#### 期刊菜单

Thermal Analysis and Optimization of Direct Contact Ice Slurry Preparation Sys-tem
DOI: 10.12677/AEPE.2021.93015, PDF, HTML, XML, 下载: 462  浏览: 1,060  科研立项经费支持

Abstract: In order to improve the cooling capacity exergy efficiency and refrigeration coefficient of the direct contact ice making system, the system is simplified into an ideal model and thermodynamic analy-sis and calculations are made. The main influencing factors are: ambient temperature, condensa-tion temperature, and evaporation temperature. Using RC318 as the refrigerant to design L9(34) orthogonal test to explore the optimal value of the system’s cooling capacity exergy efficiency and refrigeration coefficient, the results show that the order of influence of each factor on the target value is condensing temperature, ambient temperature, and evaporating temperature; When the ambient temperature is 38℃, the condensing temperature is 20℃, and the evaporation tempera-ture is −7℃, the system is optimal, the cooling capacity exergy efficiency of the system is 44.39%, and the refrigeration coefficient is 3.10; the trend of various factors on the comprehensive score shows that the cycle is satisfied Under the premise of system operation, the lower the condensing temperature and evaporating temperature and the higher the ambient temperature, the higher the cooling capacity and refrigeration coefficient of the system will be. The condensing temperature and ambient temperature have a large impact on the target value and the evaporating temperature will affect the target value. The impact of the impact on the target value is small; the analysis of variance shows that the influence order of each factor on the target value is consistent with the result of range method of orthogonal test, and the influence of condensation temperature on the target value is significant. The influence of environmental temperature is significant, and the influence of evap-oration temperature is not significant due to the properties of RC318 refrigerant.

1. 引言

Figure 1. Direct contact ice-making system

2. 循环系统热力学分析

2.1. 制冰系统的简化

Figure 2. Simplified model of circulatory system and exergy balance of each part

2.2. 理想制冷循环焓熵图

2.3. 循环系统㶲分析

$w={h}_{2}-{h}_{1}$ (1)

Figure 3. Thermodynamic temperature entropy diagram

${q}_{1}={h}_{2}-{h}_{3}$ (2)

q1为冷凝器放出的热量，KJ/kg。

${q}_{2}={h}_{1}-{h}_{4}$ (3)

$\epsilon =\frac{{q}_{2}}{w}$ (4)

${e}_{{q}_{{}_{2}}}={q}_{2}\left({T}_{0}/T-1\right)$ (5)

${e}_{{q}_{{}_{1}}}={q}_{1}\left(1-{T}_{2}/{T}_{1}\right)$ (6)

${\eta }_{\text{in}}=\frac{{e}_{{q}_{{}_{2}}}}{w}$ (7)

(1) 压缩机

${e}_{12}={T}_{0}\left({s}_{2}-{s}_{1}\right)$ (8)

(2) 冷凝器

${e}_{{q}_{{}_{1}}}+{e}_{23}={q}_{1}-{T}_{0}\left({s}_{2}-{s}_{3}\right)$ (9)

(3) 节流阀

${e}_{34}={T}_{0}\left({s}_{4}-{s}_{3}\right)$ (10)

(4) 蓄冷罐

${e}_{\text{41}}={T}_{0}\left({s}_{1}-{s}_{4}\right)-{T}_{0}/T\left({h}_{1}-{h}_{4}\right)$ (11)

Table 1. Exergy efficiency

3. 正交试验设计

3.1. 正交表设计

Table 2. Draw data

Table 3. Orthogonal test design table

3.2. 正交试验数据

Table 4. Orthogonal test results

Figure 4. Trends of various factors and comprehensive scores

3.3. 方差分析

Table 5. Analysis of variance data

Table 6. Evaporation temperature data

Figure 5. The influence of evaporating temperature on the coefficient of refrigeration

Figure 6. The influence of evaporating temperature on the cooling capacity exergy efficiency of the system

4. 结论

(1) 对直接接触式制冰浆系统简化并建立温熵图，根据热力学相关知识对该循环系统各部分进行㶲分析，以RC318为制冷剂，环境温度为25℃，冷凝温度为30℃，蒸发温度为−11℃进行㶲分析计算，得到压缩机损失是㶲损失的主要部分。热力学分析得到影响系统冷量㶲效率和制冷系数的因素有：环境温度，冷凝温度，蒸发温度。

(2) 根据影响因素设计每种因素三种水平建立L9(34)正交试验探究系统冷量㶲效率和制冷系数综合的最优值，通过极差法得到对目标值的影响因素依次为冷凝温度、环境温度、冷凝温度，计算分析得到最优方案为A2B3D1环境温度为38℃，冷凝温度为20℃，蒸发温度为−7℃的试验方案，得到系统冷量㶲效率为44.39%，制冷系数为3.10；各因素对综合评分趋势图表明：在满足循环系统工作的前提下，冷凝温度、蒸发温度越小同时环境温度越大的情况下系统冷量㶲效率和制冷系数越高，冷凝温度和环境温度对目标值影响波动幅度大，冷凝温度对目标值的影响波动幅度小。

(3) 方差分析和正交试验极差法得到的因素影响顺序一致，依次为冷凝温度、环境温度、蒸发温度，分析得到冷凝温度对目标值的影响较为显著、环境温度影响显著、蒸发温度影响不显著。RC318制冷剂性质的影响蒸发温度在−25℃到−10℃变化的过程中对应点的焓值和压强变化并不明显，从图5图6中看出蒸发温度对制冷系数系和统冷量㶲效率的影响趋势一致并得到对目标值的影响不显著。

NOTES

*第一作者。

#通讯作者。

 [1] Alok, K., Sateesh, K.Y., Ankit, M., et al. (2019) On-Demand Intermittent Ice Slurry Generation for Subzero Cold Ther-mal Energy Storage: Numerical Simulation and Performance Analysis. Applied Thermal Engineering, 161, Article ID: 114081. https://doi.org/10.1016/j.applthermaleng.2019.114081 [2] Kauffeld, M. and Gund, S. (2019) Ice Slur-ry—History, Current Technologies and Future Developments. International Journal of Refrigeration, 99, 264-271. https://doi.org/10.1016/j.ijrefrig.2019.01.010 [3] Guo, W.M., Zhang, Y.L. and Meng, Z.N. (2020) Non-Uniform Melting of a Spherical Ice Particle in Free Ascending. International Journal of Heat and Mass Transfer, 148, Article ID: 119097. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119097 [4] Yang, L.Z., Villalobos, U., Akhmetov, B., et al. (2021) A Comprehensive Review on Sub-Zero Temperature Cold Thermal Energy Storage Materials, Technologies, and Applications: State of the Art and Recent Developments. Applied Energy, 23, Article ID: 116555. https://doi.org/10.1016/j.apenergy.2021.116555 [5] 何国庚, 吴锐, 柳飞. 过冷水法冰浆制取的实验设计与分析[J]. 低温与超导, 2006(4): 303-307. [6] Liu, X., Zhuang, K.Y., Lin, S., et al. (2017) Determination of Supercooling Degree, Nucleation and Growth Rates, and Particle Size for Ice Slurry Crystallization in Vacuum. Crystals, 7, 128-141. https://doi.org/10.3390/cryst7050128 [7] Zhang, X.J., Zheng, K.Q., Wang, L.S., et al. (2013) Analysis of Ice Slurry Production by Direct Contact Heat Transfer of Air and Water Solution. Journal of Zhejiang University—Science A (Applied Physics & Engineering), 14, 583-588. https://doi.org/10.1631/jzus.A1300171 [8] Park, P.M. (2010) Literature Research on the Production, Loading, Flow, and Heat Transfer of Slush Hydrogen. International Journal of Hydrogen Energy, 35, 12993-13003. [9] Fu, H.L., Wang, Y.P., Huang, Q.W., et al. (2016) Direct Contact Evaporation Heat Transfer Coefficient and Drobble Size Distribution in a 2D Column. Applied Thermal Engineering, 96, 568-575. https://doi.org/10.1016/j.applthermaleng.2015.11.109 [10] Martin, V., He, B. and Setterwall, F. (2010) Direct Contact PCM-Water Cold Storage. Applied Energy, 87, 2652-2659. https://doi.org/10.1016/j.apenergy.2010.01.005 [11] Thongwik, S., Vorayos, N., Kiatsiriroat, T., et al. (2008) Thermal Analysis of Slurry Ice Production System Using Direct Contact Heat Transfer of Carbon Dioxide and Water Mixture. International Communications in Heat and Mass Transfer, 35, 756-761. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.007 [12] 高玉国, 阿古斯•萨斯弥多, 秦朝举, 等. 一种直接接触式流态冰浆制取器及制取方法[P]. 中国, CN110500833A. 2019-11-26. [13] Gao, Y.G., Wang, H.C., Agus, P.S., et al. (2018) Measurement and Modeling of Thermal Conductivity of Graphene Nanoplatelet Water and Ethylene Glycol Base Nanofluids. International Journal of Heat and Mass Transfer, 123, 97-109. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.089 [14] Calm, J.M. (2008) The Next Generation of Refriger-ants—Historical Review, Considerations, and Outlook. International Journal of Refrigeration, 31, 1123-1133. https://doi.org/10.1016/j.ijrefrig.2008.01.013 [15] Shaik, S.V. and Babu, T.A. (2020) Theoretical Energy Perfor-mance Assessment and Environmental Impact of Various New Ozone-Friendly Refrigerants Used in Residential Air Conditioners. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineer-ing, 234, 367-385. https://doi.org/10.1177/0954408920928260 [16] Zhang, Y.K., Su, L., Dong, K.J., et al. (2019) Experimental Study of Ice Slurry Production System Using Direct Contact Heat Transfer of RC318 and Water in a Horizontal Pipe. Energy Procedia, 158, 4495-4501. https://doi.org/10.1016/j.egypro.2019.01.762 [17] 路贵香, 冯天平, 张猛. 压缩式制冷系统与吸收式制冷系统的对比[J]. 南方农机, 2020, 51(10): 212-218. [18] 张鹏飞, 柳建华. 直接接触式蓄冷系统热力性能分析[J]. 制冷与空调(四川), 2005, 19(3): 35-38. [19] 章学来, 李瑞阳, 束鹏程, 等. 直接接触式蓄冷循环的热力学研究[J]. 制冷, 2004, 23(1): 1-6. [20] Patel, V., Panchal, D., Prajapati, A., et al. (2019) An Efficient Optimization and Comparative Analysis of Cascade Refrigeration System Using NH3/CO2 and C3H8/CO2 Refrigerant Pairs. International Journal of Refrigeration, 102, 62-76. https://doi.org/10.1016/j.ijrefrig.2019.03.001 [21] Shen, D.M., Gui, C., Xia, J.H., et al. (2020) Experimental Anal-ysis of the Performances of Unit Refrigeration Systems Based on Parallel Compressors with Consideration of the Volu-metric and Isentropic Efficiency. Fluid Dynamics and Materials Processing, 16, 489-500. https://doi.org/10.32604/fdmp.2020.08969 [22] 李云雁. 试验设计与数据处理[M]. 第2版. 北京: 化学工业出版社, 2008.