[1]
|
Park, M.H., Lee, Y.H., Mikolajick, T., Schroeder, U. and Hwang, C.S. (2018) Review and Perspective on Ferroelectric HfO2-Based Thin Films for Memory Applications. MRS Communications, 8, 795-808.
https://doi.org/10.1557/mrc.2018.175
|
[2]
|
Troiler-McKinstry, S. (2020) Impact of Ferroelectricity. American Ceramic Society Bulletin, 99, 22-23.
|
[3]
|
Yoong, H.Y., Wu, H., Zhao, J., Wang, H., Guo, R., Xiao, J., et al. (2018) Epitaxial Ferroelectric Hf0.5Zr0.5O2 Thin Films and Their Implementations in Memristors for Brain-Inspired Computing. Advanced Functional Materials, 28, Article ID: 1806037. https://doi.org/10.1002/adfm.201806037
|
[4]
|
Lowther, J.E., Dewhurst, J.K., Leger, J.M. and Haines, J. (1999) Relative Stability of ZrO2 and HfO2 Structural Phases. Physical Review B, 60, 83077-14488. https://doi.org/10.1103/PhysRevB.60.14485
|
[5]
|
Bscke, T.S., Miiller, J., Brauhaus, D., Schröder, U. and Böttger, U. (2011) Ferroelectricity in Hafnium Oxide Thin Films. American Institute of Physics, 99, Article ID: 102903. https://doi.org/10.1063/1.3634052
|
[6]
|
Robertson, J. (2006) High Dielectric Constant Gate Oxides for Metal Oxide Si Transistors. Reports on Progress in Physics, 69, 327-396. https://doi.org/10.1088/0034-4885/69/2/R02
|
[7]
|
Müller, J., Böscke, T.S., Müller, S., Yurchuk, E., Polakowski, P., Paul, J., et al. (2013) Ferroelectric Hafnium Oxide: A CMOS-Compatible and Highly Scalable Approach to Future Ferroelectric Memories. 2013 IEEE International Electron Devices Meeting, Washington DC, 9-11 December 2013, 10.8.1-10.8.4.
https://doi.org/10.1109/IEDM.2013.6724605
|
[8]
|
Kim, S.J., Mohan, J., Summerfelt, S.R. and Kim, J. (2019) Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances. JOM, 71, 246-255. https://doi.org/10.1007/s11837-018-3140-5
|
[9]
|
Johnson, B. and Jones, J.L. (2019) Structures, Phase Equilibria, and Properties of HfO2. In: Schroeder, U., Hwang, C. and Funakubo, H., Eds., Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, Woodhead Publishing, Sawston, 25-45. https://doi.org/10.1016/B978-0-08-102430-0.00002-4
|
[10]
|
Min, H., Schenk, T, and Schroeder, U. (2019) Dopants in Atomic Layer Deposited HfO2 Thin Films. In: Schroeder, U., Hwang, C. and Funakubo, H., Eds., Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, Woodhead Publishing, Sawston, 49-74. https://doi.org/10.1016/B978-0-08-102430-0.00005-X
|
[11]
|
MüLler, J., BöScke, T.S., SchröDer, U., Mueller, S., Bräuhaus, D., Böttger, U., et al. (2012) Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Letters, 12, 4318-4323. https://doi.org/10.1021/nl302049k
|
[12]
|
Cheema, S.S., Kwon, D., Shanker, N., dos Reis, R., Hsu, S.-L., Xiao, J., et al. (2020) Enhanced Ferroelectricity in Ultrathin Films Grown Directly on Silicon. Nature, 580, 478-482. https://doi.org/10.1038/s41586-020-2208-x
|
[13]
|
Mikolajick, T., Slesazeck, S., Park, M.H. and Schroeder, U. (2018) Ferroelectric Hafnium Oxide for Ferroelectric Random-Access Memories and Ferroelectric Field-Effect Transistors. MRS Bulletin, 43, 340-346.
https://doi.org/10.1557/mrs.2018.92
|
[14]
|
Batra, R., Huan, T.D., Jones, J.L., Rossetti Jr., G. and Ramprasad, R. (2017) Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study. Journal of Physical Chemistry C, 121, 4139-4145.
https://doi.org/10.1021/acs.jpcc.6b11972
|
[15]
|
Kisi, E.H. (2010) Influence of Hydrostatic Pressure on the t→o Transformation in Mg-PSZ Studied by in Situ Neutron Diffraction. Journal of the American Ceramic Society, 81, 741-745.
https://doi.org/10.1111/j.1151-2916.1998.tb02402.x
|
[16]
|
Howard, C.J., Kisi, E.H., Roberts, R.B. and Hill, R.J. (1990) Neutron Diffraction Studies of Phase Transformations between Tetragonal and Orthorhombic Zirconia in Magnesia-Partially-Stabilized Zirconia. Journal of the American Ceramic Society, 73, 2828-2833. https://doi.org/10.1111/j.1151-2916.1990.tb06682.x
|
[17]
|
Fina, I, and Sanchez, F. (2021) Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices. ACS Applied Electronic Materials, 3, 1530-1549. https://doi.org/10.1021/acsaelm.1c00110
|
[18]
|
Shimizu, T., Katayama, K., Kiguchi, T., Akama, A., Konno, T.J. and Funakubo, H. (2015) Growth of Epitaxial Orthorhombic yo1.5-Substituted HfO2 Thin Film. Applied Physics Letters, 23, Article ID: 102903.
https://doi.org/10.1063/1.4927450
|
[19]
|
Park, M.H., Kim, H.J., Kim, Y.J., Lee, W., Moon T. and Hwang, C.S. (2013) Evolution of Phases and Ferroelectric Properties of Thin Hf0.5Zr0.5O2 Films According to the Thickness and Annealing Temperature. Applied Physics Letters, 102, Article ID: 242905. https://doi.org/10.1063/1.4811483
|
[20]
|
Wei, Y., Nukala, P., Salverda, M., Matzen, S., Zhao, H.J., Momand, J., et al. (2018) A Rhombohedral Ferroelectric Phase in Epitaxially Strained Hf0.5Zr0.5O2 Thin Films. Nature Materials, 17, 1095-1100.
https://doi.org/10.1038/s41563-018-0196-0
|
[21]
|
Lyu, J., Fina, I., Solanas, R., Fontcuberta, J. and Sánchez, F. (2019) Growth Window of Ferroelectric Epitaxial Hf0.5Zr0.5O2 Thin Films. ACS Applied Electronic Materials, 1, 220-228. https://doi.org/10.1021/acsaelm.8b00065
|