中性粒细胞胞外诱捕网与乳腺癌相关研究进展
Research Progress on Neutrophil Extracellular Traps in Breast Cancer
DOI: 10.12677/ACM.2022.12111507, PDF, HTML, XML, 下载: 165  浏览: 313 
作者: 郭楚楚:浙江中医药大学,浙江 杭州;朱娟英:嘉兴市妇幼保健院乳腺外科,浙江 嘉兴
关键词: 中性粒细胞胞外诱捕网乳腺癌远处转移血栓形成Neutrophil Extracellular Traps Breast Cancer Distant Metastasis Thrombosis
摘要: 中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)是由DNA-组蛋白复合物以及被激活的中性粒细胞释放的蛋白质组成的网状结构。除了在中性粒细胞固有免疫应答中发挥关键作用外,NETs还参与自身免疫性疾病,如系统性红斑狼疮、类风湿性关节炎,以及其他非感染性病理过程,如血栓形成、糖尿病、血管炎和肿瘤。乳腺癌是全球女性中发病率最高的恶性肿瘤。NETs与乳腺癌进展、转移以及相关并发症(如静脉血栓栓塞)的发生有关。本文主要阐述NETs与乳腺癌相关的研究进展,并探讨NETs在乳腺癌临床治疗中的潜在用途。
Abstract: Neutrophil extracellular traps (NETs) are net-like structures composed of DNA-histone complexes and proteins released by activated neutrophils. In addition to playing a key role in neutrophil in-nate immune responses, NETs are involved in autoimmune diseases such as systemic lupus ery-thematosus, rheumatoid arthritis, and other non-infectious pathological processes such as throm-bosis, diabetes, vasculitis, and tumor. Breast cancer is the most common malignancy among women worldwide. NETs are associated with breast cancer progression, metastasis, and related complica-tions, such as venous thromboembolism. This review will focus on the research progress of NETs and breast cancer, meanwhile discussing the potential use of NETs in the clinical treatment of breast cancer.
文章引用:郭楚楚, 朱娟英. 中性粒细胞胞外诱捕网与乳腺癌相关研究进展[J]. 临床医学进展, 2022, 12(11): 10459-10465. https://doi.org/10.12677/ACM.2022.12111507

1. 引言

乳腺癌是全球范围内排名第一位的女性杀手,2020年全球女性乳腺癌新发病例数约226万例,死亡人数约68.5万例,约占女性恶性肿瘤死亡人数的15.5% [1]。中性粒细胞是外周血中含量丰富且具有异质性的白细胞,是机体抗感染的主力军 [2]。在肿瘤微环境中,中性粒细胞可通过产生抗肿瘤因子来抑制肿瘤进展,另一方面,中性粒细胞又可通过调节肿瘤生存和迁移、免疫反应和血管生成来促进肿瘤的进展和转移 [2] [3] [4],与肿瘤患者的预后相关 [5]。中性粒细胞还可通过中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)调控转移,这是一种由中性粒细胞弹性蛋白酶等颗粒蛋白和DNA组成的网状结构,在感染过程中形成以诱捕和杀死病原体 [6] [7]。炎症诱导的NETs有助于肿瘤细胞的转移,肿瘤细胞也可诱导NETs形成以促进肿瘤的进展和转移 [8] [9]。本文将对NETs与乳腺癌相关的研究进展进行综述。

2. NETs的形成过程

NETosis,即中性粒细胞形成NETs的过程,是区别于细胞凋亡和细胞坏死的另一种特定的细胞溶解性死亡机制,其特征是去浓缩的染色质和颗粒状内容物释放到细胞外空间。NETosis最经典且最有效的刺激物是细菌感染的产物,如脂多糖(lipopolysaccharide, LPS)或非内源性炎症通路激活物,如佛波酯(phorbol 12-myristate 13-acetate, PMA) [10]。LPS和PMA通过产生活性氧(ROS)促进NETosis,ROS是肿瘤和炎症信号传导以及中性粒细胞行为调节的关键 [11]。NETs形成过程有致死性和非致死性两种机制:① 在致死性机制中,不同的刺激(如PMA、HMGB1、IL-8、P-选择素、组织因子和病原体)诱导中性粒细胞裂解自杀 [12]。PMA是一种经典的非生理刺激,直接激活蛋白激酶C (protein kinase C, PKC)和Raf-MEK-ERK-MAPK信号通路 [13]。MAPK的激活会引发NADPH氧化酶复合物的形成,导致ROS的产生 [14]。髓过氧化物酶(myeloperoxidase, MPO)和中性粒细胞弹性酶(neutrophil elastase, NE)从嗜天青颗粒中释放出来,并转移到细胞核中,有助于核膜的渗透和染色质的进一步展开 [15]。细胞内钙水平的增加激活肽基精氨酸脱亚氨酶4 (peptidylarginine deiminase 4, PAD4),这是胞质中的一种钙依赖性酶,主要定位于细胞核。PAD4通过将精氨酸转变为瓜氨酸来修饰组蛋白,从而导致染色质去致密化,当核破裂时,瓜氨酸化组蛋白与核DNA一起被释放 [16]。质膜破裂后,含有颗粒蛋白(NE, MPO)的瓜氨酸化组蛋白–核DNA骨架在细胞外空间释放,导致中性粒细胞死亡 [17];② 在非致死性机制中,细胞内容物在细胞外空间释放,但中性粒细胞仍然存活。在粒细胞-巨噬细胞集落刺激因子(granulocyte macrophage-colony stimulating factor, GM-CSF)启动和随后的LPS刺激下,NETs形成过程发生非常快(5~60分钟)、不依赖于ROS的产生 [18],并与线粒体DNA的释放有关 [19]:在这种情况下,多叶核迅速变圆并浓缩,内外核膜分离,充满核DNA的囊泡被完整地挤压到细胞外空间,随后破裂并释放出染色质。Toll样受体(Toll-likereceptor, TLR) 2和补体介导的调理作用紧密调节了NETs的释放,无核的中性粒细胞仍然存活并保留吞噬功能 [20]。

3. NETs在乳腺癌进展和转移中的作用

近年来,许多研究报道了NETs在肿瘤中高表达,并与其进展和转移密切相关。Rivera [21] 等将NETs与乳腺癌的临床分期联系起来,发现乳腺癌患者的血浆NETs水平呈高表达,并且与临床分期呈正相关。在远处转移的乳腺癌中观察到更高水平的NE-DNA复合物,这提示乳腺癌进展和转移可能与NETs的形成有关。肿瘤细胞获得转移能力的关键特征之一是上皮–间充质转化(epithelial-mesenchymal transition, EMT),这是一道复杂的细胞程序,Martins [22] 等研究发现NETs将MCF-7乳腺癌细胞的典型上皮形态转变为间充质表型,这一过程伴随着迁移特性的增强。值得注意的是,NETs积极调节了促炎症和促转移相关因子的基因表达。因此,NETs通过激活EMT程序来驱动乳腺癌细胞的转移过程。肺转移是乳腺癌患者死亡的主要原因之一,中性粒细胞相关的炎症微环境有助于肿瘤细胞在肺部转移性定植。研究表明,肿瘤相关的老年中性粒细胞能够形成线粒体依赖的非致死性NETs,并且参与乳腺癌转移过程中转移前生态位的形成,从而促进乳腺癌的肺转移 [23]。Xiao [24] 等进一步研究发现肿瘤细胞分泌的组织蛋白酶C (cathepsin C, CTSC)通过调节中性粒细胞的募集和NETs的形成来促进乳腺癌的肺转移。此外,CTSC-PR3-IL-1β轴诱导中性粒细胞ROS的产生和NETs的形成,其降解血栓蛋白-1并促进乳腺癌细胞在肺部的转移性生长。CTSC的表达和分泌与乳腺癌的NETs形成和肺转移紧密关联。Yang [25] 等研究表明,NETs在乳腺癌和结肠癌伴肝转移患者的血浆中含量丰富,血浆NETs的水平可以预测早期乳腺癌患者肝转移的发生。在几种小鼠模型中,NET-DNA充当吸引肿瘤细胞的趋化因子,肝脏或肺部的NETs吸引肿瘤细胞形成远处转移。跨膜蛋白CCDC25被鉴定为肿瘤细胞上的NET-DNA受体,在CCDC25基因敲除的细胞中未观察到NETs介导的转移。临床上,CCDC25的表达与患者的不良预后密切相关。异常的NF-κB激活和NETs与乳腺癌进展紧密关联,Zhu [26] 等研究发现NF-κB和NETs协同促进乳腺癌进展和转移。由PMA诱导的NETs促进乳腺癌细胞增殖及转移,反之,癌细胞衍生因子(如IL-8和粒细胞集落刺激因子)刺激中性粒细胞形成NETs。使用PAD4抑制剂阻断NETs形成可降低NF-κB激活和肿瘤转移。总之,NF-κB与NETs结合形成促进乳腺癌进展和转移的正反馈调控,并且选择性抑制NF-κB和PAD4依赖性NETs为乳腺癌治疗提供了一种有效的方法。

4. NETs在乳腺癌相关血栓形成中的作用

NETs已被确定为静脉血栓栓塞的一个预后指标,并且与肿瘤患者的高凝状态密不可分。据统计,乳腺癌患者发生静脉血栓栓塞的可能性是同龄非乳腺癌患者的3~4倍 [27]。乳腺癌患者发生静脉血栓栓塞也与患者存活率和肿瘤复发有关,是患者预后不良的关键因素之一。Mauracher [28] 等人最近观察到,在一个近千名肿瘤患者的队列中,血浆中高水平的NETs标记物瓜氨酸组蛋白3 (citrulline histone 3, citH3)可以预测静脉血栓栓塞风险或复发风险的增加。研究发现,citH3仅增加100 ng/mL可导致静脉血栓栓塞的风险增加13%,这提示citH3可以作为预后标志物,高水平的血清citH3与不良的临床预后密切相关。Cao [29] 等建立小鼠原位4T1乳腺癌模型,发现乳腺癌发展后期在肺部有多个血栓形成。研究者发现增加细胞内NAD + 水平,通过抑制组织因子的表达和NETs的形成,减弱荷瘤小鼠的血栓前状态和肺血栓形成。此外,还证明了增加细胞NAD + 水平通过抑制组蛋白乙酰化和NADPH氧化酶活性来减弱中性粒细胞生成NETs的能力。因此,通过药物调节细胞NAD + 水平可能抑制NETs的形成,从而抑制荷瘤小鼠的肺栓塞,这可被用作治疗乳腺癌相关血栓形成的一种可行的方法。乳腺癌患者发生血栓形成的风险增加,与中性粒细胞计数增加相关的合并症以及NETs的形成有关。Gomes [30] 等证实携带转移性4T1乳腺癌的小鼠中性粒细胞计数以及粒细胞集落刺激因子(granulocyte-colony stimulating factor, G-CSF)和白细胞介素-1β (interleukin-1β, IL-1β)的表达升高,并且表现出NETs依赖性血栓前状态。IL-1β可调节G-CSF的表达,而G-CSF是一种促进肿瘤相关中性粒细胞增多症和NETs生成的细胞因子。通过阻断IL-1R,可消除4T1荷瘤小鼠中的血栓前状态。结果表明,IL-1β可能是减轻乳腺癌相关血栓形成的可行靶标。在Leal [31] 等人的最近一项研究中,原位注射4T1乳腺癌细胞的小鼠,除了循环中性粒细胞数量显著增加外,血浆DNA和MPO水平也明显升高。4T1乳腺癌细胞衍生的外泌体诱导了经G-CSF处理的小鼠NETs的形成。此外,乳腺癌来源的外泌体在静态条件下与NETs相互作用,向经G-CSF处理的小鼠静脉注射4T1衍生的外泌体可显著加速体内静脉血栓形成。结果表明,乳腺癌来源的外泌体和NETs可能在乳腺癌相关血栓形成方面起到协同作用。以上研究均表明NETs与乳腺癌相关血栓形成存在密切关联,而NETs也有望成为乳腺癌相关血栓治疗的一个新靶点,进一步改善乳腺癌患者的预后。

5. NETs作为乳腺癌治疗靶点的临床应用

针对NETs的乳腺癌临床疗法的发展还处于起步阶段,虽然抑制NETs形成已经通过几种手段实现,但是这些方法应用于临床治疗还需要跨越巨大的鸿沟。在一些研究中,脱氧核糖核酸酶I (DNase I)被证实可以降解NETs,导致其网状结构的丧失和促转移能力的降低 [32]。Carolina [33] 等还发现用重组人DNase I (rhDNase I)降解NETs可防止乳腺癌小鼠模型中的血栓形成。目前,DNaseI在临床上用于治疗囊性纤维化和脓胸,在这种情况下,DNase I是通过喷雾器传递的,这在大多数肿瘤治疗中可能无效。另外需要注意的是,DNase I注射可能会损害NETs正常的免疫保护功能,应仔细评估其长期使用具有的潜在危害性。

用于抑制NETs的PAD4小分子抑制剂可能是一种治疗手段,例如GSK484是一种可逆抑制剂,对PAD4具有高度特异性,可抑制小鼠和人中性粒细胞形成NETs。最近GSK484被证明可以预防NETs介导的小鼠肿瘤相关肾功能障碍,并且GSK484的抑制作用与DNase I一样有效 [34]。Bethany [35] 等人研究证明Cl-amidine (PAD4抑制剂)可阻止组蛋白瓜氨酸化和NETs的形成,并提高脓毒症模型小鼠的存活率。研究表明,山奈酚(kaempferol)通过抑制ROS-PAD4通路阻断NETs的形成,并且显著抑制了小鼠乳腺肿瘤模型中的原发性肿瘤生长和肺转移 [36]。此外,Yazdani [37] 等研究表明,与每日注射DNase I的小鼠相比,PAD4基因敲除小鼠皮下注射结直肠癌和肝细胞癌肿瘤细胞后,肿瘤生长更慢,转移更少。在PAD4基因敲除小鼠的肿瘤组织中未观察到NETs。这些数据均支持发展NETs靶向治疗乳腺癌的需要。

针对活化的血小板与NETs形成的相互作用,干预P-选择素和P-选择素糖蛋白配体(PSGL-1)可能是一种潜在的治疗策略。虽然P-选择素和PSGL-1抗体已被证明可以抑制小鼠的NETs形成,但白细胞粘附分子结合能力的破坏可能会降低已经处于免疫缺陷状态的乳腺癌患者的中性粒细胞招募,从而降低患者的抗感染能力 [10]。另外,阿司匹林、羟氯喹等经FDA批准的药物也可以有效地抑制中性粒细胞形成NETs。目前,羟氯喹抑制NETs形成的作用机制尚不清楚,其抑制作用可能是通过自噬抑制实现的 [38]。阿司匹林治疗虽然能够抑制中性粒细胞的NETs形成,但也有可能导致NETs正常免疫功能的丧失。研究表明,每天服用阿司匹林的乳腺癌患者,其死亡率和复发转移的风险显著降低,定期服用阿司匹林可以改善乳腺癌患者的预后情况 [39]。

6. 总结与展望

综上所述,NETs能够促进乳腺癌进展转移和复发,并诱导乳腺癌相关性血栓形成,NETs水平增高与乳腺癌患者的不良预后休戚相关。我们应该深入了解不同形式NETs形成的生化和免疫机制,这有利于产生新的与NETs相关的诊断和治疗方法,有助于临床医生确定乳腺癌患者的预后情况并改善治疗方案。基于NETs的生物标志物对预测乳腺癌的进展及预后将发挥重要作用,需要改进的技术方法来评估可靠的循环NETs标志物,使得更早诊断以及识别有转移潜力的肿瘤成为可能。另外,如何平衡NETs的免疫功能和促肿瘤作用是一项巨大的挑战,NETs靶向药物在肿瘤患者中的临床试验可以逐步开展起来。靶向NETs可能是一种很有应用前景的治疗乳腺癌转移的方法,期待在不久的将来为乳腺癌患者提供更个性化和更有效的治疗方案。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Giese, M.A., Hind, L.E. and Huttenlocher, A. (2019) Neutrophil Plasticity in the Tumor Microenvironment. Blood, 133, 2159-2167.
https://doi.org/10.1182/blood-2018-11-844548
[3] Patel, S., Fu, S., Mastio, J., et al. (2018) Unique Pattern of Neutrophil Migration and Function during Tumor Progression. Na-ture Immunology, 19, 1236-1247.
https://doi.org/10.1038/s41590-018-0229-5
[4] Saini, M., Szczerba, B.M. and Aceto, N. (2019) Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process. Cancer Research, 79, 6067-6073.
https://doi.org/10.1158/0008-5472.CAN-19-1972
[5] 陈海峰, 洪国标. 中性粒细胞与淋巴细胞比值和预后营养指数评估中晚期胰腺癌预后的应用分析[J]. 浙江临床医学, 2021, 23(8): 1163-1165, 1168.
[6] Masucci, M.T., Minopoli, M., Del Vecchio, S. and Carriero, M.V. (2020) The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Frontiers in Immunology, 11, Article 1749.
https://doi.org/10.3389/fimmu.2020.01749
[7] Albrengues, J., Shields, M.A., Ng, D., et al. (2018) Neutrophil Extracellular Traps Produced during Inflammation Awaken Dormant Cancer Cells in Mice. Science, 361, eaao4227.
https://doi.org/10.1126/science.aao4227
[8] Teijeira, Á., Garasa, S., Gato, M., et al. (2020) CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity, 52, 856-871.
https://doi.org/10.1016/j.immuni.2020.03.001
[9] Park, J., Wysocki, R.W., Amoozgar, Z., et al. (2016) Cancer Cells Induce Metastasis-Supporting Neutrophil Extracellular DNA Traps. Science Translational Medicine, 8, 361ra138.
https://doi.org/10.1126/scitranslmed.aag1711
[10] Snoderly, H.T., Boone, B.A. and Bennewitz, M.F. (2019) Neu-trophil Extracellular Traps in Breast Cancer and beyond: Current Perspectives on NET Stimuli, Thrombosis and Metasta-sis, and Clinical Utility for Diagnosis and Treatment. Breast Cancer Research, 21, Article No. 145.
https://doi.org/10.1186/s13058-019-1237-6
[11] Warnatsch, A., Tsourouktsoglou, T.-D., Branzk, N., et al. (2017) Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size. Immunity, 46, 421-432.
https://doi.org/10.1016/j.immuni.2017.02.013
[12] Tohme, S., Yazdani, H.O., Al-Khafaji, A.B., et al. (2016) Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Research, 76, 1367-1380.
https://doi.org/10.1158/0008-5472.CAN-15-1591
[13] Fonseca, Z., Díaz-Godínez, C., Mora, N., et al. (2018) In-duce Signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) Formation. Frontiers in Cellular and Infec-tion Microbiology, 8, Article 226.
https://doi.org/10.3389/fcimb.2018.00226
[14] Pieterse, E., Rother, N., Yanginlar, C., et al. (2018) Cleaved N-Terminal Histone Tails Distinguish between NADPH Oxidase (NOX)-Dependent and NOX-Independent Pathways of Neutrophil Extracellular Trap Formation. Annals of the Rheumatic Diseases, 77, 1790-1798.
https://doi.org/10.1136/annrheumdis-2018-213223
[15] Thiam, H.R., Wong, S.L., Qiu, R., et al. (2020) NETosis Proceeds by Cytoskeleton and Endomembrane Disassembly and PAD4-Mediated Chromatin Decondensation and Nu-clear Envelope Rupture. Proceedings of the National Academy of Sciences of the United States of America, 117, 7326-7337.
https://doi.org/10.1073/pnas.1909546117
[16] Sørensen, O.E. and Borregaard, N. (2016) Neutrophil Extracellular Traps—The Dark Side of Neutrophils. Journal of Clinical Investigation, 126, 1612-1620.
https://doi.org/10.1172/JCI84538
[17] Sollberger, G., Tilley, D.O. and Zychlinsky, A. (2018) Neutrophil Extracel-lular Traps: The Biology of Chromatin Externalization. Developmental Cell, 44, 542-553.
https://doi.org/10.1016/j.devcel.2018.01.019
[18] Díaz-Godínez, C., Fonseca, Z., Néquiz, M., et al. (2018) Enta-moeba histolytica Trophozoites Induce a Rapid Non-Classical NETosis Mechanism Independent of NOX2-Derived Re-active Oxygen Species and PAD4 Activity. Frontiers in Cellular and Infection Microbiology, 8, Article 184.
https://doi.org/10.3389/fcimb.2018.00184
[19] Liu, M.-L., Lyu, X. and Werth, V.P. (2021) Recent Progress in the Mechanistic Understanding of NET Formation in Neutrophils. The FEBS Journal, 289, 3954-3966.
https://doi.org/10.1111/febs.16036
[20] Brinkmann, V. (2018) Neutrophil Extracellular Traps in the Second Decade. Journal of Innate Immunity, 10, 414-421.
https://doi.org/10.1159/000489829
[21] Rivera-Franco, M.M., Leon-Rodriguez, E., Torres-Ruiz, J.J., et al. (2020) Neutrophil Extracellular Traps Associate with Clinical Stages in Breast Cancer. Pathology & Oncology Research, 26, 1781-1785.
https://doi.org/10.1007/s12253-019-00763-5
[22] Martins-Cardoso, K., Almeida, V.H., Bagri, K.M., et al. (2020) Neutrophil Extracellular Traps (NETs) Promote Pro-Metastatic Phenotype in Human Breast Cancer Cells through Epithe-lial-Mesenchymal Transition. Cancers, 12, Article No. 1542.
https://doi.org/10.3390/cancers12061542
[23] Yang, C., Wang, Z., Li, L., et al. (2021) Aged Neutrophils form Mitochondria-Dependent Vital NETs to Promote Breast Cancer Lung Metastasis. Journal for ImmunoTherapy of Cancer, 9, e002875.
https://doi.org/10.1136/jitc-2021-002875
[24] Xiao, Y., Cong, M., Li, J., et al. (2021) Cathepsin C Promotes Breast Cancer Lung Metastasis by Modulating Neutrophil Infiltration and Neutrophil Extracellular Trap Formation. Can-cer Cell, 39, 423-437.
https://doi.org/10.1016/j.ccell.2020.12.012
[25] Yang, L., Liu, Q., Zhang, X., et al. (2020) DNA of Neutrophil Ex-tracellular Traps Promotes Cancer Metastasis via CCDC25. Nature, 583, 133-138.
https://doi.org/10.1038/s41586-020-2394-6
[26] Zhu, B., Zhang, X., Sun, S., et al. (2021) NF-κB and Neutrophil Extracellular Traps Cooperate to Promote Breast Cancer Progression and Metastasis. Experimental Cell Research, 405, Article ID: 112707.
https://doi.org/10.1016/j.yexcr.2021.112707
[27] Walker, A.J., West, J., Card, T.R., et al. (2016) When Are Breast Cancer Patients at Highest Risk of Venous Thromboembolism? A Cohort Study Using English Health Care Data. Blood, 127, 849-857.
https://doi.org/10.1182/blood-2015-01-625582
[28] Mauracher, L.M., Posch, F., Martinod, K., et al. (2018) Citrul-linated Histone H3, a Biomarker of Neutrophil Extracellular Trap Formation, Predicts the Risk of Venous Thromboem-bolism in Cancer patients. Journal of Thrombosis and Haemostasis, 16, 508-518.
https://doi.org/10.1111/jth.13951
[29] Cao, W., Zhu, M.-Y., Lee, S.-H., et al. (2021) Modulation of Cellular NAD Attenuates Cancer-Associated Hypercoagulability and Thrombosis via the Inhibition of Tissue Factor and Formation of Neutrophil Extracellular Traps. International Journal of Molecular Sciences, 22, Article No. 12085.
https://doi.org/10.3390/ijms222112085
[30] Gomes, T.V., Rady, C.B.S., Louren, O.A.L, et al. (2019) IL-1β Blockade Attenuates Thrombosis in a Neutrophil Extracellular Trap-Dependent Breast Cancer Model. Frontiers in Im-munology, 10, Article 2088.
https://doi.org/10.3389/fimmu.2019.02088
[31] Leal, A.C., Mizurini, D.M., Gomes, T., et al. (2017) Tu-mor-Derived Exosomes Induce the Formation of Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated Thrombosis. Scientific Reports, 7, Article No. 6438.
https://doi.org/10.1038/s41598-017-06893-7
[32] Hosseinnejad, A., Ludwig, N., Wienkamp, A.-K., et al. (2021) DNase I Functional Microgels for Neutrophil Extracellular Trap Disruption. Biomaterials Science, 10, 85-99.
https://doi.org/10.1039/D1BM01591E
[33] Várady, C.B.S., Oliveira, A.C., Monteiro, R.Q. and Gomes, T. (2021) Recombinant Human DNase I for the Treatment of Cancer-Associated Thrombosis: A Pre-Clinical Study. Thrombosis Research, 203, 131-137.
https://doi.org/10.1016/j.thromres.2021.04.028
[34] Cedervall, J., Dragomir, A., Saupe, F., et al. (2017) Pharma-cological Targeting of Peptidylarginine Deiminase 4 Prevents Cancer-Associated Kidney Injury in Mice. Oncoimmunol-ogy, 6, e1320009.
https://doi.org/10.1080/2162402X.2017.1320009
[35] Biron, B.M., Chung, C.-S., O’brien, X.M., et al. (2017) Cl-Amidine Prevents Histone 3 Citrullination and Neutrophil Extracellular Trap Formation, and Improves Survival in a Murine Sepsis Model. Journal of Innate Immunity, 9, 22-32.
https://doi.org/10.1159/000448808
[36] Zeng, J., Xu, H., Fan, P.-Z., et al. (2020) Kaempferol Blocks Neutrophil Extracellular Traps Formation and Reduces Tumour Metastasis by Inhibiting ROS-PAD4 Pathway. Journal of Cellular and Molecular Medicine, 24, 7590-7599.
https://doi.org/10.1111/jcmm.15394
[37] Yazdani, H.O., Roy, E., Comerci, A.J., et al. (2019) Neutrophil Extracel-lular Traps Drive Mitochondrial Homeostasis in Tumors to Augment Growth. Cancer Research, 79, 5626-5639.
https://doi.org/10.1158/0008-5472.CAN-19-0800
[38] Murthy, P., Singhi, A.D., Ross, M.A., et al. (2019) En-hanced Neutrophil Extracellular Trap Formation in Acute Pancreatitis Contributes to Disease Severity and Is Reduced by Chloroquine. Frontiers in Immunology, 10, Article 28.
https://doi.org/10.3389/fimmu.2019.00028
[39] Liu, J., Zheng, F., Yang, M., et al. (2021) Effect of Aspirin Use on Survival Benefits of Breast Cancer Patients: A Meta-Analysis. Medicine, 100, e26870.
https://doi.org/10.1097/MD.0000000000026870