卒中后认知障碍(PSCI)相关前瞻性分子生物标志物
Prospective Molecular Biomarkers Related to Post Stroke Cognitive Impairment
DOI: 10.12677/ACM.2022.12111550, PDF, HTML, XML, 下载: 245  浏览: 360 
作者: 辛 亮, 饶 静, 魏亚囡, 张禄露:西安医学院,陕西 西安;徐瑞芬*:陕西省人民医院,陕西 西安
关键词: 卒中后认知障碍缺血性卒中分子生物标志物Post Stroke Cognitive Impairment Ischemic Stroke Molecular Biomarkers
摘要: 卒中后认知障碍(PSCI)是卒中后主要的并发症之一,是血管性认知障碍(VCI)的一个亚型。它的诊断通常要在卒中后3至6个月进行认知评估来最终确定。评估参与卒中后认知障碍发病的潜在因素是预防缺血性卒中患者认知缺陷进展的关键步骤。本综述着重总结有关卒中后认知障碍潜在分子生物标志物的研究。
Abstract: Post stroke cognitive impairment is one of the main complications after stroke and a subtype of vascular cognitive impairment. Its diagnosis is usually finalized by cognitive assessment 3~6 months after stroke. Assessing the potential factors involved in the onset of post-stroke cognitive impairment is a key step to prevent the progression of cognitive impairment in patients with ischemic stroke. This review focuses on summarizing the research on potential molecular biomarkers of post-stroke cognitive impairment.
文章引用:辛亮, 饶静, 魏亚囡, 张禄露, 徐瑞芬. 卒中后认知障碍(PSCI)相关前瞻性分子生物标志物[J]. 临床医学进展, 2022, 12(11): 10759-10765. https://doi.org/10.12677/ACM.2022.12111550

1. 引言

PSCI是指在卒中事件后出现并持续到6个月时仍存在的以认知损害为特征的临床综合征。据报告显示,我国已经成为卒中终身风险最高和疾病负担最重的国家,其中约三分之一的卒中患者会经历PSCI [1]。PSCI对卒中患者的运动功能,日常生活活动和其他功能的恢复都有着负面的影响,它增加了整体康复的难度,影响患者重返家庭和社会的正常生活秩序,最终带来沉重的经济负担和心理负担 [2]。所以,针对性的诊断和治疗对于PSCI的发展和预后是非常重要的,因此对它的评估就显得尤为重要。PSCI的评估通常基于临床、神经心理的评估,其准确性和客观性容易受到限制,并且容易受到年龄和教育程度的影响。近年来,越来越多的研究表明,PSCI患者血液、尿液和其他体液中C-反应蛋白(CRP)、白介素-6 (IL-6)、白介素-10 (IL-10)等生物标志物的表达变化与卒中后认知能力下降有关。因此,检测循环血清、血浆和脑脊液(CSF)循环中的分子生物标志物可以提高PSCI的诊断和预后的准确性 [3]。因此,本综述旨在总结探索PSCI诊断和预后前瞻性潜在生物标志物的研究。

2. 中性粒细胞–淋巴细胞比率(Neutrophil Lymphocyte Ratio, NLR)

作为一种潜在的可改变的风险因素,全身性炎症被认为是卒中后认知障碍的一个重要方面。全身性炎症可能会在缺血性卒中发生之前在中枢神经系统中诱发促炎环境,这可能会加剧卒中后的有害分子级联反应 [4]。在急性卒中阶段,循环中的中性粒细胞被招募到缺血性病变中并诱导破坏性级联反应,包括活性氧、蛋白酶和促炎细胞因子的产生,然而淋巴细胞计数在应激诱导的皮质类固醇作用下相对减少 [5]。因此血清NLR很可能代表急性缺血性卒中时中枢神经系统的炎症状态。NLR是一种方便且容易获得的全身性炎症参数。高NLR与神经系统健康人群中颅内动脉粥样硬化的患病率呈剂量依赖性相关 [6]。NLR 2.5及以上也被证明会显著增加心脑血管疾病的风险 [7],此外入院时NLR高于5.0时增加缺血性卒中后出血性转化、不良功能结局和死亡率的独立因素 [8]。

此前PSCI的研究主要集中在炎症标志物上,如血沉(ESR)、C反应蛋白(CRP)、白细胞介素(ILs)。因此Minwoo Li [5] 等人就做了一次前瞻性的研究,首先建立了NLR和PSCI之间的关联。他们使用前瞻性卒中登记数据招募了平均年龄63.5岁的345名缺血性卒中患者,在卒中后3个月评估其认知功能,认知能力采用血管认知障碍协调标准和迷你精神状态检查来评估。根据NLR的五分位数(最低NLR,Q1)将参与者分为五组,使用多元逻辑回归评估NLR和PSCI之间的横截面关系,最终在71例(20.6%)患者中发现了PSCI。NLR是PSCI的一个重要预测因子,既作为分类变量(调整后OR,1.14;95% CI,1.00~1.31),也可作为分类变量(Q5,调整后OR,3.26;95% CI,1.17~9.08)。Q5组患者 ≥ (3.80)在整体认知、视觉空间和记忆领域的表现明显较差。从而他们得出结论:缺血性急性卒中期NLR与卒中后3个月的PSCI独立相关,高NLR与记忆和视觉空间领域的认知功能障碍特异相关。虽然研究中存在很多限制,但本研究首先证明了NLR与PSCI之间的关系。

3. 谷氨酰转移酶(GGT)

谷氨酰转移酶(GGT)是一种血清代谢生物标志物,主要用于评估肝功能。GGT参与维持细胞中谷胱甘肽的生理浓度,并反映体内氧化–抗氧化平衡 [9]。据报道,GGT水平与糖尿病患者认知功能下降有关 [10] [11]。此外,一项韩国回顾性研究发现,GGT变异性与阿尔茨海默病有关,这意味着血清GGT水平是认知能力下降的潜在预测因素 [12]。此外,包括GGT在内的血清代谢物已被证明在PSCI和卒中后非认知障碍患者中存在差异表达 [13],这表明GGT可能影响PSCI的发生。

在一项前瞻性、多中心队列研究中,Siqi Li [14] 等人采用多元逻辑回归模型评估了GGT和PSCI在3个月内的随访关系。最高GGT水平四分位数组的PSCI风险较低[OR (95% CI): 0.69 (0.50~0.96)]。此外,将GGT纳入传统模型导致3个月后PSCI结果略有改善(NRI: 12.0%; IDI: 0.30%)。结果显示基线GGT水平与PSCI呈负相关,极低的GGT水平被认为是PSCI的风险因素。然而,GGT水平是动态变化的,因此,应该仔细考虑仅依靠GGT预测PSCI,需要进一步的纵向研究来阐明GGT影响神经可塑性的机制。

4. 可溶性肿瘤发生抑制蛋白2 (sST2)

现有的基于人群的证据表明,心脏功能欠佳或心肌生物标志物异常升高,如N-末端B型利钠肽前体(NT-proBNP)或高敏感性心肌肌钙蛋白T (hs-cTnT),与较差的认知表现有关 [15],这提示心肌生物标志物可用于识别认知损害风险较高的个体。然而,心肌生物标志物在脑血管疾病中的预测作用是否持续并不一致。可溶性肿瘤发生抑制蛋白2 (sST2)是另外一种促进心肌细胞肥大和纤维化的心脏应激生物标志物,被认为是心力衰竭的重要生物标志物 [16]。最近,Framinghan Offspring [17] 发现,sST2水平升高与意外卒中和亚临床血管性脑损伤的风险增加有关。

流行病学研究的新证据支持sST2在心力衰竭、冠状动脉疾病、缺血性卒中等各种心血管疾病中具有诊断和预后价值 [18] [19] [20] [21]。在急性缺血性卒中患者中进行的Lins卒中单元研究报告中表示死者的sST2水平高于幸存者 [20]。此外,Wolcott [21] 等人证明sST2是缺血性卒中患者短期死亡率、功能转归和出血转归的独立预测因子。

在急性缺血性卒中后sST2与认知障碍风险的一项前瞻性观察研究中对来自619名的缺血性脑卒中患者(平均年龄60.5 ± 10.5岁)进行了基线血浆sST2水平测量,用蒙特利尔认知评估(MoCA)和简易精神状态检查(MMSE)用于评估认知状态,通过逻辑回归分析评估sST2与PSCI之间的关联。在对年龄、性别、教育程度和其他协变量进行调整后,sST2最高与最低四分位数的优势比为2.38 (95% CI, 1.42~4.00)和1.82 (95% CI, 1.09~3.03)。由此得出结论,血浆sST2水平升高与卒中后认知障碍显著相关 [16]。此外他们发现,sST2在预测PSCI方面优于NT-proBNP。

5. 血浆神经丝轻链蛋白(pNfL)

神经丝轻链(NfL)是一种神经元特异性结构蛋白,现已被认为是轴突损伤和神经退行性病变的主要原因,在患者监测、观察性和介入性研究中都有潜在的应用 [22]。脑脊液(CSF) NfL浓度可以作为白质和其他皮质下脑结构轴突损伤的标志物。脑脊液中NfL的表达与认知功能相关,包括AD和额颞叶痴呆(FTD),甚至在血管性痴呆(VaD)研究的小样本中也是如此 [22]。与其它类型的痴呆相比,参与皮质下脑区的痴呆(如VaD)患者的脑脊液NfL的表达水平显著增加。由于脑脊液收集相对复杂,尤其是对卒中患者而言,因此血液生物标志物的开发尤为重要。

近年来,随着血浆NfL (pNfL)定量检测技术的发展,关于pNfL在神经退行性疾病和脑损伤中作用的研究不断增加 [23]。之前的研究发现,pNfL与入院时的美国国立卫生研究院卒中量表(NIHSS)、年龄相关的白质变化、梗死体积和卒中后90天的临床预后之间存在显著相关性 [22] [24],荟萃分析表明,pNfL是缺血性卒中与后的一个有希望的预测性生物标志物 [25],NfL浓度也被认为与认知恶化有关 [26]。

为了进一步确定pNfL和PSCI的关系,Zhiqiang Wang [22] 等人进行了一项前瞻性单中新观察性队列研究。结果显示PSCI患者的pNfL显著高于非PSCI患者[中位数(IQR),55.96 (36.13):35.73 (17.57) pg/ml;P < 0.001]。经Logistic回归分析后,pNfL对预测PSCI有价值[OR (95% CI): 1.044 (1.038~1.049), P < 0.001],即使在调整了包括年龄、性别、教育水平、NIHSS、TOAST (Trial of org 10172 in acute stroke treatment, TOSAT)亚型分类和梗死体积在内的常规风险因素后仍具有价值[OR (95% CI): 1.041 (1.034~1.047), P < 0.001]。pNfL浓度的最佳临界值为46.12 pg/ml,其敏感性为71.0%,特异性为81.5%。此次研究证明,首次卒中后48小时内的高pNfL水平与急性缺血性卒中后PSCI的发展有关。此外,这项研究显示,在区分PSCI患者和无认知障碍患者时,诊断准确率显著提高。

6. 可溶性髓样细胞触发受体2 (sTREM2)

血浆髓样细胞触发受体2 (TREM2)是一种单程跨膜蛋白,主要在髓系细胞上表达 [27]。TREM2信号传导在某些神经系统疾病中是有害的 [28]。实验研究发现TREM2缺乏与缺血性损伤和小胶质细胞吞噬作用有关,TREM2通路不利于感知组织损伤并限制其在体内、体外卒中模型中的传播 [29] [30]。可溶性形式(sTREM2)来自TREM2胞外结构域脱落,被含有去整合素和金属蛋白酶结构域的蛋白质蛋白水解切割,并释放到细胞外区域 [27]。实验研究表明,在TREM2缺陷性小胶质细胞或小鼠模型中,sTREM2克增强小胶质细胞的活力,并诱导小胶质细胞产生炎性细胞因子 [31]。一项小样本量的临床研究报告称,早期血浆sTREM2水平升高与卒中后较差的认知功能结果相关 [32]。此外,先前的研究表明sTREM2水平与中枢神经系统退行性病变之间存在关联 [28] [29] [33]。Hisayama [33] 研究表明,在日本普通老年人群中,血清sTREM2水平较高的患者发生全因性痴呆、阿尔茨海默病和血管性痴呆的风险更高。然而,针对缺血性卒中期sTREM2水平与PSCI之间的研究尚不充分。

基于中国急性缺血性脑卒中降压试验(CATIS)的样本,Yinwei Zhu [34] 等人前瞻性的评估了急性缺血性脑卒中(AIS)患者血浆sTREM2水平与认知障碍风险的关系,并研究了血浆sTREM2的预测能力。他们用二元逻辑回归分析法评估了血浆sTREM2水平对PSCI风险的优势比(OR),结果PSCI的风险随着血浆sTREM2水平的升高而显著升高(趋势P < 0.01)。研究结果表明,AIS急性期血浆sTREM2水平的升高与缺血性卒中后3个月的PSCI有关,sTREM2可作为PSCI的预测生物标志物,需要进一步的基础和临床研究来探索血浆sTREM2水平与PSCI之间的机制和因果关系。

7. MicroRNA Let-7i (miRNA-let-7i)

MicroRNAs (miRNAs)是一类小的内源性RNA分子,可在许多生物过程中调节基因表达 [35]。miRNA以高度稳定的形式存在于人血清中,可以抵抗反复的冻融循环和内源性酶降解 [36]。同时,miRNA的表达水平在同一个物种的个体之间是一致的 [37]。由于这些特性,miRNA已成为一种流行的诊断标志物。此前,miRNA-132被证明是PSCI的风险标志物,可用作PSCI的诊断生物标志物 [38]。之前,Balakathiresan [39] 等人分析了爆炸后超压损伤动物血清中各种候选miRNA的表达。其中,据报道miRNA-let-7i在创伤性脑损伤(TBI)大鼠的大脑中高度富集。在实验性脑损伤中,早在损伤后3小时,脑脊液中的miRNA-let-7i就会上调,并已经被用作TBI的诊断生物标志物 [40]。然而,miRNA-let-7i在PSCI的发病机制中的作用尚未阐述,尤其是分子机制。众所周知,缺氧可诱导氧化应激,这与神经元细胞死亡有关,这是神经性退行性病变的主要原因之一,例如卒中后的脑缺血再灌注 [41]。因此,研究miRNA-let-7i在预防神经元细胞死亡中的作用有可能预防PSCI。

最近,Zhanqing Wang [42] 等人研究了miRNA-let-7i是否参与PSCI并寻求阐明其在氧-葡萄糖剥夺(OGD)诱导的细胞凋亡中的潜在作用。结果显示与非PSCI患者相比,miRNA-let-7i的表达在PSCI患者中上调(P < 0.001),并且与MoCA评分呈负相关(r = −0.643, P < 0.001)。在OGD处理的细胞中,miRNA-let-7i上调伴随有细胞凋亡,而下调则出现相反的结果。由此得出结论,miRNA-let-7i在PSCI患者中过表达,可用作PSCI的诊断生物标志物。同时在此项研究中阐明了miRNA-let-7i通过在转录水平正向调节Bcl-2来减轻OGD诱导的细胞损伤的潜在机制。

8. 结论

如今越来越多的研究表明,生物标志物的测定可以提高PSCI的诊断和预后的准确性并有助于疾病的靶向治疗。依靠生物标志物诊断和预测PSCI已经成为现在的研究热点。然而,仍然缺乏大规模的临床试验来进一步检验和支持现有的研究结果,因此在PSCI的诊断评估和预后中使用生物标志物仍然是一个严峻的挑战。

NOTES

*通讯作者。

参考文献

[1] 汪凯, 董强, 郁金泰, 等. 卒中后认知障碍管理专家共识2021 [J]. 中国卒中杂志, 2021, 16(4): 376-389.
[2] Almalki, O., Alshehri, M.A., El-Sodany, A.M., et al. (2018) The Awareness of Healthcare Staff towards Post-Stroke Cognitive Impairment: A Cross Sectional Study. The Journal of Physical Therapy Science, 30, 883-887.
https://doi.org/10.1589/jpts.30.883
[3] Zhang, X. and Bi, X. (2020) Post-Stroke Cognitive Impairment: A Review Focusing on Molecular Biomarkers. Journal of Molecular Neuroscience, 70, 1244-1254.
https://doi.org/10.1007/s12031-020-01533-8
[4] Dziedzic, T. (2015) Systemic Inflammation as a Therapeutic Target in Acute Ischemic Stroke. Expert Review of Neurotherapeutics, 15, 523-531.
https://doi.org/10.1586/14737175.2015.1035712
[5] Lee, M., Lim, J.S., Kim, C.H., et al. (2021) High Neutro-phil-Lymphocyte Ratio Predicts Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients. Frontiers in Neurology, 12, Article ID: 693318.
https://doi.org/10.3389/fneur.2021.693318
[6] Nam, K.W., Kwon, H.M., Jeong, H.Y., et al. (2018) High Neu-trophil to Lymphocyte Ratios Predict Intracranial Atherosclerosis in a Healthy Population. Atherosclerosis, 269, 117-121.
https://doi.org/10.1016/j.atherosclerosis.2017.12.035
[7] Suh, B., Shin, D.W., Kwon, H.M., et al. (2017) Elevated Neutrophil to Lymphocyte Ratio and Ischemic Stroke Risk in Generally Healthy Adults. PLOS ONE, 12, e0183706.
https://doi.org/10.1371/journal.pone.0183706
[8] Qun, S., Tang, Y., Sun, J., et al. (2017) Neutro-phil-to-Lymphocyte Ratio Predicts 3-Month Outcome of Acute Ischemic Stroke. Neurotoxicity Research, 31, 444-452.
https://doi.org/10.1007/s12640-017-9707-z
[9] Kunutsor, S.K. (2016) Gamma-Glutamyltransferase-Friend or Foe within? Liver International, 36, 1723-1734.
https://doi.org/10.1111/liv.13221
[10] Gasecka, A., Siwik, D., Gajewska, M., et al. (2020) Early Biomarkers of Neurodegenerative and Neurovascular Disorders in Diabetes. Journal of Clinical Medicine, 9, Article No. 2807.
https://doi.org/10.3390/jcm9092807
[11] Hong, S.H., Han, K., Park, S., et al. (2020) Gamma-Glutamyl Transfer-ase Variability and Risk of Dementia in Diabetes Mellitus: A Nationwide Population-Based Study. The Journal of Clinical Endocrinology & Metabolism, 105, dgaa019.
https://doi.org/10.1210/clinem/dgaa019
[12] Lee, Y.B., Han, K., Park, S., et al. (2020) Gamma-Glutamyl Transferase Variability and Risk of Dementia: A Nationwide Study. International Journal of Geriatric Psychiatry, 35, 1105-1114.
https://doi.org/10.1002/gps.5332
[13] Praetorius, B.M. and Johansson, B. (2018) Gamma-Glutamyltransferase (GGT) as a Biomarker of Cognitive Decline at the End of Life: Contrasting Age and Time to Death Trajectories. International Psychogeriatrics, 30, 981-990.
https://doi.org/10.1017/S1041610217002393
[14] Li, S., Liao, X., Pan, Y., et al. (2022) Gamma-Glutamyl Transferase Levels Are Associated with the Occurrence of Post-Stroke Cognitive Impairment: A Multicenter Cohort Study. BMC Neurology, 22, Article No. 65.
https://doi.org/10.1186/s12883-022-02587-4
[15] Nagata, T., Ohara, T., Hata, J., et al. (2019) NT-proBNP and Risk of Dementia in a General Japanese Elderly Population: The Hisayama Study. Journal of the American Heart As-sociation, 8, e011652.
https://doi.org/10.1161/JAHA.118.011652
[16] Zhu, Y., Fang, C., Zhang, Q., et al. (2021) Soluble ST2 and Risk of Cognitive Impairment after Acute Ischemic Stroke: A Prospective Observational Study. BMC Geriatrics, 21, Article No. 330.
https://doi.org/10.1186/s12877-021-02288-6
[17] Andersson, C., Preis, S.R., Beiser, A., et al. (2015) Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations with Subclinical Vascular Brain Injury and Incident Stroke. Stroke, 46, 2568-2575.
https://doi.org/10.1161/STROKEAHA.115.009026
[18] Tian, X., Guo, Y., Wang, X., et al. (2020) Serum Soluble ST2 Is a Potential Long-Term Prognostic Biomarker for Transient Ischaemic Attack and Ischaemic Stroke. European Journal of Neurology, 27, 2202-2208.
https://doi.org/10.1111/ene.14419
[19] Matilla, L., Ibarrola, J., Arrieta, V., et al. (2019) Soluble ST2 Promotes Oxidative Stress and Inflammation in Cardiac Fibroblasts: An in Vitro and in Vivo Study in Aortic Stenosis. Clinical Science (London), 133, 1537-1548.
https://doi.org/10.1042/CS20190475
[20] Dieplinger, B., Bocksrucker, C., Egger, M., et al. (2017) Prognostic Value of Inflammatory and Cardiovascular Biomarkers for Prediction of 90-Day All-Cause Mortality after Acute Is-chemic Stroke-Results from the Linz Stroke Unit Study. Clinical Chemistry, 63, 1101-1109.
https://doi.org/10.1373/clinchem.2016.269969
[21] Wolcott, Z., Batra, A., Bevers, M.B., et al. (2017) Soluble ST2 Predicts Outcome and Hemorrhagic Transformation after Acute Stroke. Annals of Clinical and Translational Neurology, 4, 553-563.
https://doi.org/10.1002/acn3.435
[22] Wang, Z., Wang, R., Li, Y., et al. (2021) Plasma Neurofilament Light Chain as a Predictive Biomarker for Post-Stroke Cognitive Impairment: A Prospective Cohort Study. Frontiers in Aging Neuroscience, 13, Article ID: 631738.
https://doi.org/10.3389/fnagi.2021.631738
[23] Guedes, V.A., Kenney, K., Shahim, P., et al. (2020) Exosomal Neurofilament Light: A Prognostic Biomarker for Remote Symptoms after Mild Traumatic Brain Injury? Neurology, 94, e2412-e2423.
https://doi.org/10.1212/WNL.0000000000009577
[24] Gattringer, T., Pinter, D., Enzinger, C., et al. (2017) Serum Neurofilament Light Is Sensitive to Active Cerebral Small Vessel Disease. Neurology, 89, 2108-2114.
https://doi.org/10.1212/WNL.0000000000004645
[25] Liu, D., Chen, J., Wang, X., et al. (2020) Serum Neurofilament Light Chain as a Predictive Biomarker for Ischemic Stroke Outcome: A Systematic Review and Me-ta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 104813.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104813
[26] Olsson, B., Portelius, E., Cullen, N.C., et al. (2019) Association of Cerebrospinal Fluid Neurofilament Light Protein Levels with Cognition in Patients with Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurology, 76, 318-325.
https://doi.org/10.1001/jamaneurol.2018.3746
[27] Jay, T.R., Von Saucken, V.E. and Landreth, G.E. (2017) TREM2 in Neurodegenerative Diseases. Molecular Neurodegeneration, 12, Article No. 56.
https://doi.org/10.1186/s13024-017-0197-5
[28] Konishi, H. and Kiyama, H. (2018) Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 12, Article No. 206.
https://doi.org/10.3389/fncel.2018.00206
[29] Deczkowska, A., Weiner, A. and Amit, I. (2020) The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell, 181, 1207-1217.
https://doi.org/10.1016/j.cell.2020.05.003
[30] Gervois, P. and Lambrichts, I. (2019) The Emerging Role of Triggering Receptor Expressed on Myeloid Cells 2 as a Target for Immunomodulation in Ischemic Stroke. Frontiers in Immunology, 10, Article No. 1668.
https://doi.org/10.3389/fimmu.2019.01668
[31] Zhong, L. and Chen, X.F. (2019) The Emerging Roles and Ther-apeutic Potential of Soluble TREM2 in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 11, Article No. 328.
https://doi.org/10.3389/fnagi.2019.00328
[32] Kwon, H.S., Lee, D., Lee, M.H., et al. (2020) Post-Stroke Cognitive Impairment as an Independent Predictor of Ischemic Stroke Recurrence: PICASSO Sub-Study. Journal of Neurology, 267, 688-693.
https://doi.org/10.1007/s00415-019-09630-4
[33] Ohara, T., Hata, J., Tanaka, M., et al. (2019) Serum Soluble Triggering Receptor Expressed on Myeloid Cells 2 as a Biomarker for Incident Dementia: The Hisayama Study. Annals of Neurology, 85, 47-58.
https://doi.org/10.1002/ana.25385
[34] Zhu, Y., Zhao, Y., Lu, Y., et al. (2022) The Association between Plasma Soluble Triggering Receptor Expressed on Myeloid Cells 2 and Cognitive Impairment after Acute Ischemic Stroke. Journal of Affective Disorders, 299, 287-293.
https://doi.org/10.1016/j.jad.2021.12.011
[35] Keasey, M.P., Scott, H.L., Bantounas, I., et al. (2016) MiR-132 Is Upregulated by Ischemic Preconditioning of Cultured Hippocampal Neurons and Protects Them from Subsequent OGD Toxicity. Journal of Molecular Neuroscience, 59, 404-410.
https://doi.org/10.1007/s12031-016-0740-9
[36] Schöler, N., Langer, C., Döhner, H., et al. (2010) Serum mi-croRNAs as a Novel Class of Biomarkers: A Comprehensive Review of the Literature. Experimental Hematology, 38, 1126-1130.
https://doi.org/10.1016/j.exphem.2010.10.004
[37] Reid, G., Kirschner, M.B. and Van Zandwijk, N. (2011) Cir-culating microRNAs: Association with Disease and Potential Use as Biomarkers. Critical Reviews in Oncolo-gy/Hematology, 80, 193-208.
https://doi.org/10.1016/j.critrevonc.2010.11.004
[38] Huang, S., Zhao, J., Huang, D., et al. (2016) Serum miR-132 Is a Risk Marker of Post-Stroke Cognitive Impairment. Neuroscience Letters, 615, 102-106.
https://doi.org/10.1016/j.neulet.2016.01.028
[39] Balakathiresan, N., Bhomia, M., Chandran, R., et al. (2012) MicroRNA Let-7i Is a Promising Serum Biomarker for Blast-Induced Traumatic Brain Injury. Journal of Neurotrauma, 29, 1379-1387.
https://doi.org/10.1089/neu.2011.2146
[40] Bhomia, M., Balakathiresan, N.S., Wang, K.K., et al. (2016) A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Scientific Reports, 6, Article No. 28148.
https://doi.org/10.1038/srep28148
[41] Tabner, B.J., El-Agnaf, O.M., Turnbull, S., et al. (2005) Hydrogen Per-oxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia. Journal of Biological Chemistry, 280, 35789-35792.
https://doi.org/10.1038/srep28148
[42] Wang, Z.Q., Li, K., Huang, J., et al. (2021) Corrigendum: MicroRNA Let-7i Is a Promising Serum Biomarker for Post-Stroke Cognitive Impairment and Alleviated OGD-Induced Cell Damage in Vitro by Regulating Bcl-2. Frontiers in Neuroscience, 15, Article ID: 648121.
https://doi.org/10.3389/fnins.2021.648121