种植体颈部设计对种植体周围硬组织的影响
The Influence of Implant Neck Design on Hard and Soft Tissue around Implant
DOI: 10.12677/ACM.2021.113182, PDF, HTML, XML, 下载: 356  浏览: 575  国家自然科学基金支持
作者: 管 叶, 周 怡, 何福明:浙江大学医学院附属口腔医院,浙江 杭州;浙江省口腔生物医学研究重点实验室,浙江 杭州
关键词: 牙种植体种植体颈部设计边缘骨吸收Dental Implant Implant Neck Design Marginal Bone Loss
摘要: 种植体周围硬组织的健康和稳定对种植修复的成功有着非常重要的意义,而种植体颈部的设计对其有着不可忽视的影响。本文的目的是通过文献回顾来评估不同类型的种植体颈部特征对种植体周围软硬组织的影响,以期为今后临床选择不同颈部设计的种植体提供一定的参考。
Abstract: The health and stability of the hard tissue around the implant is important for the success of the implant restoration, and effects of the design of the implant neck on peri-implant tissue cannot be ignored. The purpose of this article is to evaluate impacts of different implant neck characteristics on the hard tissue around the implant through a literature review, in order to provide a certain reference for the future clinical selection of implants with different neck designs.
文章引用:管叶, 周怡, 何福明. 种植体颈部设计对种植体周围硬组织的影响[J]. 临床医学进展, 2021, 11(3): 1271-1278. https://doi.org/10.12677/ACM.2021.113182

1. 引言

近年来,种植修复已经成为一种广泛接受的治疗方法,以恢复缺失牙的美观和功能。临床研究发现,种植修复10年以上的平均存活率为94.6%,平均成功率为89.7% [1]。种植体的长期临床成功主要取决于种植体周围骨量的保存 [2],其成功的标准为:种植后第一年的边缘骨吸收小于2.0毫米,此后每年小于0.2毫米 [3]。尽可能长期保持最初的种植体周围骨水平对长期的成功和取得良好的美学效果至关重要 [4] [5]。

牙槽骨改建是一个复杂的过程,许多因素会造成种植体周围的边缘骨吸收(Marginal Bone Loss, MBL)。这些因素主要包括牙槽骨密度和骨量 [6] [7];牙龈生物型 [8];邻牙情况 [9];与邻牙间的距离 [10] [11];生物学宽度的保持 [12] 和平台转移的使用(Platform-Switching, PS) [13];不同品牌的种植体宏观、微观的设计和尺寸 [14];骨增量手术,包括手术方式和所用的植骨材料 [15] [16];软组织的管理 [17] [18] 和植入的时间点(即刻、早期和延期种植,修复方式即刻负载和延期负载) [19] [20] [21];种植体植入的深度 [22] [23] [24] 以及患者的依从性、口腔卫生、是否吸烟和全身状况等 [25]。

种植体颈部(implant neck/cervix)为种植体的冠方部分,最冠方称为种植体的平台(platform)。由于种植体的边缘骨吸收发生于颈部周围 [26],并且从生物力学的角度来看,颈部牙槽嵴承担了牙槽骨中最大的应力 [27] [28],所以种植体的颈部被认为是种植体设计最重要的特征之一。

种植体颈部的表面处理和形状直径可以与体部不同,也可以与体部完全相同(例如颈部为光滑表面,体部为粗糙表面;种植体颈部相对体部有缩窄设计等)。目前市场上已出现了大量不同的颈部设计,例如使用光滑颈部表面或粗糙表面以及通过激光蚀刻等方式形成颈部微螺纹表面等。迄今为止,这些不同设计对种植体周围骨组织的影响尚未达成共识。本系统综述的目的是评估不同种植体颈部特征对种植体存活率、边缘骨水平变化以及种植体周围硬组织健康的影响,为临床决策提供一定的参考。

2. 种植体颈部设计分类

2.1. 一段式种植体与两段式种植体

一段式种植体(one-stage implant)又称为一体式种植体(one-piece implant),其穿黏膜颈部与位于骨内的体部合为一体,颈部位于软组织之内,平台可以位于牙槽嵴表面的软组织之内或软组织之外,因此也可称之为软组织水平种植体(tissue level implant)或非潜入式种植体(nonsubmerged implant)。

两段式种植体(two-stage implant)又称为分体式种植体(two-piece implant),其本身没有穿黏膜颈部,穿黏膜部分为与种植体分离的另一部件,种植体平台位于牙槽嵴之内,因此也称之为骨水平种植体(bone level implant)或潜入式种植体(submerged implant) [29]。

2.2. 种植体颈部宏观设计

种植体的颈部的宏观设计主要指颈部宏观形状,分为直颈、窄颈或宽颈,分别指种植体颈部最冠方处的直径等于、小于或大于种植体体部。近年来也出现了一些较为新颖的种植体颈部形状设计,如三角形颈部或扇形颈部等(见图1)。

Figure 1. Macroscopic classification of implant neck design

图1. 种植体颈部宏观设计分类示意图

2.3. 种植体颈部表面微观设计

种植体颈部微观设计主要指的是颈部光滑与粗糙表面,光滑颈通常指机械加工形成的光滑颈部设计,粗糙颈则指的是通过酸蚀激光等表面处理形成粗糙的颈部表面,包括微螺纹表面。一些研究认为,粗糙的颈部表面可以实现更快的骨结合、增加牙槽骨与种植体之间的接触面积并减少骨吸收,提高存活率 [30] [31] [32]。另一些研究认为,光滑的颈部表面易于清洁,有助于种周疾病的控制 [33] [34] [35] [36]。

3. 种植体颈部不同设计对骨吸收的影响

3.1. 一段式和两段式植体

大部分研究的结论认为,两段式植体的边缘骨吸收(Marginal Bone Loss, MBL)较低,而两类植体的失败率无明显差异。Arrejaie等人进行的一项Meta分析 [37] 共纳入了11项研究,结果显示两段式植体的MBL与一段式植体相比显著较低,而失败率和种植体周围炎发生率均无统计学差异。Troiano G等人进行的一项meta分析 [38] 共纳入了11项研究,结果同样表明两段式植体的MBL较低,尽管两组差异非常小(0.13 mm)。需要注意的是,当使用一段式植体,采用非潜入式愈合时,早期种植失败率较高(2%)。

然而也有一些研究认为一段式植体的MBL较低。Moustafa Ali等人的一项meta分析 [39] 共纳入了8项研究,结果显示一段式种植体周围的MBL明显更低;且两类植体在失败率方面没有差异。Cosola等人进行的一项系统性回顾纳入了45项研究,其中3项报道了两段式种植体MBL的较少(p < 0.05) [40] [41] [42],仅有1项报道了一段式种植体的MBL较少(p < 0.05) [43]。在其余的41项研究中,两类植体间MBL的差异无统计学意义 [44]。

3.2. 种植体颈部宏观形状

目前关于窄颈和宽颈的研究数量较为有限,结果也各不相同。Calvo-Guirado等人 [45] 在6只比格犬的上颌骨中植入了窄颈和宽颈两种不同颈部设计的超短种植体,共36颗,12周后发现,窄颈组骨吸收较少。然而,Montemezzi等人 [46] 进行的一项为期两年的前瞻性研究中,对97名患者植入了122颗种植体,宽颈组和窄颈组分别为59颗和63颗,两年随访发现,宽颈组边缘骨吸收较少。

关于种植体新型颈部设计,目前主要出现了三角形、扇形和斜坡式设计。Falco等人 [47] 将120颗不同颈部设计的种植体分别植入牛羊骨中,发现在中等密度的骨中,窄颈比直颈种植体稳定性更差。一项为期两年的前瞻性研究在患者的上颌后牙区随机植入了新型三角颈或传统圆颈种植体,发现45天内的初期稳定性圆颈高于三角颈,但是经过45天的骨改建后,两者间的差异变得非常小 [48],这表明种植体颈部形状对种植体二级稳定性的作用并不明显。

Tallarico等人的一项系统评价 [49] 评估了具有两段式颈部设计的种植体与、一段式种植体以及在美学区域具有扇形或斜坡式肩台的植体,证实了不同的种植体颈部设计(扇形、斜坡和一段式)与两段式设计相比,没有任何益处。

虽然关于种植体颈部的形状差异对周围硬组织稳定性的影响仍不明确,但是对于已发生骨吸收的薄牙槽嵴来说,选择窄颈种植体可能更为合适。因为菲薄的骨板缺乏血管或骨内膜,随着时间的流逝,容易发生缺血性骨坏死。在相同的钻孔流程下,较宽的颈部可能会造成皮质骨压缩,从而增加骨开裂和微裂纹发生的风险。而严重的裂纹则可能导致种植体部分表面无骨结合,增加种植失败的风险。

3.3. 种植体粗糙颈和光滑颈

有许多研究认为,粗糙的颈部表面可以实现更快的骨结合,增加牙槽骨与种植体之间的接触面积,并减少骨吸收。全球口腔重建基金会(ORF)2019年 [30] 发表的一项调查报告称,在单冠和局部固定修复体中,粗糙颈种植体的边缘骨吸收显著低于光滑颈(MD 0.44 mm [0.04, 0.83], p = 0.03)。Mendoca等 [31] 对138例患者的242颗种植体进行了为期6年的回顾性研究,其中126颗具有0.8 mm的光滑颈部,116颗具有0.3 mm的粗糙颈部。两组植体的成功率相似,分别为95.0%和95.9%。然而在下颌骨中,与光滑颈组(1.58 ± 0.73 mm)相比,粗糙颈组(1.20 ± 0.52 mm)的边缘骨吸收较少。Patil等人 [32] 的一项前瞻性研究中,在150例患者后牙区分别植入具有2mm光滑颈部的种植体和具有微螺纹粗糙颈部的种植体,共100颗,均为骨水平种植。植入1年后,粗糙颈组种植体周围的平均骨吸收(3.23 mm)明显低于光滑颈组(3.75 mm)。

另一些研究则认为光滑颈有助于减少边缘骨吸收,并能延缓种植体周围炎的进展。Sanchez-Siles等人 [33] 进行了一项为期10年的回顾性研究,对400例患者的1244颗种植体进行了随访,其中515颗具有2.5 mm的光滑颈部,729颗无光滑颈部。光滑颈组采用软组织水平种植,无光滑颈组采用骨水平种植。结果显示,与非光滑颈组(2.41 ± 1.35 mm)相比,光滑颈组种植体的边缘骨吸收(1.18 ± 1.39 mm)明显较少(p < 0.001)。同样的,Axiotis等人 [34] 进行的一项为期6年的回顾性研究也表明了具有光滑颈部的一段式种植体拥有较高的成功率和良好的长期边缘骨保存效果。Raes等人 [35] 在有严重牙周炎病史的患者中植入了光滑与粗糙表面的两组种植体,均为骨水平种植。随访5年后,发现光滑表面种植体的边缘骨吸收更少,而粗糙表面种植体的种周疾病发生率更高。Quirynen等 [36] 的研究显示,光滑表面暴露于口内时,其上积聚的龈下菌斑量较粗糙表面减少25倍,并且更易于清洁。综上所述,对于牙周炎患者来说,光滑颈种植体可能是更好的选择。

还有一些临床研究发现,具有相同宏观几何形状、连接方式和相似的临床情况时,光滑颈与粗糙颈的在边缘骨保存方面没有显著差异。Menini等人 [50] 对8位患者分别植入了10颗光滑颈和10颗粗糙颈植体,6年随访后发现,除了第一年粗糙颈组边缘骨吸收明显低于光滑颈组,随后的五年中两组的骨吸收没有明显差异。Nicu等人 [51] 对9名有牙周病史的无牙颌患者和5名中重度牙周炎的牙列缺损患者随机植入光滑颈与粗糙颈种植体,3年负载后,光滑颈与粗糙颈种植体表现出了相似的临床效果。Rocci等人 [52] 对44位患者植入了66颗粗糙颈种植体和55颗光滑颈种植体,均为即刻负载,进行了九年的随访。第一年时粗糙颈组边缘骨吸收为0.9 mm,光滑颈组为1.0 mm;第三年分别为0.4和0.5 mm;第九年时骨吸收可忽略不计。Hartog等人 [53] 对93位上颌前牙缺失的患者随机植入种植体,共植入31颗具有1.5 mm的光滑颈部的种植体(光滑颈组),31颗粗糙颈部的种植体(粗糙颈组)和31颗扇形粗糙颈部(扇形颈组)的种植体。均为骨水平种植,植入时种植体肩台位于未来临床牙冠的根方3 mm处。5年随访显示,扇形组有明显更多的边缘骨吸收(2.28 ± 0.97 mm),而光滑颈组(1.26 ± 0.90 mm)与粗糙颈组(1.20 ± 1.1 mm)差异不大。

4. 小结

综上,目前对于种植体颈部设计的研究仍存在争议,基于本文中所涉及的文献,我们可以得出以下结论:第一,种植体颈部的形状以窄颈为佳,其在植入时对皮质骨的压力较小,可以减小骨开裂和产生微裂纹的风险;第二,迄今为止,粗糙颈和机械颈对边缘骨水平的保存方面尚无统一定论。但是在可能发生种植体周围炎风险较高的情况下,机械加工的光滑颈具有优势,因为它更易于清洁,并且可能减缓种周疾病的发展。

5. 研究展望

口腔种植治疗一直在朝着改善治疗和提高可预测性的方向发展,尤其是在维持牙槽骨水平方面。相信随着种植体颈部设计研究的不断进展,未来的种植治疗将进一步减少种植体颈部周围边缘骨吸收的发生。

基金项目

国家自然科学基金31670970。

参考文献

[1] Moraschini, V., Velloso, G., Luz, D. and Porto Barboza, E. (2015) Implant Survival Rates, Marginal Bone Level Changes, and Complications in Full-Mouth Rehabilitation with Flapless Computer-Guided Surgery: A Systematic Review and Meta-Analysis. International Journal of Oral and Maxillofacial Surgery, 44, 892-901.
https://doi.org/10.1016/j.ijom.2015.02.013
[2] Verhoeven, J.W., Cune, M.S. and de Putter, C. (2000) Reliability of Some Clinical Parameters of Evaluation in Implant Dentistry. Journal of Oral Rehabilitation, 27, 211-216.
https://doi.org/10.1046/j.1365-2842.2000.00524.x
[3] Albrektsson, T., Zarb, G., Worthington, P. and Eriksson, A.R. (1986) The Long-Term Efficacy of Currently Used Dental Implants: A Review and Proposed Criteria of Success. The International Journal of Oral & Maxillofacial Implants, 1, 11-25.
[4] Hartog, L.D., Raghoebar, G.M., Slater, J.J.H., Stellingsma, K., Vissink, A. and Meijer, H.J.A. (2011) Single-Tooth Implants with Different Neck Designs: A Randomized Clinical Trial Evaluating the Aesthetic Outcome. Clinical Implant Dentistry and Related Research, 15, 311-321.
[5] Sanz, M., et al. (2015) Clinical and Radiologic Outcomes after Submerged and Transmucosal Implant Placement with Two-Piece Implants in the Anterior Maxilla and Mandible: 3-Year Results of a Randomized Controlled Clinical Trial: Submerged and Transmucosal Implants. Clinical Implant Dentistry and Related Research, 17, 234-246.
https://doi.org/10.1111/cid.12107
[6] Dvorak, G., et al. (2011) Peri-Implantitis and Late Implant Failures in Postmenopausal Women: A Cross-Sectional Study: Peri-Implantitis in Postmenopausal Women. Journal of Clinical Periodontology, 38, 950-955.
https://doi.org/10.1111/j.1600-051X.2011.01772.x
[7] Chambrone, L. (2016) Current Status of the Influence of Osteoporosis on Periodontology and Implant Dentistry. Current Opinion in Endocrinology and Diabetes and Obesity, 23, 435-439.
https://doi.org/10.1097/MED.0000000000000272
[8] Kois, J.C. (2004) Predictable Single-Tooth Peri-Implant Esthetics: Five Diagnostic Keys. Compendium of Continuing Education in Dentistry, 25, 895-896.
[9] Manicone, P.F., Raffaelli, L., Ghassemian, M. and D’Addona, A. (2012) Soft and Hard Tissue Management in Implant Therapy-Part II: Prosthetic Concepts. International Journal of Biomaterials, 2012, Article ID: 356817.
https://doi.org/10.1155/2012/356817
[10] Tarnow, D.P., Cho, S.C. and Wallace, S.S. (2000) The Effect of Inter-Implant Distance on the Height of Inter-Implant Bone Crest. Journal of Periodontology, 71, 546-549.
https://doi.org/10.1902/jop.2000.71.4.546
[11] Danza, M., Zollino, I., Avantaggiato, A., Lucchese, A. and Carinci, F. (2011) Distance between Implants Has a Potential Impact of Crestal Bone Resorption. The Saudi Dental Journal, 23, 129-133.
https://doi.org/10.1016/j.sdentj.2011.02.002
[12] 郑铮, 陈文川. 生物学宽度概念在口腔种植中的结构、尺度及功能意义[J]. 国际口腔医学杂志, 2019(4): 481-487.
[13] Strietzel, F.P., Neumann, K. and Hertel, M. (2015) Impact of Platform Switching on Marginal Peri-Implant Bone-Level Changes. A Systematic Review and Meta-Analysis. Clinical Oral Implants Research, 26, 342-358.
https://doi.org/10.1111/clr.12339
[14] Esposito, M., et al. (2019) Interventions for Replacing Missing Teeth: Different Types of Dental Implants. Cochrane Database of Systematic Reviews, No. 7, CD003815.
https://doi.org/10.1002/14651858.CD003815.pub5
[15] Kim, Y.-K. and Ku, J.-K. (2020) Guided Bone Regeneration. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 46, 361-366.
https://doi.org/10.5125/jkaoms.2020.46.5.361
[16] Jung, R.E., et al. (2017) A Randomized Controlled Clinical Trial Comparing Small Buccal Dehiscence Defects around Dental Implants Treated with Guided Bone Regeneration or Left for Spontaneous Healing. Clinical Oral Implants Research, 28, 348-354.
https://doi.org/10.1111/clr.12806
[17] Tavelli, L., et al. (2020) Peri-Implant Soft Tissue Phenotype Modification and Its Impact on Peri-Implant Health: A Systematic Review and Network Meta-Analysis. Journal of Periodontology, 92, 21-44.
https://doi.org/10.1002/JPER.19-0716
[18] Thoma, D.S., et al. (2018) Effects of Soft Tissue Augmentation Procedures on Peri-Implant Health or Disease: A Systematic Review and Meta-Analysis. Clinical Oral Implants Research, 29, 32-49.
https://doi.org/10.1111/clr.13114
[19] Cosyn, J., et al. (2019) The Effectiveness of Immediate Implant Placement for Single Tooth Replacement Compared to Delayed Implant Placement: A Systematic Review and Meta-Analysis. Journal of Clinical Periodontology, 46, 224-241.
https://doi.org/10.1111/jcpe.13054
[20] Rocci, A., et al. (2013) Immediate Loading of Brånemark System TiUnite and Machined-Surface Implants in the Posterior Mandible, Part II: A Randomized Open-Ended 9-Year Follow-Up Clinical Trial. The International Journal of Oral & Maxillofacial Implants, 28, 891-895.
https://doi.org/10.11607/jomi.2397
[21] Gallucci, G.O., Hamilton, A., Zhou, W., Buser, D. and Chen, S. (2018) Implant Placement and Loading Protocols in Partially Edentulous Patients: A Systematic Review. Clinical Oral Implants Research, 29, 106-134.
https://doi.org/10.1111/clr.13276
[22] Valles, C., et al. (2018) Influence of Implant Neck Surface and Placement Depth on Crestal Bone Changes and Soft Tissue Dimensions around Platform-Switched Implants: A Histologic Study in Dogs. Journal of Clinical Periodontology, 45, 869-883.
https://doi.org/10.1111/jcpe.12887
[23] Pellicer-Chover, H., et al. (2019) Does Apico-Coronal Implant Position Influence Peri-Implant Marginal Bone Loss? A 36-Month Follow-Up Randomized Clinical Trial. Journal of Oral and Maxillofacial Surgery, 77, 515-527.
https://doi.org/10.1016/j.joms.2018.11.002
[24] Pico, A., et al. (2019) Influence of Abutment Height and Implant Depth Position on Interproximal Peri-Implant Bone in Sites with Thin Mucosa: A 1-Year Randomized Clinical Trial. Clinical Oral Implants Research, 30, 595-602.
https://doi.org/10.1111/clr.13443
[25] Mitschke, J., Peikert, S.A., Vach, K. and Frisch, E. (2020) Supportive Implant Therapy (SIT): A Prospective 10-Year Study of Patient Compliance Rates and Impacting Factors. Journal of Clinical Medicine, 9, 1988.
https://doi.org/10.3390/jcm9061988
[26] Oh, T.-J., Yoon, J., Misch, C.E. and Wang, H.-L. (2002) The Causes of Early Implant Bone Loss: Myth or Science? Journal of Periodontology, 73, 322-333.
https://doi.org/10.1902/jop.2002.73.3.322
[27] Anitua, E., Tapia, R., Luzuriaga, F. and Orive, G. (2010) Influence of Implant Length, Diameter, and Geometry on Stress Distribution: A Finite Element Analysis. International Journal of Periodontics & Restorative Dentistry, 30, 89-95.
[28] Huang, Y.-M., Chou, I.-C., Jiang, C.-P., Wu, Y.-S. and Lee, S.-Y. (2014) Finite Element Analysis of Dental Implant Neck Effects on Primary Stability and Osseointegration in a Type IV Bone Mandible. Bio-Medical Materials and Engineering, 24, 1407-1415.
https://doi.org/10.3233/BME-130945
[29] 宿玉成, 袁苏. 口腔种植学[M]. 北京: 人民卫生出版社, 2014.
[30] Schwarz, F., Messias, A., Sanz-Sánchez, Ignacio, De Albornoz, A.C., Nicolau, P., Taylor, T., et al. (2019) Influence of Implant Neck and Abutment Characteristics on Peri-Implant Tissue Health and Stability. Oral Reconstruction Foundation Consensus Report. Clinical Oral Implants Research, 30, 588-593.
https://doi.org/10.1111/clr.13439
[31] Jose, M., Plinio, S., Carlos, F., Carlos, F.J., Neuza, D.S.P.A. and Bruno, S.M. (2017) Retrospective Evaluation of the Influence of the Collar Surface Topography on Peri-Implant Bone Preservation. International Journal of Oral and Maxillofacial Implants, 32, 858.
https://doi.org/10.11607/jomi.4094
[32] Patil, Y., Asopa, S.J., Deepa, Goel, A. and Sabharwal, R. (2020) Influence of Implant Neck Design on Crestal Bone Loss: A Comparative Study. Nigerian Journal of Surgery, 26, 22.
https://doi.org/10.4103/njs.NJS_28_19
[33] Sánchez-Siles, M., Muoz-Cámara, D., Salazar-Sánchez, N., Ballester-Ferrandis, J.F. and Camacho-Alonso, F. (2015) Incidence of Peri-Implantitis and Oral Quality of Life in Patients Rehabilitated with Implants with Different Neck Designs: A 10-Year Retrospective Study. Journal of Cranio-Maxillo-Facial Surgery, 43, 2168-2174.
https://doi.org/10.1016/j.jcms.2015.10.010
[34] Jean-Pierre, A., Paolo, N., Carlo, B., Roberta, G., Paolo, B., Roberto, P., et al. (2018) One-Piece Implants with Smooth Concave Neck to Enhance Soft Tissue Development and Preserve Marginal Bone Levels: A Retrospective Study with 1- to 6-Year Follow-Up. Biomed Research International, 2018, Article ID: 2908484.
https://doi.org/10.1155/2018/2908484
[35] Raes, M., D’hondt, R., Teughels, W., et al. (2018) A 5-Year Randomized Clinical Trial Comparing Minimally with Moderately Rough Implants in Patients with Severe Periodontitis. Journal of Clinical Periodontology, 45, 711-720.
https://doi.org/10.1111/jcpe.12901
[36] Quirynen, M., Van, D.M.H.C., Bollen, C.M.L., Schotte, A., Marechal, M., Doornbusch, G.I., et al. (1993) An In Vivo Study of the Influence of the Surface Roughness of Implants on the Microbiology of Supra- and Subgingival Plaque. Journal of Dental Research, 72, 1304.
https://doi.org/10.1177/00220345930720090801
[37] Liu, M., He, L., Wang, H., Arrejaie, A.S., Al-Hamdan, R.S., Basunbul, G.I., Abduljabbar, T., Al-Aali, K.A. and Labban, N. (2018) Clinical Performance of One-Piece Zirconia Dental Implants: A Systematic Review. Journal of Investigative and Clinical Dentistry, 10, e12384.
[38] Troiano, G., Lo Russo, L., Canullo, L., Ciavarella, D., Lo Muzio, L. and Laino, L. (2018) Early and Late Implant Failure of Submerged versus Non-Submerged Implant Healing: A Systematic Review, Meta-Analysis and Trial Sequential Analysis. Journal of Clinical Periodontology, 45, 613-623.
https://doi.org/10.1111/jcpe.12890
[39] Ali Moustafa, R.M., El-Din, A.S., et al. (2018) Effect of Submerged vs Nonsubmerged Implant Placement Protocols on Implant Failure and Marginal Bone Loss: A Systematic Review and Meta-Analysis. The International Journal of Prosthodontics, 31, 15-22.
https://doi.org/10.11607/ijp.5315
[40] da Silva, L., et al. (2018) Crestal Bone Level around Tissue-Level Implants Restored with Platform Matching and Bone-Level Implants Restored with Platform Switching: A 5-Year Randomized Controlled Trial. The International Journal of Oral and Maxillofacial Implants, 33, 448-456.
https://doi.org/10.11607/jomi.6149
[41] Duda, M., Matalon, S., Lewinstein, I., et al. (2016) One Piece Immediately Loaded Implants versus 1 Piece or 2 Pieces Delayed: 3 Years Outcome. Implant Dentistry, 25, 109-113.
https://doi.org/10.1097/ID.0000000000000343
[42] Bömicke, W., Gabbert, O., Koob, A., Krisam, J. and Rammelsberg, P. (2017) Comparison of Immediately Loaded Flapless Placed One-Piece Implants and Flapped-Placed Conventionally Loaded Two-Piece Implants, Both Fitted with All-Ceramic Single Crowns, in the Posterior Mandible: 3-Year Results from a Randomised Controlled Pilot Trial. European Journal of Oral Implantology, 10, 179-195.
[43] Gamper, F.B., Benic, G.I., Sanz-Martin, I., Asgeirsson, A.G., HMmerle, C.H.F. and Thoma, D.S. (2017) Randomized Controlled Clinical Trial Comparing One-Piece and Two-Piece Dental Implants Supporting Fixed and Removable Dental Prostheses: 4- to 6-Year Observations. Clinical Oral Implants Research, 28, 1553-1559.
https://doi.org/10.1111/clr.13025
[44] Cosola, S., Marconcini, S., Boccuzzi, M., Fabris, G.B.M. and Pearrocha-Oltra, D. (2020) Radiological Outcomes of Bone-Level and Tissue-Level Dental Implants: Systematic Review. International Journal of Environmental Research and Public Health, 17, 6920.
https://doi.org/10.3390/ijerph17186920
[45] Jung, R.E., Hlg, G.A., Thoma, D.S. and Hmmerle, C.H.F. (2009) A Randomized, Controlled Clinical Trial to Evaluate a New Membrane for Guided Bone Regeneration around Dental Implants. Clinical Oral Implants Research, 20, 162-168.
https://doi.org/10.1111/j.1600-0501.2008.01634.x
[46] Montemezzi, P., Ferrini, F., Pantaleo, G., Gherlone, E. and Capparè, P. (2020) Dental Implants with Different Neck Design: A Prospective Clinical Comparative Study with 2-Year Follow-Up. Materials (Basel, Switzerland), 13, 1029.
https://doi.org/10.3390/ma13051029
[47] Falco, A., Berardini, M. and Trisi, P. (2018). Correlation between Implant Geometry, Implant Surface, Insertion Torque, and Primary Stability: In Vitro Biomechanical Analysis. The International Journal of Oral & Maxillofacial Implants, 33, 824-830.
https://doi.org/10.11607/jomi.6285
[48] Eshkologev, I., Tandlich, M. and Shapira, L. (2019) Effect of Implant Neck Design on Primary and Secondary Implant Stability in the Posterior Maxilla: A Prospective Randomized Controlled Study. Clinical Oral Implants Research, 30, 1220-1228.
https://doi.org/10.1111/clr.13535
[49] Marco, T., Marco, C., Mario, M.S., Erta, X., Yuki, O. and Luigi, C. (2018) Survival and Success Rates of Different Shoulder Designs: A Systematic Review of the Literature. International Journal of Dentistry, 2018, Article ID: 6812875.
https://doi.org/10.1155/2018/6812875
[50] Menini, M., Dellepiane, E., Chvartszaid, D., Baldi, D. and Pera, P. (2015) Influence of Different Surface Characteristics on Peri-Implant Tissue Behavior: A Six-Year Prospective Report. International Journal of Prosthodontics, 28, 389.
https://doi.org/10.11607/ijp.4066
[51] Nicu, E.A., Van Assche, N., Coucke, W., Teughels, W. and Quirynen, M. (2012) RCT Comparing Implants with Turned and Anodically Oxidized Surfaces: A Pilot Study, a 3-Year Follow-Up. Journal of Clinical Periodontology, 39, 1183-1190.
https://doi.org/10.1111/jcpe.12022
[52] Rocci, A., Martignoni, M. and Gottlow, J. (2010) Immediate Loading of Brnemark System Tiunite and Machined-Surface Implants in the Posterior Mandible: A Randomized Open-Ended Clinical Trial. Clinical Implant Dentistry and Related Research, 5, 57-63.
https://doi.org/10.1111/j.1708-8208.2003.tb00016.x
[53] Den Hartog, L., Meijer, H.J.A., Vissink, A. and Raghoebar, G.M. (2017) Anterior Single Implants with Different Neck Designs: 5 Year Results of a Randomized Clinical Trial. Clinical Implant Dentistry and Related Research, 19, 717-724.
https://doi.org/10.1111/cid.12498