RFe12基稀土永磁材料的研究进展
Recent Advances in RFe12-Based Permanent Magnets
DOI: 10.12677/MS.2022.124028, PDF, HTML, XML, 下载: 460  浏览: 2,430  科研立项经费支持
作者: 郭家瑞, 王亚娜, 宋文鹏, 郑立允, 黄光伟*:河北工程大学材料科学与工程学院,河北 邯郸;河北省稀土永磁材料与应用工程研究中心,河北 邯郸
关键词: 永磁材料ThMn12块体磁性能Permanent Magnets ThMn12 Bulk Magnetic Properties
摘要: 为了实现社会的可持续发展,响应“双碳”目标的号召,助力“双碳”目标的达成,迫切需要具有低CO2或无CO2排放的绿色技术。永磁材料作为绿色技术的关键材料被广泛应用于风力发电、轨道交通、人工智能等技术领域。为了提高这些技术在应用过程中的电力转换效率,需要一种比NdFeB永磁材料性能更优异的永磁材料。具有ThMn12晶体结构的RFe12 (R为稀土元素,一般为Sm)基化合物即是有潜力满足当前绿色技术发展的永磁材料。本文将对RFe12基稀土永磁材料的相稳定性、磁性能,RFe12基薄膜、粉体及块体磁体的研究进展进行综述。最后,结合目前RFe12基稀土永磁材料的研究现状,提出一种适合于块体RFe12基稀土永磁材料制备的技术手段并对其进行探讨。
Abstract: In order to realize sustainable development of the society, respond to the call of the “dual carbon” goal and help achieve the “dual carbon” goal, green technologies with low or no CO2 emissions are urgently needed. As the key material of green technologies, permanent magnetic materials are widely used in wind power generation, rail transit, artificial intelligence and other technical fields. In order to enhance the power conversion efficiency of these technologies in the application process, a new type of permanent magnetic material with better performance than NdFeB permanent magnetic material is urgently needed. RFe12 (R stands for rare earth elements, usually Sm) based compound with ThMn12 crystal structure is a permanent magnetic material that has the potential to meet the development of current green technologies. In this review, the phase stability and magnetic properties of RFe12-based rare earth permanent magnetic materials, as well as the research progress of RFe12-based thin films, powders and bulk magnets are reviewed. Finally, according to the current research status of RFe12-based rare earth permanent magnetic material, a novel technology suitable for the preparation of bulk RFe12-based rare earth permanent magnet material is proposed and discussed.
文章引用:郭家瑞, 王亚娜, 宋文鹏, 郑立允, 黄光伟. RFe12基稀土永磁材料的研究进展[J]. 材料科学, 2022, 12(4): 269-282. https://doi.org/10.12677/MS.2022.124028

1. 引言

随着全球温室效应的加剧,社会需要绿色技术的发展以至于能够较少或避免CO2气体的排放,实现“双碳”目标。因此,需要开发出高效节能的发电机和电动机以实现绿色、节能环保的目的。为了实现发电机和电动机的高效节能,高性能的永磁材料必不可少 [1] [2] [3]。尽管目前已有性能优异的NdFeB稀土永磁材料作为绿色技术的核心材料支撑,但由于NdFeB稀土永磁材料具有较低的居里温度,使其很难满足发电机和电动机在工作温度150℃左右的正常运行 [4]。因此,急需开发出一种性能优异的永磁材料,特别是高温磁性能优于NdFeB磁体的永磁材料来满足各绿色科技的需求。ThMn12晶体结构的RFe12 (R为稀土元素,一般为Sm)基化合物由于其含有最低的稀土元素且具有优异的内禀磁性能,是一种有潜力满足当前绿色技术发展的永磁材料 [5] [6] [7]。

ThMn12四方结构的RFe12基稀土永磁材料由于其具有高的饱和磁化强度、高的磁晶各向异性场和高度居里温度,早在上世纪90年代就被磁学研究者发掘 [8] - [12]。但当时人们并没有认为它是新一代的永磁材料。原因之一是因为RFe12基化合物的结构不稳定。通常,需采用Ti、V、Cr、Mn、Al、W、Si、Mo和Zr等合金元素的添加,才能获得室温下稳定的ThMn12结构的RFe12基化合物 [13] - [21]。而这些合金元素的添加将会降低所得到磁性合金的饱和磁化强度。第二个原因即是低的矫顽力,因为RFe12基化合物不像NdFeB合金一样具有富稀土相甚至是非磁性相的多相结构,能够在磁体受到反向磁场作用下有效地阻碍反向畴核的形成,反向畴的运动甚至是反向磁矩的转动 [22] [23]。因此RFe12基磁体很难获得高的矫顽力。而彼时的NdFeB合金由于其独特的组织结构,易于通过液相烧结、热压热变形等技术获得高性能的块体磁体,顺理成章成为了永磁材料应用领域的引领者 [24] [25] [26] [27]。但是,在社会的高速发展驱使下,各高新技术领域对永磁材料的性能要求越来越高且对永磁材料的需求量也越来越大,这将造成大量昂贵稀土战略元素的消耗 [2] [28] [29]。因此,永磁材料的研究又转向了贫稀土甚至是无稀土永磁材料领域。RFe12基稀土永磁体本着其含有最低的稀土元素且具有优异的磁特性,再次受到了全球磁性材料研究者的广泛关注和研究。

为了推广RFe12基稀土永磁材料的开发研究,促进RFe12基稀土永磁材料的发展与实际应用,本文先后对RFe12基稀土永磁材料的相稳定性、磁性能,RFe12基薄膜、粉体及块体磁体的研究进展进行综述。最后,结合目前RFe12基稀土永磁材料的研究现状,提出一种适合于块体RFe12基稀土永磁材料制备的技术手段并对其进行探讨。磁学研究者可通过参考本综述,增进对RFe12基稀土永磁材料研究现状的把控,明晰RFe12基稀土永磁材料开发研究过程中存在的科学技术问题。

2. RT12相的晶体结构和相稳定性

RFe12型稀土永磁材料的晶体结构为ThMn12四方晶体结构,空间点群为I4/mm,稀土原子R占据空间结构的2a晶位,Fe原子占据8i、8j和8f三种不同的晶位,其晶体结构如图1所示 [7]。

Figure 1. Schematic representation of a ThMn12 unit cell along (a) the [100] direction and (b) the [001] direction c [7]

图1. (a)沿[100]方向和(b) [001]方向的ThMn12单胞示意图 [7]

RFe12相的最大缺点即是室温不稳定。根据Kobayashi等人的研究,导致RFe12相室温不稳定的一个原因是占据8i晶位的Fe-Fe哑铃对中Fe原子间的距离过大 [30]。据计算,在8i、8j和8f晶位上,Fe原子间距离分别为0.271 nm、0.259 nm和0.251 nm。与Fe原子自身的原子半径相比(~0.252 nm),8i位点的原子间距离更大。8i位点的原子间距离越大,由于局域化导致的电子动能就会增加,最终导致结构的不稳定。因此,铁-铁哑铃中距离越大,会使晶体结构越不稳定。而为了稳定结构,很有必要采用非磁性元素进行添加实现元素的取代,改变原子间距。大量的研究表明,采用大原子半径的非磁性元素去稳定RFe12相时,这些元素倾向于取代8i位点。但是又有研究表明,采用小原子半径的元素进行取代时,这些小原子半径的元素在三个不同的铁位点上取代而得到的形成能是相似的。这意味着原子半径较小的相稳定元素可以等效地在8i、8j和8f三种不同的晶位进行取代。除了采用非磁性元素对8i、8j和8f三种不同的晶位进行取代来实现RFe12相的稳定外,还有研究报道,一些元素如Zr是通过替代R位点来稳定ThMn12结构的,即是Zr对2a位点的R元素进行取代。研究者认为,这是由于R的原子半径非常大,它给其周围的元素施加了大量的应力,这可能是导致Fe原子在8i和8j位点上距离较大的原因之一。通过将2a位置的稀土元素用原子直径较小的元素取代,总能量就会减少,从而稳定ThMn12结构。表1为不同的相稳定元素、原子半径和取代位点的相关数据。

尽管大量的研究表明,采用相稳定元素的取代能够实现ThMn12型晶体结构的稳定,但是通过稳定元素的取代实现相稳定的深层次物理机理并没有得到普遍的理解。需要进一步的研究来充分了解添加其他元素致使相稳定的物理机制。这些基础研究可以为如何实现稳定ThMn12型晶体结构的前提下,实现合金的饱和磁化强度降低最小和保持较大的磁晶各向异性场。这将有助于开发出高性能的RFe12型稀土永磁材料。

Table 1. Phase stabilizing elements, their atomic radii, and substitution sites

表1. 相稳定元素,它们的原子半径及取代晶位

3. RFe12基稀土永磁材料的制备

3.1. RFe12基薄膜磁体的制备与磁性能

尽管二元的RFe12磁体不能以块体的形式稳定存在,但可以将其制备成薄膜形式。最近,Hirayama等人和Sato等人通过在W或V缓冲的单晶MgO衬底上外延生长,获得了NdFe12 (随后转化为NdFe12Nx)、SmFe12和Sm(Fe, Co)12薄膜磁体,且这些薄膜磁体呈现出极强的织构,展示出明显的磁各向异性 [36] [37]。图2为Sm(Fe, Co)12薄膜磁体的微结构表征。如图所示,样品显示了ThMn12结构的外延生长。虽然图2(c)的透射电镜截面图显示了柱状结构,但这些晶粒呈现出轻度的错位,如图2(d)的纳米束衍射模式所示。

将所得到薄膜磁体的稀土元素含量(at%)、居里温度(Tc)、饱和磁化强度(Ms)、磁晶各向异性场(Ha)以及理论磁能积( ( B H ) max Th )与常用磁体的相关参数进行比较表明(表2所示),RFe12基磁体确实具有利用最少含量的稀土元素,储存更高的磁能积和显示优异的温度稳定性的优点,如SmFe9.6Co2.4薄膜磁体的理论磁能积可高达79 MGOe,明显高于NdFeB的64 MGOe。此外,这些磁体由于具有更高的居里温度(400℃~610℃),可满足150℃~200℃重要温度范围内设备的使用。但遗憾的是,这些薄膜材料矫顽力不高,而且薄膜不能作为永磁体装配到设备上使用。此外,采用外延生长的技术,由于存在大量的非磁性基底物,很难实现高性能永磁材料的制备。

Table 2. The rare earth content (at%), Tc, Ms, Ha and theoretical magnetic energy product of RFe12 based magnets were compared with those of common magnets

表2. RFe12基磁体的稀土含量(at%), Tc, Ms, Ha及理论磁能积与常用磁体的比较

Figure 2. XRD patterns of (a) Out-of-plane; (b) Various planes with tuning the angle of the sample; (c) Cross-sectional bright-field TEM image; (d) Magnified view of HAADF-STEM image and nano-beam electron diffraction NBED patterns measured at the two regions. The arrow in (c) represents the direction of the c-axis, and the arrow in (d) shows the grain boundary [37]

图2. 样品面外(a)及不同角度下的XRD谱图(b);(c) 横断面明场透射电镜图像;(d) 放大的HAADF-STEM图像和在两个区域测量的纳米束电子衍射NBED图。(c)中的箭头表示c轴的方向,(d)中的箭头表示晶界 [37]

3.2. 非平衡技术制备RFe12基条带和粉体的研究进展

通常采用非平衡技术如熔体快淬或机械合金化能够获得不稳定或亚稳材料 [42] - [48]。针对RFe12基磁体来说,已有大量的研究采用熔体快淬或机械合金化实现了一系列RFe12基磁体的制备。E. W. Singleton等人通过熔体快淬获得软磁特性的合金,并对获得的合金在700℃~1050℃进行退火,获得了矫顽力约为7.7 kOe,具有ThMn12型结构的Sm10Fe80Ti7.5B2.5磁体 [49]。Lizhong Zhao等人通过熔体快淬加后续退火制备了ThMn12型结构的SmxZr0.2(Fe0.8Co0.2)11.5Ti0.5 (x = 0.8~1.4)磁体,并深入研究了Sm含量对所制备磁体的相结构、微结构和磁性能的影响 [50]。得出在SmxZr0.2(Fe0.8Co0.2)11.5Ti0.5合金成分中,当x = 1.2时,退火后合金结构中存在顺磁非晶晶界相。这项工作为ThMn12型结构稀土永磁体的成分设计和结构优化提供了一条有用途径。L. Schultz等人采用球磨工艺加后续退火获得了具有ThMn12型结构的Sm-Fe-V纳米晶磁体,所获得的Sm15Fe70V15纳米晶磁体具有高达11.7 kOe的矫顽力 [51]。L. Bessais等人通过高能球磨加后续退火对Sm(Fe12-xCox)11Ti (x < 2)纳米晶磁体的结构演变与磁性能之间的关系进行研究。得出纳米晶的SmFe9Co2Ti磁体可作为一种半硬磁材料用于磁记录领域 [52]。A.M. Gabay等人采用机械化学的方法制备出了以ThMn12型结构为主相,具有各向异性的RFe10Si2磁粉(这里的R为Sm,Ce和Zr的组合),所获得磁粉的XRD如图3所示 [53]。这些磁粉有潜力成为具有贫稀土,无Nd、Co等昂对元素且具有磁能积为12~20 MGOe的永磁材料。

Figure 3. XRD spectra of (a) Sm0.7Zr0.3Fe10Si2; (b) Sm0.3Ce0.3Zr0.4Fe10Si2; (c) Ce0.6Zr0.4Fe10Si2 powders collected (washed) after processing at Ta = 1150℃. “1:12” and “2:17 H” stand for the ThMn12 and Th2Ni17 structure types, respectively [53]

图3. (a) Sm0.7Zr0.3Fe10Si2;(b) Sm0.3Ce0.3Zr0.4Fe10Si2;(c) Ce0.6Zr0.4Fe10Si2粉末在Ta = 1150℃处理后的XRD谱图。“1:12”和“2:17 H”分别代表ThMn12和Th2Ni17结构类型 [53]

尽管人们通过熔体快淬、高能球磨以及机械化学合成方法实现了RFe12基磁粉的制备,获得的磁粉如SmxZr0.2(Fe0.8Co0.2)11.5Ti0.5(x = 0.8~1.4, at%)、Sm(Fe0.8Co0.2)10.5Cu0.5Ti、Sm15Fe70V15和RxFe10Si2 (R = Sm,Sm0.7Zr0.3,Sm0.3Ce0.3Zr0.4和Ce0.6Zr0.4)等均展现出优异的磁性能 [49] [50] [51] [52] [53]。但与薄膜磁体一样,粉状磁体也很难作为永磁体进行设备的装配使用。但可喜的是,可以通过现有的这些非平衡制备技术,实现一系列RFe12基磁粉的制备,这将为块体RFe12基磁体的制备打下坚实的前驱粉体供给基础。有潜力使用如熔体快淬、高能球磨或者是机械化学方法所制备的粉体前驱物,后期采用恰当的块体成型技术,实现大块RFe12基磁体的制备。

3.3. RFe12基块体磁体的研究进展

在永磁材料的应用领域,使用量最大,使用形式最普遍的是块体磁体,图4为商用形状各异的块体磁体以及块体磁体在永磁电机中的装配图。

基于永磁材料的发展和市场对块体永磁材料的需求,块体永磁材料的制备技术得到了不同程度的发展。目前制备块体磁体的制备技术主要有粉末冶金加后续的高温烧结成型技术,该技术的工艺流程图如图5所示 [54]。采用该技术所制备的块体磁体主要有市场应用占有率最高的烧结NdFeB磁体以及高温技术领域应用的烧结SmCo磁体。此外就是热压热变形技术,工艺流程图如图6所示,此技术主要是应用于块体NdFeB纳米晶永磁体、永磁环的制备 [55]。除了粉末冶金加高温烧结成型技术、热压热变形技术能够实现块体磁体的制备外,粘接成型技术也被广泛地应用于低中等磁性能块体磁体的制备,其技术核心就是采用粘接剂与磁粉进行混合,然后通过模压、挤压以及注塑等方式实现块体柔性磁体的制备,工艺流程如图7所示 [56]。

Figure 4. Bulk permanent magnets and permanent magnet motor

图4. 块体永磁体及永磁电机

Figure 5. Sintering process flow chart of bulk magnet [54]

图5. 块体磁体的烧结工艺流程图 [54]

Figure 6. Process flow chart of preparing bulk NdFeB nanocrystalline magnets by hot pressing and hot deformation [55]

图6. 热压热变形制备块体NdFeB纳米晶磁体的工艺流程图 [55]

Figure 7. Summary of materials and processes involved in bonded magnet manufacture [56]

图7. 粘接磁体涉及的材料及工艺流程总结 [56]

尽管目前已存在发展较为成熟的块体磁体制备技术。但是对于RFe12基块体磁体的制备仍然是一个巨大的挑战。首先,采用传统的粉末冶金加高温烧结技术很难实现高性能RFe12基块体磁体的制备,因为RFe12基合金不像NdFeB合金一样在组织结构中存在有低熔点的富稀土相,因此很难实现烧结下RFe12基磁体的致密化 [4]。此外,RFe12基合金在较高的温度下容易发生分解,这种结构的高温不稳定性很难适用于高温烧结工艺 [57]。Dirba等人为了克服采用烧结技术实现块体RFe12基磁体制备的难点,采用添加低熔点合金来降低烧结温度的思路 [58]。然而,由于所制备的磁体存在大量的界面缺陷,使所制备的块体磁体的矫顽力仅为3 kOe。最近,Otsuka等人基于Sm-Fe-M (M为Ti和V)合金成分,采用烧结技术,通过对磁体的成分、结构和性能进行系统研究,成功制备出矫顽力为8.2 kOe,最大磁能积约为12.5 MGOe的块体各向异性Sm-Fe-V磁体 [59]。该工作指出,诱导富Sm的非化学计量比成分形成晶界相和通过相稳定元素的选取形成低熔点晶界相对提高RFe12基磁体的矫顽力是很重要的,同时可以通过诱导出现的这些低熔点晶界相来实现块体RFe12基磁体的烧结制备。尽管采用烧结技术一定程度上实现了块体RFe12基磁体的制备,但是磁体的性能仍然较低。

基于热压热变形工艺能够实现高性能块体各向异性纳米晶NdFeB永磁体的制备,除烧结技术被采用进行块体RFe12基磁体的制备外,热压热变形技术也被研究者们应用于块体RFe12基磁体的制备研究 [60]。然而,诸多研究表明,采用热压热变形工艺很难实现高性能块体RFe12基磁体的制备。如A.M. Schönhöbel等人采用热压热变形所获得的RFe12基块体磁体显示各相同性或较弱的各向异性,导致尽管块体磁体的矫顽力高达9.6 kOe,但是其剩磁仅为4.9 kG,从而使变形后块体磁体的磁能积仅为5.3 MGOe,难以推广应用 [60]。根据传统热压热变形的工业特点(变形温度高,变形过程时间长,采用的变形前驱体为纳米晶)以及目前采用此技术进行研究的相关结果表明,采用传统的热压热变形技术很难实现块体RFe12基纳米晶磁体具有晶粒细小的硬磁纳米晶沿其易磁化轴方向形成织构的组织结构,从而很难保证块体磁体同时具有高的矫顽力和高的剩磁以及良好的方形度,以致于难以获得高磁能积的块体磁体。

采用粘接技术能够很好地将RFe12基粉体与粘接剂相结合,得到块体的RFe12基磁体,如Y.C. Yang等人成功制备出Nd(Fe, M)12N(M为各种过渡元素)各向异性磁粉,磁粉有潜力用于高性能粘接磁体的制备 [61]。但是对粘接磁体来说,由于含有一定量的有机剂,这将会稀释磁体的磁性能,同时会影响磁体在高温下的使用。目前来说,粘接磁体的发展一方面需要开发出性能优异的各向异性磁粉,同时需要开发具有抵抗高温环境的粘接剂,这才能拓展粘接磁体的应用领域。

在采用传统的成型技术很难实现高性能块体RFe12基磁体制备的背景下,研究者们不断地探索一些新的途径来对块体RFe12基磁体进行制备研究。Saito等人采用放电等离子烧结技术(SPS)成功地制备出块体的SmFe11Ti纳米晶磁体 [62]。尽管在短时低温的变形条件下,能够有效地控制硬磁纳米晶粒尺寸(20~50 nm)和稳定硬磁相,但是制备过程中的变形应力较低,获得的磁体为各向同性。Hui-Dong Qian等人采用高压压实加后续退火技术通过前期十几个GPa的压力实现粉体的全致密,并通过后续的退火工艺控制高压后块体的纳米化,最终实现细小晶粒尺寸和稳定硬磁相Sm(Fe0.8Co0.2)11Ti纳米晶磁体的制备,但获得的磁体仍为各向同性,得到磁体的磁能积为12.2 MGOe,未实现磁体性能的大幅度提高 [63]。

综合目前块体RFe12基磁体制备研究的现状,现有的制备技术很难实现高性能块体RFe12基磁体的制备。主要的原因概括起来就是目前所采用的制备技术仅能实现一个或两个结构因子的控制。而对于高性能块体永磁材料的制备除了需要是块体这样的基本前提外,还需要所制备的磁体具有良好的微观组织形态如硬磁相具有沿其易磁化轴方向的织构,良好的界面结构,均匀细小的晶粒尺寸等 [1] [64] [65]。这样苛刻的结构特征要求,需要新颖的制备技术和研究思路的引入,才有希望实现高性能块体RFe12基磁体的制备,从而促进RFe12基磁体的开发与拓展应用。

4. 制备RFe12基块体磁体的潜在技术及思路探讨

随着社会对低碳环保、高效节能以及高速可持续发展的要求,各产业对永磁材料的需求量目前已经达到以80~100千吨每年逐年递增的趋势攀升,这将会造成大量昂贵稀土战略元素的消耗 [66] [67]。因此,开发低稀土甚至是无稀土高性能永磁材料,势不可挡。RFe12基稀土永磁材料凭借能够利用最少的稀土元素来实现优异磁性能磁体制备潜力,如今已成为全球磁性材料开发研究的焦点之一 [5] [6] [7]。

从目前的发展现状来看,阻碍RFe12基稀土永磁体开发应用的关键即是很难制备出块体各向异性高性能的RFe12基稀土永磁体。在前文3.3的阐述与讨论中,也指明现有的制备技术和研究思路很难实现块体各向异性高性能RFe12基稀土永磁体的制备。因此,急需引入一些新颖的制备技术和研究思路,方可实现块体各向异性高性能RFe12基稀土永磁体的制备及实际应用。

近年来,为突破块体纳米复合永磁材料中实现硬磁相织构和软磁相形态同步控制的瓶颈,高压热压缩变形技术被Zhang等人所开发,并利用该技术能够将温度场、应力场和应变场协调耦合的特点,通过对非晶状态或部分非晶的前驱粉体压坯进行高压热压缩变形,刻意地在前驱物非晶晶化过程中施加高应力、大应变,利用晶体应变能各向异性诱导纳米晶的取向生长,成功地在高软磁含量(28 wt%)和细小的晶粒尺寸(~10 nm)下诱导出SmCo硬磁纳米晶沿其易磁化轴方向的织构,获得了高达28 MGOe的磁能积,制备流程如图8所示 [68] [69] [70]。随后,此技术相继被拓展应用于单相以及复杂多相块体纳米晶永磁材料的制备研究中,实现了块体纳米晶磁体中硬磁纳米晶织构的形成和磁性能的提高 [71] [72] [73] [74]。图9展示了采用高压热压缩变形技术制备出了高性能块体各向异性的SmCo/FeCo + NdFeB纳米晶磁体 [73]。这充分说明在这样一个多场耦合的变形条件下,能够通过控制温度场、应力场等能量给予,基于晶体各晶面的应变能各向异性理论,实现对纳米晶材料中纳米晶粒的取向调控和纳米晶材料微观组织的优化 [70] [73] [75]。

由于高压热压缩变形技术具有变形温度低(500℃~650℃),应变速率快(0.1~0.01 s−1)以及高的单轴应力(≥1 GPa),如果采用高压热压缩变形技术对具有单轴各向异性的块体RFe12基纳米晶磁体进行制备研究,将能够对硬磁纳米晶的晶体学取向(织构)进行调控,有潜力实现硬磁纳米晶沿其易磁化轴方向择优取向的块体各向异性RFe12基纳米晶磁体的制备。此外,通过高压热压缩变形工艺参数以及用于变形的粉体前驱物结构形态的调控,可实现RFe12基纳米晶磁体硬磁相的结构稳定控制、晶粒尺寸的控制,界面结构的优化等,有潜力实现高性能块体各向异性RFe12基纳米晶永磁材料的制备。

Figure 8. Process flow chart of bulk anisotropic SmCo/Fe(Co) nanocomposite permanent magnets prepared by high-pressure thermal compression deformation technology [70]

图8. 采用高压热压缩变形技术制备块体各向异性SmCo/Fe(Co)纳米复合永磁体的工艺流程图 [70]

Figure 9. Comparison of magnetic energy product between anisotropic bulk SmCo/FeCo + NdFeB multiphase layered heterogeneous nanocomposite permanent magnetic materials and other SmCo bulk permanent magnetic materials [73]

图9. 各向异性块体SmCo/FeCo + NdFeB多相层状异质纳米复合永磁材料与其它SmCo系块体磁体磁能积的比较 [73]

5. 总结

本文对RFe12基稀土永磁材料的相稳定性、磁性能,RFe12基薄膜、粉体及块体磁体的研究进展进行了综述。总结了目前RFe12基稀土永磁材料的发展现状及存在的关键科学技术问题。结合目前RFe12基稀土永磁材料的研究现状,提出一种适合于制备块体各向异性高性能RFe12基稀土永磁材料的技术手段和研究思路并对其进行了探讨。文中所涉及的观点,有助于推进RFe12基稀土永磁材料研发与实际应用,进而助力“中国制造2025”、“节能环保”、“人工智能”、“5G”技术及“双碳”目标的达成。

基金项目

河北省自然科学基金(No. E2021402001);邯郸市科学技术研究与发展计划项目(No. 21422111275)。

NOTES

*通讯作者。

参考文献

[1] Gutfleisch, O., Willar, M.A., Brück, E., Chen, C.H., Sankar, S.G. and Liu, J.P. (2011) Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials, 23, 821-842.
https://doi.org/10.1002/adma.201002180
[2] Trench, A. and Sykes, J.P. (2020) Rare Earth Permanent Magnets and Their Place in the Future Economy. Engineering, 6, 115-118.
https://doi.org/10.1016/j.eng.2019.12.007
[3] Coey, J.M.D. (2020) Perspective and Prospects for Rare Earth Permanent Magnets. Engineering, 6, 119-131.
https://doi.org/10.1016/j.eng.2018.11.034
[4] Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. and Matsuura, Y. (1984) New Material for Permanent Magnets on a Base of Nd and Fe. Journal of Applied Physics, 55, 2083-2087.
https://doi.org/10.1063/1.333572
[5] Tozman, P., Sepehri-Amin, H. and Hono, K. (2021) Prospects for the Development of SmFe12-Based Permanent Magnets with a ThMn12-Type Phase. Scripta Materialia, 194, Article ID: 113686.
https://doi.org/10.1016/j.scriptamat.2020.113686
[6] Takahashi, Y., Sepehri-Amin, H. and Ohkubo, T. (2021) Recent Advances in SmFe12-Based Permanent Magnets. Science and Technology of Advanced Materials, 22, 449-460.
https://doi.org/10.1080/14686996.2021.1913038
[7] Hadjipanayis, G.C., Gabay, A.M., Schönhöbel, A.M., Martín-Cid, A., Barandiaran, J.M. and Niarchos, D. (2020) ThMn12- Type Alloys for Permanent Magnets. Engineering, 6, 141-147.
https://doi.org/10.1016/j.eng.2018.12.011
[8] Ohashi, K., Tawara, Y., Osugi, R. and Shimao, M. (1988) Magnetic Properties of Fe-Rich Rare-Earth Intermetallic Compounds with a ThMn12 Structure. Journal of Applied Physics, 64, 5714-5716.
https://doi.org/10.1063/1.342235
[9] Hu, B.P., Li, H.S., Gavigan, J.P. and Coey, J.M.D. (1989) Intrinsic Magnetic Properties of the Iron-Rich ThMn12- Structure Alloys R (Fe11Ti); R= Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu. Journal of Physics: Condensed Matter, 1, 755.
https://doi.org/10.1088/0953-8984/1/4/009
[10] Buschow, K.H.J. (1991) Permanent Magnet Materials Based on Tetragonal Rare Earth Compounds of the Type RFe12−xMx. Journal of Magnetism and Magnetic Materials, 100, 79-89.
https://doi.org/10.1016/0304-8853(91)90813-P
[11] Körner, W., Krugel, G. and Elsässer, C. (2016) Theoretical Screening of Intermetallic ThMn12-Type Phases for New Hard-Magnetic Compounds with Low Rare Earth Content. Scientific Reports, 6, Article No. 24686.
https://doi.org/10.1038/srep24686
[12] Tereshina, I.S., Kostyuchenko, N.V., Tereshina-Chitrova, E.A., Skourski, Y., Doerr, M., Pelevin, I.A. and Drulis, H. (2018) ThMn12-Type Phases for Magnets with Low Rare-Earth Content: Crystal-Field Analysis of the Full Magnetization Process. Scientific Reports, 8, Article No. 3595.
https://doi.org/10.1038/s41598-018-21756-5
[13] Sakuma, N., Suzuki, S., Kuno, T., Urushibata, K., Kobayashi, K., Yano, M. and Manabe, A. (2016) Influence of Zr Substitution on the Stabilization of ThMn12-Type (Nd1−αZrα)(Fe0.75Co0.25)11.25Ti0.75N1.2−1.4 (α= 0−0.3) Compounds. AIP Advances, 6, Article ID: 056023.
https://doi.org/10.1063/1.4944521
[14] Isnard, O. and Kinast, E.J. (2020) Neutron Diffraction Investigation of the DyFe11Ti Magnetic Structure and Its Spin Reorientations. Engineering, 6, 154-158.
https://doi.org/10.1016/j.eng.2019.11.009
[15] Suzuki, H., Nambu, A. and Okamoto, M. (2019) X-Ray Magnetic Circular Dichroism and Neutron Diffraction Measurements of the Magnetic Moment of Titanium in Sm (Fe0.8Co0.2)11Ti. Physical Review B, 100, Article ID: 144443.
https://doi.org/10.1103/PhysRevB.100.144443
[16] Fuquan, B., Wang, J.L., Tegus, O., Dagula, W., Tang, N., Yang, F. M. and Buschow, K.H.J. (2005) Phase Formation and Magnetic Properties of YFe12−xNbx (x= 0.70–0.90) Compounds. Journal of Magnetism and Magnetic Materials, 290-291, 1192-1194.
https://doi.org/10.1016/j.jmmm.2004.11.382
[17] Artigas, M., Piquer, C., Rubin, J. and Bartolomé, J. (1999) Preparation of the New Compounds RE (Ta≈0.5,Fe≈ 11.5)(RE= Tb, Dy, Ho, Er, Lu). Journal of Magnetism and Magnetic Materials, 196-197, 653-654.
https://doi.org/10.1016/S0304-8853(98)01115-9
[18] Simon, D., Wuest, H., Koehler, T., Senyshyn, A., Ehrenberg, H. and Gutfleisch, O. (2019) The Quaternary System Sm-Fe-Mo-Al and the Effect of Al Substitution on Magnetic and Structural Properties of Its ThMn12 Phase. Journal of Alloys and Compounds, 770, 301-307.
https://doi.org/10.1016/j.jallcom.2018.08.030
[19] Jurczyk, M. (1990) Magnetic Behaviour of YFe10.8−xCoxT1.2 Systems (T≡W and Re). Journal of the Less Common Metals, 166, 335-341.
https://doi.org/10.1016/0022-5088(90)90016-D
[20] Sorescu, M., Valeanu, M., Tomuta, D. and Barb, D. (1998) Investigation of the RFe10M2 (R= U; Sm; Y and M= Si; V; Mn) System by Magnetic and Mössbauer Studies. Solid State Communications, 105, 195-199.
https://doi.org/10.1016/S0038-1098(97)10062-X
[21] Matsumoto, M., Hawai, T. and Ono, K. (2020) (Sm,Zr)Fe12−xMx (M= Zr, Ti, Co) for Permanent-Magnet Applications: Ab Initio Material Design Integrated with Ex-perimental Characterization. Physical Review Applied, 13, Article ID: 064028.
https://doi.org/10.1103/PhysRevApplied.13.064028
[22] Sepehri-Amin, H., Ohkubo, T., Shima, T. and Hono, K. (2012) Grain Boundary and Interface Chemistry of an Nd–Fe–B-Based Sintered Magnet. Acta Materialia, 60, 819-830.
https://doi.org/10.1016/j.actamat.2011.10.043
[23] Neiva, A.C., Missell, F.P., Grieb, B., Henig, E.T. and Petzow, G. (1991) Phase Equilibria around SmFe11Ti at 1000 °C. Journal of the Less Common Metals, 170, 293-299.
https://doi.org/10.1016/0022-5088(91)90331-W
[24] Brown, D., Ma, B.M. and Chen, Z. (2002) Developments in the Processing and Properties of NdFeB-Type Permanent Magnets. Journal of Magnetism and Magnetic Materials, 248, 432-440.
https://doi.org/10.1016/S0304-8853(02)00334-7
[25] Lee, R.W. (1985) Hot-Pressed Neodymium-Iron-Boron Magnets. Applied Physics Letters, 46, 790-791.
https://doi.org/10.1063/1.95884
[26] Mishra, R.K. (1987). Microstructure of Hot-Pressed and Die-Upset NdFeB Magnets. Journal of Applied Physics, 62, 967-971.
https://doi.org/10.1063/1.339709
[27] Davies, B.E., Mottram, R.S. and Harris, I.R. (2001) Recent Developments in the Sintering of NdFeB. Materials Chemistry and Physics, 67, 272-281.
https://doi.org/10.1016/S0254-0584(00)00450-8
[28] Chen, Z.H. (2011) Global Rare Earth Resources and Scenarios of Future Rare Earth Industry. Journal of Rare Earths, 29, 1-6.
https://doi.org/10.1016/S1002-0721(10)60401-2
[29] Nakamura, H. (2018) The Current and Future Status of Rare Earth Permanent Magnets. Scripta Materialia, 154, 273-276.
https://doi.org/10.1016/j.scriptamat.2017.11.010
[30] Suzuki, S., Kuno, T., Urushibata, K., Kobayashi, K., Sakuma, N., Washio, K. and Manabe, A. (2016) A New Magnet Material with ThMn12 Structure: (Nd1−xZrx)(Fe1−yCoy)11+zTi1−zNα (α=0.6–1.3). Journal of Magnetism and Magnetic Materials, 401, 259-268.
https://doi.org/10.1016/j.jmmm.2015.10.042
[31] Kou, X.C., Zhao, T.S., Grössinger, R., Kirchmayr, H.R., Li, X. and De Boer, F.R. (1993) Magnetic Phase Transitions, Magnetocrystalline Anisotropy, and Crystal-Field Interactions in the RFe11Ti Series (where R= Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Or Tm). Physical Review B, 47, 3231-3242.
https://doi.org/10.1103/PhysRevB.47.3231
[32] Fujii, H. and Sun, H. (1995) Interstitially Modified Intermetallics of Rare Earth and 3D Elements. Handbook of Magnetic Materials, 9, 303-404.
https://doi.org/10.1016/S1567-2719(05)80007-1
[33] Fujii, H., Miyazaki, Y., Tatami, K., Sun, H., Morii, Y., Aka-yama, M. and Funahashi, S. (1995) Magnetic and Structural Properties of NdFe8Co3Ti Nitride with ThMn12-Type Structure. Journal of Magnetism and Magnetic Materials, 140-144, 1089-1090.
https://doi.org/10.1016/0304-8853(94)01252-0
[34] Wang, X.Z., Chevalier, B., Berlureau, T., Etourneau, J., Coey, J.M.D. and Cadogan, J.M. (1988) Iron-Rich Pseudobinary Alloys with the ThMn12 Structure Obtained by Melt Spinning: Gd (FenAl12−n), N= 6, 8, 10. Journal of the Less Common Metals, 138, 235-240.
https://doi.org/10.1016/0022-5088(88)90112-9
[35] Buschow, K.H.J. (1988) Structure and Properties of Some Novel Ternary Fe-Rich Rare-Earth Intermetallics. Journal of Applied Physics, 63, 3130-3135.
https://doi.org/10.1063/1.340865
[36] Hirayama, Y., Takahashi, Y.K., Hirosawa, S. and Hono, K. (2017) Intrinsic Hard Magnetic Properties of Sm(Fe1−xCox)12 Compound with the ThMn12 Structure. Scripta Materialia, 138, 62-65.
https://doi.org/10.1016/j.scriptamat.2017.05.029
[37] Ogawa, D., Yoshioka, T., Xu, X.D., Takahashi, Y.K., Tsuchiura, H., Ohkubo, T. and Hono, K. (2020) Magnetic Anisotropy Constants of ThMn12-Type Sm (Fe1–xCox)12 Compounds and Their Temperature Dependence. Journal of Magnetism and Magnetic Materials, 497, Article ID: 165965.
https://doi.org/10.1016/j.jmmm.2019.165965
[38] Jiang, C.B. and An, S.Z. (2013) Recent Progress in High Temperature Permanent Magnetic Materials. Rare Metals, 32, 431-440.
https://doi.org/10.1007/s12598-013-0162-6
[39] Hirayama, Y., Takahashi, Y.K., Hirosawa, S. and Hono, K. (2015) NdFe12Nx Hard-Magnetic Compound with High Magnetization and Anisotropy Field. Scripta Materialia, 95, 70-72.
https://doi.org/10.1016/j.scriptamat.2014.10.016
[40] Sato, T., Ohsuna, T., Yano, M., Kato, A. and Kaneko, Y. (2017) Permanent Magnetic Properties of NdFe12Nx Sputtered Films Epitaxially Grown on V Buffer Layer. Journal of Applied Physics, 122, Article ID: 053903.
https://doi.org/10.1063/1.4991750
[41] Tozman, P., Takahashi, Y.K., Sepehri-Amin, H., Ogawa, D., Hirosawa, S. and Hono, K. (2019) The Effect of Zr Substitution on Saturation Magnetization in (Sm1-xZrx)(Fe0.8Co0.2)12 Compound with the ThMn12 Structure. Acta Materialia, 178, 114-121.
https://doi.org/10.1016/j.actamat.2019.08.003
[42] Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L. (1990) Nanocrystalline Metals Prepared by High-Energy Ball Milling. Metallurgical Transactions A, 21, Article No. 2333.
https://doi.org/10.1007/BF02646980
[43] Takacs, L. (2002) Self-Sustaining Reactions Induced by Ball Milling. Progress in Materials Science, 47, 355-414.
https://doi.org/10.1016/S0079-6425(01)00002-0
[44] Zhang, Q., Song, W., Huang, G., Lou, L., Hou, F., Guo, D., et al. (2016) Crystallization Process and Kinetics of SmCo/Fe and SmCo/FeCo Partially Crystallized Amorphous alloys. Journal of Non-Crystalline Solids, 432, 361-365.
https://doi.org/10.1016/j.jnoncrysol.2015.10.034
[45] Weeber, A.W. and Bakker, H. (1988). Amorphization by Ball Milling. A Review. Physica B: Condensed Matter, 153, 93-135.
https://doi.org/10.1016/0921-4526(88)90038-5
[46] Rong, C. and Shen, B. (2018) Nanocrystalline and Nanocomposite Permanent Magnets by Melt Spinning Technique. Chinese Physics B, 27, Article ID: 117502.
https://doi.org/10.1088/1674-1056/27/11/117502
[47] Coehoorn, R., De Mooij, D.B., Duchateau, J.P.W.B. and Buschow, K.H.J. (1988) Novel Permanent Magnetic Materials Made by Rapid Quenching. Le Journal De Physique Colloques, 49, C8-669-C8-670.
https://doi.org/10.1051/jphyscol:19888304
[48] Zhou, C., Sun, K., Pinkerton, F.E. and Kramer, M.J. (2015) Magnetic Hardening of Ce1+xFe11−yCoyTi with ThMn12 Structure by Melt Spinning. Journal of Applied Physics, 117, 17A741.
https://doi.org/10.1063/1.4918562
[49] Singleton, E.W., Strzeszewski, J. and Hadjipanayis, G.C. (1989) High Coercivity in Rapidly Quenched Sm(Fe,T)12- Type Magnets. Applied Physics Letters, 54, 1934-1936.
https://doi.org/10.1063/1.101501
[50] Zhao, L., Li, C., Zhang, X., Bandaru, S., Su, K., Liu, X. and Yan, M. (2020) Effects of Sm Content on the Phase Structure, Microstructure and Magnetic Properties of the SmxZr0.2(Fe0.8Co0.2)11.5Ti0.5 (x=0.8–1.4) Alloys. Journal of Alloys and Compounds, 828, Article ID: 154428.
https://doi.org/10.1016/j.jallcom.2020.154428
[51] Schultz, L., Schnitzke, K. and Wecker, J. (1990) High Coercivity in Mechanically Alloyed Sm-Fe-V Magnets with a ThMn12 Crystal Structure. Applied Physics Letters, 56, 868-870.
https://doi.org/10.1063/1.102662
[52] Bessais, L. and Djega-Mariadassou, C. (2001) Structure and Magnetic Properties of Nanocrystalline Sm(Fe1−xCox)11Ti (x ≤ 2). Physical Review B, 63, Article ID: 054412.
[53] Gabay, A.M. and Hadjipanayis, G.C. (2017) Mechanochemical Synthesis of Magnetically Hard Anisotropic RFe10Si2 Powders with R Representing Combinations of Sm, Ce and Zr. Journal of Magnetism and Magnetic Materials, 422, 43-48.
https://doi.org/10.1016/j.jmmm.2016.08.064
[54] Gutfleisch, O. (2011) Magnetic Materials in Sustainable Energy. Presentation at EU JAPAN Experts Workshop on Critical Metals.
[55] Sugimoto, S. (2011) Current Status and Recent Topics of Rare-Earth Permanent Magnets. Journal of Physics D: Applied Physics, 44, Article ID: 064001.
https://doi.org/10.1088/0022-3727/44/6/064001
[56] Ormerod, J. and Constantinides, S. (1997) Bonded Permanent Magnets: Current Status and Future Opportunities. Journal of Applied Physics, 81, 4816-4820.
https://doi.org/10.1063/1.365471
[57] Dirba, I., Harashima, Y., Sepehri-Amin, H., Ohkubo, T., Miyake, T., Hirosawa, S. and Hono, K. (2020) Thermal Decomposition of ThMn12-Type Phase and Its Optimum Stabilizing Elements in SmFe12-Based Alloys. Journal of Alloys and Compounds, 813, Article ID: 152224.
https://doi.org/10.1016/j.jallcom.2019.152224
[58] Dirba, I., Sepehri-Amin, H., Choi, I.J., Choi, J.H., Uh, H.S., Kim, T.H. and Hono, K. (2021) SmFe12-Based Hard Magnetic Alloys Prepared by Reduction-Diffusion Process. Journal of Alloys and Compounds, 861, Article ID: 157993.
https://doi.org/10.1016/j.jallcom.2020.157993
[59] Otsuka, K., Kamata, M., Nomura, T., Iida, H. and Nakamura, H. (2021) Coercivities of Sm-Fe-M Sintered Magnets with ThMn12-Type Structure (M= Ti, V). Materials Transactions, 62, 887-891.
https://doi.org/10.2320/matertrans.MT-MBW2020003
[60] Schönhöbel, A.M., Madugundo, R., Gabay, A.M., Barandiarán, J.M. and Hadjipanayis, G.C. (2019) the Sm-Fe-V Based 1: 12 Bulk Magnets. Journal of Alloys and Compounds, 791, 1122-1127.
https://doi.org/10.1016/j.jallcom.2019.03.249
[61] Yang, Y., Yang, J., Han, J., Wang, C., Liu, S. and Du, H. (2015) Research and Development of Interstitial Compounds. IEEE Transactions on Magnetics, 51, Article No. 2103806.
https://doi.org/10.1109/TMAG.2015.2442244
[62] Saito, T., Watanabe, F. and Nishio-Hamane, D. (2019) Magnetic Properties of SmFe12-Based Magnets Produced by Spark Plasma Sintering Method. Journal of Alloys and Compounds, 773, 1018-1022.
https://doi.org/10.1016/j.jallcom.2018.09.297
[63] Qian, H.D., Lim, J.T., Kim, J.W., Yang, Y., Cho, K.M., Park, J. and Choi, C.J. (2021) Phase Transformation and Magnetic Properties of Fully Dense Sm (Fe0.8Co0.2)11Ti Bulk Magnets. Scripta Materialia, 193, 17-21.
https://doi.org/10.1016/j.scriptamat.2020.10.030
[64] Yue, M., Zhang, X. and Liu, J.P. (2017) Fabrication of Bulk Nanostructured Permanent Magnets with High Energy Density: Challenges and Approaches. Nanoscale, 9, 3674-3697.
https://doi.org/10.1039/C6NR09464C
[65] Sellmyer, D.J. (2002) Strong Magnets by Self-Assembly. Nature, 420, 374-375.
https://doi.org/10.1038/420374a
[66] Yang, Y., Walton, A., Sheridan, R., Güth, K., Gauß, R., Gutfleisch, O. and Binnemans, K. (2017) REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. Journal of Sustainable Metallurgy, 3, 122-149.
https://doi.org/10.1007/s40831-016-0090-4
[67] 胡伯平. 稀土永磁产业现状及展望[J]. 稀土信息, 2018(11): 14-17.
[68] Zhang, J.M., Xu, K.W. and Ji, V. (2001) Strain-Energy-Driven Abnormal Grain Growth in Copper Films on Silicon Substrates. Journal of Crystal Growth, 226, 168-174.
https://doi.org/10.1016/S0022-0248(01)01376-8
[69] Ma, F., Xu, K.W. and Fan, D.W. (2006) Strain Energy Ani-sotropy in Germanium and Other Diamond-Cubic Polycrystalline Films. Thin Solid Films, 500, 164-168.
https://doi.org/10.1016/j.tsf.2005.11.016
[70] Li, X., Lou, L., Song, W., Huang, G., Hou, F., Zhang, Q. and Zhang, X. (2017) Novel Bimorphological Anisotropic Bulk Nanocomposite Materials with High Energy Products. Advanced Materials, 29, Article ID: 1606430.
https://doi.org/10.1002/adma.201606430
[71] Li, T., Jiang, B., Lou, L., Hua, Y., Gao, J., Wang, J. and Li, X. (2020) Bulk SmCo3 Nanocrystalline Magnets with Magnetic Anisotropy. Journal of Magnetism and Magnetic Materials, 502, Article ID: 166552.
https://doi.org/10.1016/j.jmmm.2020.166552
[72] Song, W., Li, X., Lou, L., Hua, Y., Zhang, Q., Huang, G. and Zhang, X. (2017) Anisotropic Bulk SmCo7 Nanocrystalline Magnets with High Energy Product. APL Materials, 5, Article ID: 116101.
https://doi.org/10.1063/1.4995507
[73] Huang, G., Li, X., Lou, L., Hua, Y., Zhu, G., Li, M. and Zhang, X. (2018) Engineering Bulk, Layered, Multicomponent Nanostructures with High Energy Density. Small, 14, Ar-ticle ID: 1800619.
https://doi.org/10.1002/smll.201800619
[74] Wang, Y., Song, W. and Huang, G. (2022) Micro-structure, Magnetic Properties, and Thermal Stability of Bulk Anisotropic SmCo7/α-Fe(Co)+Nd2Fe14B/α-Fe Multiphase Nanohybrid Magnets. Journal of Superconductivity and Novel Magnetism, 1-8.
https://doi.org/10.1007/s10948-022-06190-z
[75] Zhang, X. (2020) Heterostructures: New Opportunities for Functional Materials. Materials Research Letters, 8, 49-59.
https://doi.org/10.1080/21663831.2019.1691668