长链非编码RNA-HOTAIR对恶性肿瘤放疗敏感性的研究
Study on the Sensitivity of Long Non-Coding RNA-HOTAIR to Radiotherapy for Malignant Tumors
DOI: 10.12677/ACM.2023.132335, PDF, HTML, XML, 下载: 183  浏览: 252 
作者: 肖雪玲, 赵化荣*:新疆医科大学第一附属医院肿瘤中心,新疆 乌鲁木齐
关键词: 长链非编码RNAHOTAIR放疗敏感性Long Non-Coding RNA HOTAIR Radiotherapy Sensitivity
摘要: 放射抵抗及肿瘤细胞对放射线不敏感使得放射治疗在恶性肿瘤治疗中的有效性大大降低。已有研究表明在肺癌、乳腺癌、宫颈癌、胰腺癌等恶性肿瘤中存在不同程度水平的HOTAIR表达水平升高,进一步研究发现HOTAIR在肿瘤生长、增殖、转移、侵袭等过程中也扮演着重要角色,同时也影响恶性肿瘤放疗的敏感性,对放射线敏感性差及放疗抵抗的恶性肿瘤组织及细胞中表现出HOTAIR表达升高的趋势,诸多研究证明恶性肿瘤中HOTAIR表达升高与放射抵抗相关,因此明确部分患者对放射治疗抵抗的分子机制尤为重要,增加肿瘤的放疗敏感性,对提高患者的治疗效果,具有重要的临床意义。
Abstract: Radiation resistance and insensitivity of tumor cells to radiation greatly reduce the effectiveness of radiotherapy in the treatment of malignant tumors. Existing studies have shown that HOTAIR ex-pression level increases at different levels in malignant tumors such as lung cancer, breast cancer, cervical cancer and pancreatic cancer. Further studies have found that HOTAIR also plays an im-portant role in tumor growth, proliferation, metastasis, invasion and other processes, and also af-fects the sensitivity of radiotherapy for malignant tumors. Malignant tumor tissues and cells with poor sensitivity to radiation and resistance to radiotherapy show a trend of increased HOTAIR ex-pression, and many studies have proved that the increased HOTAIR expression in malignant tu-mors is related to radiation resistance. Therefore, it is particularly important to identify the molec-ular mechanism of some patients’ resistance to radiotherapy, so as to increase the radiotherapy sensitivity of tumors and improve the therapeutic effect of patients. It has important clinical signif-icance.
文章引用:肖雪玲, 赵化荣. 长链非编码RNA-HOTAIR对恶性肿瘤放疗敏感性的研究[J]. 临床医学进展, 2023, 13(2): 2386-2391. https://doi.org/10.12677/ACM.2023.132335

1. 引言

近几年来,长链非编码RNA (long non-coding RNAs, LncRNAs)作为基因调控网络的重要组成部分受到广泛关注,其是指长度大于200 nt、不编码蛋白的RNA,研究显示超过90%的哺乳动物基因组被转录为非编码RNA,只有不到约2%的基因参与蛋白质编码,主要是以RNA的形式在多种层面(表观遗传学、转录水平、转录后水平)上调控基因的表达,在个体发育及肿瘤发生、发展过程中起着重要的作用 [1] [2] 。HOX反义中间体RNA (HOTAIR)位于同源异构体C (HOXC)基因簇内的染色体上的IncRNA,定位于人类染色体12q13.13区域HOX基因家族HOXC11基因的反义链,长6232 bp,编码2.2 kb长链非编码RNA分子,包括6个外显子,HOTAIR与HOXC基因簇共表达,最初被发现为HOXD基因的阻遏物,其生物学作用是通过募集一系列复杂蛋白复合体实现对下游靶标癌基因和抑癌基因的调控 [3] 。HOTAIR是第1个被发现以反义转录方式调控基因表达的LncRNA,有研究证实,在食管癌 [4] 、肺癌 [5] 、乳腺癌 [6] 等多种恶性肿瘤中高表达,且HOTAIR表达越高对放射线越抗拒 [7] ,通过下调HOTAIR的表达可增加肿瘤细胞的放射敏感性。

2. HOTAIR引起放疗抵抗可能相关机制

2.1. HOTAIR通过肿瘤代谢参与放射敏感性

缺氧是肿瘤细胞辐射抵抗的重要因素。同时,越来越多的研究表明,低氧导致辐射诱导的DNA链断裂减少 [8] 。低氧刺激可能通过改变细胞死亡/存活信号通路和DNA损伤修复途径而导致细胞对辐射敏感性下降 [9] 。研究显示宫颈癌组织及细胞中HOTAIR表达显著增高,通过下调HOTAIR的表达并给予体外移植瘤连续四次X射线照射总剂量为10.8 Gy后,与单纯照射组相比,肿瘤体积明显缩小,通过上调HOTAIR在宫颈癌细胞中的表达并给予2 Gy X射线照射,进一步发现可增加HIF-1α (缺氧诱导因子1α)的表达,增加细胞活力及抑制细胞凋亡,从而诱导子宫颈癌细胞放疗抵抗 [10] 。

2.2. HOTAIR通过调节细胞凋亡参与放射敏感性

研究证实肿瘤细胞表现出放射抵抗其凋亡机制受到抑制 [11] 。有研究发现在肝癌HCCLM3细胞中HOTAIR高表达可靶向负调控发挥抑癌作用的miR-761的表达,抑制肝癌HCCLM3细胞凋亡蛋白Bax、C-Caspase-3表达,细胞存活分数升高,抑制细胞凋亡,降低肝癌细胞放射敏感性 [12] 。有研究显示HOTAIR在大肠癌组织及细胞系中高表达,HOTAIR基因敲除可显著增加辐射诱导的大肠癌CCL244细胞凋亡,表现为促凋亡蛋白Bax水平显著升高,抗凋亡蛋白Bcl-2水平显著降低,同时使细胞在G0/G1期阻滞从而抑制细胞增殖,使得CCL244细胞对辐射增敏 [13] 。原等人研究显示,HOTAIR在放射抵抗的胶质瘤U87R细胞中高表达,通过下调U87R细胞中HOTAIR的表达后可抑制细胞增殖及诱导细胞凋亡,进一步研究发现上调miR-17-5p的水平也可增加胶质瘤U87R细胞的凋亡,双荧光素酶报告分析显示HOTAIR可以靶向抑制miR-17-5p的表达,通过下调miR-17-5p的表达可以逆转下调HOTAIR对U87R细胞放射增敏和促进放射诱导的细胞凋亡,提示下调HOTAIR的表达可增加胶质瘤放射敏感性可能与调节miR-17-5p的表达有关 [14] 。以上研究表明HOTAIR过表达可通过抑制细胞的凋亡从而引起放疗抵抗和(或)放射敏感性降低。

2.3. HOTAIR通过调节肿瘤细胞周期参与放射敏感性

不同细胞周期中的肿瘤细胞对射线的敏感性存在差异,S期细胞对射线敏感性最差,这可能与DNA染色质的形态有关,M期细胞染色质结构疏松使DNA易受到射线打击,而S期细胞内致密的染色体结构有利于保护DNA免受辐射损害 [15] 。放射治疗中对放疗敏感的细胞被清除,引起癌细胞群中细胞周期再分布,使敏感细胞增加。有研究发现在乳腺癌细胞中HOTAIR表达增高,且经过辐射后HOTAIR在乳腺癌细胞中高表达可靶向抑制miR-218的表达,从而降低了辐射诱导的细胞凋亡和凋亡蛋白Bax、Caspase-3的表达及辐射诱导的DNA损伤,表现为G2/M期阻滞的细胞减少,降低放射敏感性 [16] 。HOTAIR在经放射后的宫颈癌C33A细胞中高表达可下调p21 (细胞周期蛋白依赖性激酶抑制因子1)的水平,促进了更多的宫颈癌C33A细胞进入S期,使得对辐射的抵抗力增强,而经照射后HOTAIR低表达的宫颈癌Hela细胞中p21表达升高,使得宫颈癌Hela细胞G1期阻滞,Ki-67下降,结果表明,HOTAIR通过下调p21的表达促进细胞周期进而诱导细胞产生辐射抗性 [17] 。以上说明HOTAIR通过调节肿瘤细胞周期从而降低细胞放射敏感性和(或)引起放射抵抗。

2.4. HOTAIR通过调节EMT过程参与放射敏感性

上皮间充质转换(EMT)产生具有干细胞性质的细胞 [18] 。肿瘤干细胞(CSCs)是一种自我更新的干细胞样癌细胞,是肿瘤内唯一能够广泛增殖、参与转移形成和促进化疗或放射抵抗的细胞亚群 [19] 。EMT的重要标志是E-cadherin的表达缺失及钙黏蛋白的表达增加 [20] 。HOTAIR可通过调节EMT和CSCs的生物标志物SNAI 1、和β-catenin的表达从而参与肿瘤的进展,已明确在食管鳞癌中HOTAIR表达水平高于正常组织及细胞 [5] ,给予3种食管鳞癌细胞不同剂量照射,通过平板克隆实验显示出对放射敏感性的不同,qPCR实验结果显示对放射敏感性越低的细胞则HOTAIR的表达越高,提示HOTAIR可能成为食管癌放射敏感性的预测分子,表达水平越高提示对放疗越抗拒;Da等人的研究中将食管鳞癌Eca 109细胞用X线重复照射总剂量60 Gy剂量建立放射抵抗模型,发现放射抵抗细胞中HOTAIR的表达明显高于未经照射的细胞,且与未经过照射的相比,细胞增殖及集落形成率明显增加,细胞凋亡受到抑制,具体机制可能与HOTAIR靶向抑制miR34a的表达,解除miR34a对靶基因snail表达的抑制,导致间质标志物(如波形蛋白vimentin、N-钙黏素)表达减少,而上皮标志物(E-cadherin和闭合小带蛋白-1)表达增多,从而启动EMT过程 [21] ,增强细胞增殖及集落形成率,降低细胞凋亡率,从而参与放射抵抗。

2.5. HOTAIR通过调节细胞自噬参与放射敏感性

研究表明,放疗诱发的自噬可以清除放疗产生的受损细胞器及蛋白质,肿瘤细胞通过自噬来抵抗这些损伤以保持其生存稳定性,从而形成一种放射耐受机制 [22] [23] ,研究表明,抑制乳腺癌细胞、鼻咽癌细胞、食管癌细胞、肺癌细胞等癌细胞的自噬作用,可提高肿瘤细胞的辐射敏感性 [24] [25] [26] [27] 。研究发现大肠癌组织中HOTAIR表达高于正常组织,在接受过照射的大肠癌SW 480和HCT 116细胞中HOTAIR高表达可靶向下调miR-93的表达,miR-93是细胞自噬的负调节因子可与自噬相关复合物ATG 12的3'-UTR结合下调其表达 [28] ,从而抑制细胞自噬,减弱细胞活力,促进细胞凋亡,以上说明HOTAIR可通过下调miR-93的表达从而解除miR-93介导的自噬抑制来降低结直肠细胞的放射敏感性 [29] 。研究显示HOTAIR在胰腺癌组织中表达明显高于正常组织,HOTAIR可靶向促进ATG7 (自噬相关基因7)的表达,下调其HOTAIR水平并给予雷帕霉素(自噬激活剂)处理后再给予4 Gy X射线照射,相比较未给予雷帕霉素处理组,细胞存活率明显增加,细胞凋亡明显减少,进一步说明在胰腺癌中HOTAIR可能通过上调自噬相关基因Atg7的表达而促进自噬的发生从而降低细胞放射敏感性 [30] 。

2.6. HOTAIR通过调节信号通路来影响细胞放射敏感性

1) PI3K/Akt信号通路是细胞内信号转导的主要通路之一,此信号通路异常激活在肿瘤细胞恶性增殖、转移及放化疗抵抗中起重要作用,为不良预后指标 [31] 。实验发现在乳腺癌MDA-MB 231细胞中通过上调HOTAIR的表达并联合照射后,相比较单纯照射组,发现HOXD10的表达水平下降,而通过下调HOTAIR的表达可上调HOXD10的表达,导致细胞增殖率明显下降、细胞凋亡明显增加,此外HOTAIR高表达可下调p-BAD的蛋白水平,而加入PI3K抑制剂后p-AKT的水平随之变化,在体外实验可进一步发现移植瘤的Ki-67明显下降,增加放射敏感性,表明HOTAIR参与放射敏感性的可能机制是通过下调HOXD 10的表达和/或激活PI3K/AKT-BAD信号通路而增强放射抵抗 [7] 。分析显示喉癌组织中HOTAIR水平显著高于癌旁组织,在喉癌Hep-2细胞中HOTAIR高表达使得PTEN启动子甲基化,从而激活PI3K/Akt信号通路,抑制细胞凋亡,降低细胞放射敏感性 [32] 。

2) 近年研究均表明HOTAIR高表达与放疗抵抗相关,在宫颈癌 [33] 、肺癌 [15] 、胰腺癌 [34] 中HOTAIR表达上调能够促进WIF-1启动子区域处组蛋白H2K27的甲基化,进而抑制WIF-1的表达,WIF-1是Wnt/B-catenin信号通路的抑制剂,它与Wnt蛋白结合可导致B-catenin的降解,解除了WIF-1对Wnt/β-catenin信号通路的抑制,而Wnt/B-catenin信号通路的激活可增加肿瘤细胞对X线照射后细胞存活率,增强细胞增殖能力,以上说明HOTAIR可通过抑制WIF-1的表达从而激活Wnt/B-catenin信号通路从而降低放射敏感性 [35] 。

2.7. HOTAIR通过调节肿瘤微环境参与放射敏感性

Zhang等人研究发现在乳腺癌组织中HOTAIR表达高于癌旁组织,给予乳腺癌MDA-MB-231和MCF-7细胞照射后发现HOTAIR明显增高,进一步研究显示HOTAIR的表达与HSPA1A表达水平呈正相关,HSPA1A (热休克蛋白1A)是应激蛋白家族中主要应激诱导因子并且在乳腺癌组织中高表达,且已有研究表明HSPA1A参与消除致命性氧化应激及线粒体氧化应激,荧光素酶报告基因显示HSPA1A与miR-449b-5p之间有结合位点,且miR-449b-5p与HSPA1A及HOTAIR的表达呈负相关,以上表明HOTAIR过表达可能是通过降低发挥抑癌作用的miR-449b-5p表达水平,从而间接升高HSPA1A水平,增强乳腺癌细胞在辐射应激下的生长,显著提高细胞增殖率,从而导致乳腺癌细胞放射抵抗 [36] 。

3. 结论

综上所述,HOTAIR可通过调节细胞的代谢、细胞增殖、细胞凋亡、细胞自噬、EMT过程及参与相关信号通路来影响细胞放射敏感性,其具体机制方面仍不清楚,且HOTAIR关于参与放射抵抗和(或)降低肿瘤细胞对射线敏感性方面的报道较少,这或许为恶性肿瘤放射治疗方面可提供临床新的判断指标和治疗靶点。

NOTES

*通讯作者。

参考文献

[1] 杨果, 骆文龙. HOT转录反义RNA在头颈肿瘤研究进展[J]. 国际耳鼻咽喉头颈外科杂志, 2018, 42(3): 140-143.
[2] Yan, T.H., Lu, S.W., Huang, Y.Q., et al. (2014) Upregulation of the Long Non-Coding RNA HOTAIR Predicts Recurrence in Stage TalTl Bladder Cancer. Tumor Biology, 35, 10249-10257.
https://doi.org/10.1007/s13277-014-2344-8
[3] 邱华章, 许鲁宁. HOTAIR在肿瘤的发展及治疗中的作用[J]. 海峡药学, 2022, 34(5): 6-9.
[4] 叶婷, 李皓, 陈瑞, 等. 不同放射敏感性食管癌细胞株长链非编码RNA HOTAIR表达水平的分析[J]. 临床与实验病理学杂志, 2019, 35(6): 636-640.
[5] Chen, J., Shen, Z., Zheng, Y., et al. (2015) Radiotherapy Induced Lewis Lung Cancer Cell Apoptosis via Inactivating Beta-Catenin Mediated by Upregu-lated HOTAIR. International Journal of Clinical and Experimental Pathology, 8, 7878-7886.
[6] Zhou, Y., Wang, C.Q., Liu, X., et al. (2017) Long Non-Coding RNA HOTAIR Enhances Radioresistance in MDA- MB231 Breast Can-cer Cells. Oncology Letters, 13, 1143-1148.
https://doi.org/10.3892/ol.2017.5587
[7] Impicciatore, G., Sancilio, S., Miscia, S. and Di Pietro, R. (2010) Nutlins and Ionizing Radiation in Cancer Therapy. Current Pharmaceutical Design, 16, 1427-1442.
https://doi.org/10.2174/138161210791033932
[8] Brown, J.M. and Wilson, W.R. (2004) Ex-ploiting Tumor Hypoxia in Cancer Treatment. Nature Reviews Cancer, 4, 437-447.
https://doi.org/10.1038/nrc1367
[9] Harada, H. and Hiraoka, M. (2010) Hypoxia-Inducible Factor 1 in Tumor Ra-dioresistance. Current Signal Transduction Therapy, 5, 188-196.
https://doi.org/10.2174/157436210791920229
[10] Li, N., Meng, D.-D., Gao, L., et al. (2018) Overexpression of HOTAIR Leads to Radioresistance of Human Cervical Cancer via Promoting HIF-1α Expression. Radiation Oncology, 13, 210.
https://doi.org/10.1186/s13014-018-1153-4
[11] Lefranc, F., Facchini, V. and Kiss, R. (2007) Proau-tophagic Drugs: A Novel Means to Combat Apoptosis-Resistant Cancers, with a Special Emphasis on Glioblastomas. Oncologist, 12, 1395-1403.
https://doi.org/10.1634/theoncologist.12-12-1395
[12] 翟金俊, 杜贤荣, 李彩霞. LncRNA HOTAIR对肝癌细胞HCCLM3放射敏感性的影响[J]. 中华医学杂志, 2020, 100(18): 1419-1425.
https://doi.org/10.3760/cma.j.cn112137-20190928-02130
[13] 李鸣鹤, 李守淼, 张伟, 等. 沉默长链非编码RNA HOTAIR对直肠腺癌细胞放射敏感性的影响[J]. 中华放射肿瘤学杂志, 2018, 27(12): 1097-1100.
[14] 原高明, 孟晓锋, 郭孝龙, 等. 沉默lncRNA HOTAIR上调miR-17-5p表达增加U87R细胞放射敏感性[J]. 中华放射肿瘤学杂志, 2021, 30(1): 90-94.
https://doi.org/10.3760/cma.j.cn113030-20190510-00173
[15] Ewing, D. (1998) The Oxygen Fixation Hypothesis: A Reevaluation. American Journal of Clinical Oncology, 21, 355-361.
https://doi.org/10.1097/00000421-199808000-00008
[16] Hu, X.G., Ding, D., Zhang, J.Y., et al. (2019) Knock-down of LncRNA HOTAIR Sensitizes Breast Cancer Cells to Ionizing Radiation through Activating miR-218. Biosci-ence Reports, 39, BSR20181038.
https://doi.org/10.1042/BSR20181038
[17] Jing, L., Yuan, W., Ruofan D, et al. (2015) HOTAIR Enhanced Ag-gressive Biolegical Hehaviors and Induced Radio-Resistance via Inhibiting p21 in Cervical Cancer. Tumor Biology, 365, 3611-3619.
https://doi.org/10.1007/s13277-014-2998-2
[18] Yang, J. and Weinberg, R.A. (2008) Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Developmental Cell, 14, 818-829.
https://doi.org/10.1016/j.devcel.2008.05.009
[19] Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. and Kirchner, T. (2005) Opinion: Migrating Cancer Stem Cells—An Integrated Concept of Malignant Tumour Progression. Nature Re-views Cancer, 5, 744-749.
https://doi.org/10.1038/nrc1694
[20] Gao, D., Vahdat, L.T., Wong, S., Chang, J.C. and Mittal, V. (2012) Microen-vironmental Regulation of Epithelial-Mesenchymal Transitions in Cancer. Cancer Research, 72, 4883-4889.
https://doi.org/10.1158/0008-5472.CAN-12-1223
[21] Liu, Y.-W., Sun, M., Xia, R., et al. (2015) LincHOTAIR Epigenetically Silences miR34a by Binding to PRC2 to Promote the Epithelial-to-Mesenchymal Transition in Human Gastric Cancer. Cell Death & Disease, 6, e1802.
https://doi.org/10.1038/cddis.2015.150
[22] Daido, S., Yamamoto, A., Fujiwara, K., et al. (2005) Inhibition of the DNA—Dependent Protein Kinase Catalytic Subunit Radiosensitizes Malignant Glioma Cells by Inducing Autophagy. Cancer Research, 65, 4368-4375.
https://doi.org/10.1158/0008-5472.CAN-04-4202
[23] Chatterjee, S., Willis, N., Locks, S.M., et al. (2011) Dosi-metric and Radiobiological Comparison of Helical Tomotherapy, Forward-Planned Intensity-Modulated Radiotherapy and Two-Phase Conformal Plans for Radical Radiotherapy Treatment of Head and Neck Squamous Cell Carcinomas. British Journal of Radiology, 84, 1083.
https://doi.org/10.1259/bjr/53812025
[24] Wang, Y., Yin, W. and Zhu, X. (2014) Blocked Autophagy Enhances Radiosensitivity of Nasopharyngeal Carcinoma Cell Line CNE-2 in Vitro. Acta Oto-Laryngologica, 134, 105-110.
https://doi.org/10.3109/00016489.2013.844365
[25] Chen, Y., Li, X., Guo, L., et al. (2015) Combining Radiation with Autophagy Inhibition Enhances Suppression of Tumor Growth and Angiogenesis in Esophageal Cancer. Molecular Medicine Reports, 12, 1645-1652.
https://doi.org/10.3892/mmr.2015.3623
[26] Han, M.W., Lee, J.C., Choi, J.Y., et al. (2014) Autophagy Inhibition Can Overcome Radioresistance in Breast Cancer Cells through Suppression of TAK1 Activation. Anticancer Research, 34, 1449-1455.
[27] Schaaf, M.B., Jutten, B., Keulers, T.G., et al. (2015) Canonical Autophagy Does Not Contribute to Cellular Radioresistance. Radiotherapy and Oncology, 114, 406-412.
https://doi.org/10.1016/j.radonc.2015.02.019
[28] Kaihui, L. (2012) Regulatory Role of miR-93 in Autophagy In-duction. Doctoral Dissertation, National University of Singapore, Singapore.
[29] Liu, Y.Q., Chen, X.J., Chen, X.L., et al. (2020) Long Non-Coding RNA HOTAIR Knockdown Enhances Radiosensitivity through Regulating mi-croRNA-93/ATG12 Axis in Colorectal Cancer. Cell Death & Disease, 11, 175.
https://doi.org/10.1038/s41419-020-2268-8
[30] Wu, C.L., Yang, L., Qi, X., et al. (2018) Inhibition of Long Non-Coding RNA HOTAIR Enhances Radiosensitivity via Regulating Autophagy in Pancreatic Cancer. Cancer Man-agement and Research, 10, 5261-5271.
https://doi.org/10.2147/CMAR.S174066
[31] Gupta, A.K., McKenna, W.G., Weber, C.N., et al. (2002) Local Re-currence in Head and Neck Cancer: Relationship to Radiation Resistance and Signal Transduction. Clinical Cancer Re-search, 8, 885-892.
[32] Li, D., et al. (2013) Long Intergenic Noncoding RNA HOTAIR Is Overexpressed and Regu-lates PTEN Methylation in Laryngeal Squamous Cell Carcinoma. The American Journal of Pathology, 182, 64-70.
https://doi.org/10.1016/j.ajpath.2012.08.042
[33] Guo, X.G., Xiao, H.Q., Guo, S.H., et al. (2019) Long Noncoding RNA HOTAIR Knockdown Inhibits Autophagy and Epithelial-Mesenchymal Transition through the Wnt Signaling Pathway in Radioresistant Human Cervical Cancer HeLa Cells. Journal of Cellular Physiology, 234, 3478-3489.
https://doi.org/10.1002/jcp.26828
[34] Chen, J., Shen, Z., Zheng, Y., et al. (2015) Radiotherapy Induced Lewis Lung Cancer Cell Apoptosis via Inactivating Beta-Catenin Mediated by Upregulated HOTAIR. International Journal of Clinical and Experimental Pathology, 8, 7878-7886.
[35] Jiang, Y., Li, Z., Zheng, S., et al. (2016) The Long Non-Coding RNA HOTAIR Affects the Radiosensitivity of Pancreatic Ductal Adenocarcinoma by Regulating the Ex-pression of Wnt Inhibitory Factor 1. Tumor Biology, 37, 3957-3967.
https://doi.org/10.1007/s13277-015-4234-0
[36] Wang, G.Y., Li, Z.W., Zhao, Q., et al. (2014) LincRNA-p21 En-hances the Sensitivity of Radiotherapy for Human Colorectal Cancer by Targeting the Wnt/β-Catenin Signaling Pathway. Oncology Reports, 31, 1839-1845.
https://doi.org/10.3892/or.2014.3047
[37] Zhang, S.Q., Wang, B., Xiao, H.W., et al. (2020) LncRNA HOTAIR Enhances Breast Cancer Radioresistance through Facilitating HSPA1A Expression via Sequestering miR-449b-5p. Thorac Cancer, 11, 1801-1816.
https://doi.org/10.1111/1759-7714.13450