疫系统B细胞细胞因子NK细胞Chronic Fatigue Syndrome Immune System B Cells Cytokines NK Cells
摘要: 随着现代社会经济的发展及社会生活水平的提高,越来越多的人们开始关注身心健康的发展,近二十年来医学界逐渐提出慢性疲劳综合征这个新的医学概念,但其发病机制至今尚未被完全阐明,目前认为其发生可能是病毒感染、氧化应激、遗传因素、免疫功能异常等多种因素引起神经内分泌免疫网络功能紊乱的结果,在这篇综述中,我们将讨论免疫系统不同成分参与慢性疲劳综合征发病机制的机理。
Abstract: With the development of modern social economy and the improvement of social living standards, more and more people are concerned about the development of physical and mental health. The new medical concept of chronic fatigue syndrome (CFS) has been proposed by the medical com-munity for nearly two decades, and its pathogenesis has not yet been fully elucidated. At present, it is believed that it may be the result of various factors such as virus infection, oxidative stress, genetic factors, immune dysfunction and other factors that cause the neuroendocrine immune network dysfunction. In this review, we will discuss the potential of different components of the immune system to be involved in the pathogenesis of CFS.
文章引用:王婕, 毛拥军. 慢性疲劳综合征的免疫学相关现状[J]. 临床医学进展, 2018, 8(4): 404-407. https://doi.org/10.12677/ACM.2018.84068

1. 引言

慢性疲劳综合征(chronic fatigue syndrome, CFS)由美国CDC专家 [1] 于1988年首次提出并定义的一组以长期极度疲劳为主要表现的全身综合征,包括疲劳、头痛、咽痛、淋巴结痛、肌肉酸痛和认知障碍,其基本特征为新发生的、持续或反复发作的虚弱性疲劳,持续时间大于6个月,并且休息后不能缓解,现代医学检查也未发现器质性病变,这些症状通常在身体或精神消耗后引发或恶化。长期以来,CFS被认为具有显著的免疫学成分,但是描述免疫功能变化的报道通常在研究组之间不一致。要了解这种复杂情况下的致病机制,重要的是要考虑不同队列中的重复分析,在此我们将总结CFS患者免疫学相关知识的现状。

2. 细胞毒性

许多CFS患者在病情发作前就描述了病毒感染的病史 [2] ,这也被认为是CFS患者所描述的一些免疫异常的基础 [3] [4] [5] [6] 。CFS患者免疫系统成分变化的最一致的结果来自自然杀伤(NK)细胞功能的研究。NK细胞是一种细胞毒性淋巴细胞,并且是先天免疫系统的一部分。NK细胞在识别病毒感染细胞和转化细胞宿主排斥的最早阶段起着关键作用。许多CFS病例的发作与(病毒)感染有关,特别是由Epstein-Barr病毒(EBV),巨细胞病毒(CMV)和6型和7型人疱疹病毒引起的 [2] [3] [5] [7] 。因此,NK细胞数量和功能的降低被认为是诱发CFS特征的原因。在CFS患者已经报道了中几个组的NK细胞(CD16, CD56)的减少的数目和体外细胞毒性活性 [8] [9] [10] 。另外两项研究报道CFS患者T细胞和NK细胞活化标志物CD69水平降低 [11] [12] 。Marshall Gradisnik等人的研究提出单核苷酸多态性(SNP)和基因型可能参与NK细胞功能的改变以及通过瞬时受体电位(TRP)和乙酰胆碱受体(AChR)离子通道信号传导中钙代谢调节异常而发生CFS病理变化 [13] 。

3. 细胞因子

细胞因子是一类广泛的小分子蛋白质,在细胞信号传导中很重要,主要作为免疫系统细胞之间的传播者,并且主要在调节体液和直接细胞介导的免疫应答之间的平衡中起重要作用。Brodrick等人的一项研究表明,与正常恢复的对照相比,在感染性单核细胞增多症(IM)后发展为CFS的青少年患者显示IL-8增加和IL-5和IL-23细胞因子减少 [14] ,本研究中最显著的差异是IL-23的水平在CFS患者的水平较低(R < 0.05)。通过大量实验研究,发现细胞因子改变与疾病持续时间之间的关联性强于疾病严重程度,表明CFS潜在的免疫病理学是慢性和进行性的。

4. 自身抗体和B细胞表型

在CFS中有许多报道描述了神经内分泌受体自身抗体的存在 [15] [16] [17] [18] ,其中已经描述了一部分CFS患者的抗毒蕈碱和抗肾上腺素能抗体 [17] [19] 。通过一些研究表明,B细胞和自身抗体在CFS的发生和延续中起作用的可能性已经因此刺激了对B细胞功能和表型的兴趣。Loebel等研究描述了特异性记忆B细胞对EBV的应答 [6] ,他们发现多达76%的患者中EBV核抗原(EBNA)和病毒衣壳抗原(VCA)-抗体分泌细胞的数量减少或缺失。当比较血液免疫细胞中的EBV载量时,与健康对照相比,在CFS患者中发现EBV编码的小核RNA (EBER)更频繁,EBER是EBV的即时早期病毒基因,与其他疱疹病毒中的其他中/早期基因同源。这表明更频繁的潜在持久性,得出的结论是CFS患者存在EBV特异性B细胞记忆应答,并且能够控制早期EBV再激活。

总之,在CFS的总体诊断下,多重重叠和不重叠的症状不仅使诊断复杂化,而且妨碍了生物医学研究。然而,认识到CFS的复杂性和新的分级方法正在开始揭示潜在的病理生理机制。CFS已成为2l世纪影响人类健康的主要问题之一,受到国内外医学界的广泛关注。然而目前对CFS一些免疫学方面的研究还存在一些不足,到目前为止国内外尚没有对其发病机制研究清楚,而临床上也缺乏治疗CFS患者的统一方案。希望随着对CFS的深入研究,能充分认识其发病机制及其中的免疫学成分,从而为CFS患者的防治提供更加有力的科学依据。

参考文献

NOTES

*通讯作者

参考文献

[1] Kawakami, N., Lwata, N., Fujihara, S., et al. (1998) Prevalence of Chronic Fatigue Syndrome in a Community Popula-tion in Japan. Tohoku Journal of Experimental Medicine, 186, 33-41.
[2] Levy, J.A. (1994) Viral Studies of Chronic Fatigue Syndrome. Clinical Infectious Diseases, 18, S130-S133.
https://doi.org/10.1093/clinids/18.Supplement_1.S130
[3] Agliari, E., Barra, A., Vidal, K.G., et al. (2012) Can Persistent Epstein-Barr Virus Infection Induce Chronic Fatigue Syndrome as a Pavlov Reflex of the Immune Response? Journal of Biological Dynamics, 6, 740-762.
https://doi.org/10.1080/17513758.2012.704083
[4] Bansal, A.S., Bradley, A.S., Bishop, K.N., et al. (2012) Chronic Fatigue Syndrome, the Immune System and Viral Infection. Brain Behavior & Immunity, 26, 24-31.
https://doi.org/10.1016/j.bbi.2011.06.016
[5] Chapenko, S., Krumina, A., Logina, I., et al. (2012) Association of Active Human Herpesvirus-6, -7 and Parvovirus b19 Infection with Clinical Outcomes in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Advances in Virology, 2012, Article ID 205085.
https://doi.org/10.1155/2012/205085
[6] Loebel, M., Strohschein, K., Giannini, C., et al. (2014) Deficient EBV-Specific B- and T-Cell Response in Patients with Chronic Fatigue Syndrome. PLoS ONE, 9, e85387.
https://doi.org/10.1371/journal.pone.0085387
[7] Hickie, I., Davenport, T., Wakefield, D., et al. (2006) Post-Infective and Chronic Fatigue Syndromes Precipitated by Viral and Non-Viral Pathogens: Prospective Cohort Study. BMJ, 333, 575.
https://doi.org/10.1136/bmj.38933.585764.AE
[8] Barker, E., Fujimura, S.F., Fadem, M.B., et al. (1994) Im-munologic Abnormalities Associated with Chronic Fatigue Syndrome. Clinical Infectious Diseases, 18, S136-S141.
https://doi.org/10.1093/clinids/18.Supplement_1.S136
[9] Lorusso, L., Mikhaylova, S.E., Ferrari, D., et al. (2009) Immunological Aspects of Chronic Fatigue Syndrome. Autoimmunity Reviews, 8, 287-291.
https://doi.org/10.1016/j.autrev.2008.08.003
[10] Masuda, A., Nozoe, S.I., Matsuyama, T., et al. (1994) Psycho-behavioral and Immunological Characteristics of Adult People with Chronic Fatigue and Patients with Chronic Fatigue Syndrome. Psychosomatic Medicine, 56, 512-518.
https://doi.org/10.1097/00006842-199411000-00006
[11] Maes, M., Mihaylova, I. and Leunis, J.C. (2005) In Chronic Fatigue Syndrome, the Decreased Levels of Omega-3 Poly-Unsaturated Fatty Acids Are Related to Lowered Serum Zinc and Defects in T Cell Activation. Neuro Endocrinology Letters, 26, 745.
[12] Mihaylova, I., Deruyter, M., Rummens, J.L., et al. (2007) Decreased Expression of CD69 in Chronic Fatigue Syndrome in Relation to Inflammatory Markers: Evidence for a Severe Disorder in the Early Activation of T Lymphocytes and Natural Killer Cells. Neuro Endocrinology Letters, 28, 477-483.
[13] Sonya, M.G., Teilah, H., Anu, C., et al. (2016) Natural Killer Cells and Single Nucleotide Polymorphisms of Specific Ion Channels and Receptor Genes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Application of Clinical Genetics, 9, 39-47.
[14] Broderick, G., Katz, B.Z., Fernandes, H., et al. (2012) Cytokine Expression Profiles of Immune Imbalance in Post-Mononucleosis Chronic Fatigue. Journal of Translational Medicine, 10, 191.
https://doi.org/10.1186/1479-5876-10-191
[15] Konstantinov, K., Von, M.A., Buchwald, D., et al. (1996) Auto-antibodies to Nuclear Envelope Antigens in Chronic Fatigue Syndrome. Journal of Clinical Investigation, 98, 1888-1896.
https://doi.org/10.1172/JCI118990
[16] Maes, M., Mihaylova, I., Kubera, M., et al. (2012) IgM-Mediated Autoimmune Responses Directed against Anchorage Epitopes Are Greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in Major Depression. Metabolic Brain Disease, 27, 415-423.
https://doi.org/10.1007/s11011-012-9316-8
[17] Tanaka, S., Kuratsune, H., Hidaka, Y., et al. (2003) Autoanti-bodies against Muscarinic Cholinergic Receptor in Chronic Fatigue Syndrome. International Journal of Molecular Medicine, 12, 225-230.
https://doi.org/10.3892/ijmm.12.2.225
[18] Von, M.A., Konstantinov, K., Buchwald, D.S., et al. (1997) High Frequency of Autoantibodies to Insoluble Cellular Antigens in Patients with Chronic Fatigue Syndrome. Arthritis & Rheumatology, 40, 295.
https://doi.org/10.1002/art.1780400215
[19] Loebel, M., Grabowski, P., Heidecke, H., et al. (2016) Antibodies to β Adrenergic and Muscarinic Cholinergic Receptors in Patients with Chronic Fatigue Syndrome. Brain Behavior & Immunity, 52, 32-39.
https://doi.org/10.1016/j.bbi.2015.09.013