#### 期刊菜单

Biological Clock of Relativistic Matter Wave and Calculation of Human Mean Lifespan 84 Years
DOI: 10.12677/MP.2023.132005, PDF, HTML, XML, 下载: 325  浏览: 513

Abstract: It is found that relativistic matter wave provides a biological clock for human beings. At the first, two examples are given to show the validity of the relativistic matter wave. Next, the sunspot period, earth’s atmosphere circulation and human biological clock are investigated, the clock formula is de-rived. As the results, the period of sunspot cycle is calculated to be 10.93 years, the human mean lifespan is calculated to be 84 years. A guidance of anti-ageing is devised for the biological clock.

1. 引言

$\psi =\mathrm{exp}\left(\frac{i\beta }{{c}^{3}}{\int }_{0}^{x}\left({u}_{1}\text{d}{x}_{1}+{u}_{2}\text{d}{x}_{2}+{u}_{3}\text{d}{x}_{3}+{u}_{4}\text{d}{x}_{4}\right)\right)$ (1)

2. 验证的例子1：确定太阳物质密度和半径

Figure 1. (a) The head of the relativistic matter wave may overlap with its tail; (b) The inner planets are quantized

$\begin{array}{l}\frac{\beta }{{c}^{3}}{\oint }_{L}{v}_{l}\text{d}l=2\pi n\\ {v}_{l}=\sqrt{\frac{GM}{r}}\end{array}\right\}\text{ }⇒\text{ }\sqrt{r}=\frac{{c}^{3}}{\beta \sqrt{GM}}n;\text{ }n=0,1,2,\cdots$ (2)

$\begin{array}{l}\psi =\psi \left(r\right)T\left(t\right)\\ \psi \left(r\right)=1+{\text{e}}^{i\delta }+{\text{e}}^{i2\delta }+\cdots +{\text{e}}^{i\left(N-1\right)\delta }=\frac{1-\mathrm{exp}\left(iN\delta \right)}{1-\mathrm{exp}\left(i\delta \right)}\\ \delta \left(r\right)=\frac{\beta }{{c}^{3}}{\oint }_{L}\left({v}_{l}\right)\text{d}l=\frac{2\pi \beta \omega {r}^{2}}{{c}^{3}}\end{array}$ (3)

${|\psi |}^{2}\propto \text{nucleon-density}\propto \rho$ (4)

${N}^{2}=\frac{{|\psi {\left(0\right)}_{multi-wavelet}|}^{2}}{{|\psi {\left(0\right)}_{one-wavelet}|}^{2}}=\frac{{\rho }_{core}}{{\rho }_{surface\text{_}gas}}$ (5)

Figure 2. The nucleon distribution ${|\psi |}^{2}$ in the Sun is calculated in the radius direction

< Clet2020 Script > //C source code [9]

int i,j,k,m,n,N,nP[10];

double beta,H,B,M,r,r_unit,x,y,z,delta,D[1000],S[1000], a,b,rs,rc,omega,atm_height; char str[100];

main(){k=150;rs=6.95e8;rc=0;x=25.05;omega=2*PI/(x*24*3600);n=0; a=1408/0.004; N=sqrt(a);

beta=2.961520e10;H=SPEEDC*SPEEDC*SPEEDC/beta;M=1.9891E30; atm_height=2e6; r_unit=1E7;

for(i=-k;i

if(r

x=1;y=0; for(j=1;j

S[n]=i;S[n+1]=z; if(i>0 &&rc==0 && z<0.0001) rc=r; n+=2;}

SetAxis(X_AXIS,-k,0,k#ifr; ; ; ;);SetAxis(Y_AXIS,0,0,1.2#if|ψ|#su2#t;0;0.4;0.8;1.2;);

DrawFrame(FRAME_SCALE,1,0xafffaf); z=100*(rs-rc)/rs;

SetPen(1,0xff0000);Polyline(k+k,S,k/2,1 nucleon_density); SetPen(1,0x0000ff);

r=rs/r_unit;y=-0.05;D[0]=-r;D[1]=y;D[2]=r;D[3]=y; Draw(ARROW,3,2,XY,10,100,10,10,D);

Format(str#ifN#t=%d#n#ifβ#t=%e#nrc=%e#nrs=%e#nerror=%.2f%,N,beta,rc,rs,z);

TextHang(k/2,0.7,0,str);TextHang(r+5,y/2,0#ifr#sds#t);TextHang(-r,y+y,0Sun diameter);

}#v07=?>A

3. 验证的例子2：确定地球物质密度和半径

Figure 3. Quantized orbits for the moon and Earth’s quasi satellites

(a) (b)

Figure 4. (a) The radius of the Earth is calculated out r = 6.4328e + 6 (m) with a relative error of 0.86% by the interference of its relativistic matter wave; (b) The prediction of the space debris distribution up to 2000 km altitude

< Clet2020 Script > //C source code [9]

int i,j,k,m,n,N,nP[10]; double H,B,M,v_r,r,AU,r_unit,x,y,z,delta,D[10],S[1000];

double rs,rc,rot,a,b,atm_height,beta; char str[100];

main(){k=80;rs=6.378e6;rc=0;atm_ height=1.5e5;n=0; N=65;

beta=1.377075e+14;H=SPEEDC*SPEEDC*SPEEDC/beta;

M=5.97237e24;AU=1.496E11;r_unit=1e-6*AU; rot=2*PI/(24*60*60);//angular speed of the Earth

for(i=-k;i

if(r

if(y>1) y=1; S[n]=i;S[n+1]=y; if(i>0 &&rc==0 && y<0.001) rc=r;n+=2;}

SetAxis(X_AXIS,-k,0,kr; ; ; ;);SetAxis(Y_AXIS,0,0,1.2#if|ψ|#su2#t;0;0.4;0.8;1.2;);

DrawFrame(FRAME_SCALE,1,0xafffaf); x=50;z=100*(rs-rc)/rs;

SetPen(1,0xff0000);Polyline(k+k,S,k/2,1 nucleon_density);

r=rs/r_unit;y=-0.05;D[0]=-r;D[1]=y;D[2]=r;D[3]=y;

SetPen(2,0x0000ff); Draw(ARROW,3,2,XY,10,100,10,10,D);

Format(str#ifN#t=%d#n#ifβ#t=%e#nrc=%e#nrs=%e#nerror=%.2f%,N,beta,rc,rs,z);

TextHang(k/2,0.7,0,str);TextHang(r+5,y/2,0r#sds#t);TextHang(-r,y+y,0Earth diameter);

}#v07=?>A#t

< Clet2020 Script > //C source code [9]

int i,j,k,m,n,N,nP[10]; double H,B,M,v_r,r,AU,r_unit,x,y,z,delta,D[10],S[10000];

double rs,rc,rot,a,b,atm_height,p,T,R1,R2,R3; char str[100];int Debris[96]={110,0,237,0,287,0,317,2,320,1,357,5,380,1,387,4,420,2,440,3,454,14,474,9,497,45,507,26,527,19,557,17,597,34,634,37,664,37,697,51,727,55,781,98,808,67,851,94,871,71,901,50,938,44,958,44,991,37,1028,21,1078,17,1148,10,1202,9,1225,6,1268,12,1302,9,1325,5,1395,7,1395,18,1415,36,1429,12,1469,22,1499,19,1529,9,1559,5,1656,4,1779,1,1976,1,};

main(){k=80;rs=6.378e6;rc=0;atm_ height=1.5e5;n=0; N=65;

H=1.956611e11;M=5.97237e24;AU=1.496E11;r_unit=1e4;

rot=2*PI/(24*60*60);//angular speed of the Earth

b=PI/(2*PI*rot*rs*rs/H); R1=rs/r_unit;R2=(rs+atm_height)/r_unit;R3=(rs+2e6)/r_unit;

for(i=R2;i

if(y>1) y=1; S[n]=i;S[n+1]=y;n+=2;}

SetAxis(X_AXIS,R1,R1,R3altitude; r#sds#t;500;1000;1500;2000km ;);

SetAxis(Y_AXIS,0,0,1#if|ψ|#su2#t;0; ;1e-3;);DrawFrame(FRAME_SCALE,1,0xafffaf); x=R1+(R3-R1)/5;

SetPen(1,0xff0000);Polyline(n/2,S,x,0.8#if|ψ|#su2#t (density, prediction));

for(i=0;i<48;i+=1) {S[i+i]=R1+(R3-R1)*Debris[i+i]/2000; S[i+i+1]=Debris[i+i+1]/300;}

SetPen(1,0x0000ff);Polyline(48,S,x,0.7Space debris (2018, observation) );}#v07=?>A#t

4. 太阳黑子的周期

(a) (b)

Figure 5. (a) Illustration of overlapping in the coherent width direction; (b) In convective rings at the equator, the speed difference causes a beat frequency

$\begin{array}{l}\psi ={\psi }_{top}+C{\psi }_{middle}\\ {\psi }_{top}=\mathrm{exp}\left[\frac{i\beta }{{c}^{3}}{\int }_{L}\left({v}_{1}\text{d}l+\frac{-{c}^{2}}{\sqrt{1-{v}_{1}^{2}/{c}^{2}}}\text{d}t\right)\right]\\ {\psi }_{middle}=\mathrm{exp}\left[\frac{i\beta }{{c}^{3}}{\int }_{L}\left({v}_{2}\text{d}l+\frac{-{c}^{2}}{\sqrt{1-{v}_{2}^{2}/{c}^{2}}}\text{d}t\right)\right]\end{array}$ (6)

$\begin{array}{l}{|\psi |}^{2}={|{\psi }_{top}+C{\psi }_{middle}|}^{2}=1+{C}^{2}+2C\mathrm{cos}\left[\frac{\text{2}\pi }{{\lambda }_{beat}}{\int }_{L}\text{d}l-\frac{\text{2}\pi }{{T}_{beat}}t\right]\\ \frac{\text{2}\pi }{{T}_{beat}}=\frac{\beta }{{c}^{3}}\left(\frac{{c}^{2}}{\sqrt{1-{v}_{1}^{2}/{c}^{2}}}-\frac{{c}^{2}}{\sqrt{1-{v}_{2}^{2}/{c}^{2}}}\right)\simeq \frac{\beta }{{c}^{3}}\left(\frac{{v}_{1}^{2}}{2}-\frac{{v}_{2}^{2}}{2}\right)\\ \frac{\text{2}\pi }{{\lambda }_{beat}}=\frac{\beta }{{c}^{3}}\left({v}_{1}-{v}_{2}\right);\text{ }V=\frac{{\lambda }_{beat}}{{T}_{beat}}=\frac{1}{2}\left({v}_{1}+{v}_{2}\right)\end{array}$ (7)

$\begin{array}{l}{v}_{1}\approx 6100\left(\text{m}/\text{s}\right)\text{ }\left(\approx \text{observedinEvershedflow}\right)\\ {v}_{2}=\omega {r}_{middle}=2017\left(\text{m}/\text{s}\right)\text{ }\left(\text{solarrotation}\right);\end{array}$ (8)

${T}_{beat}\simeq \frac{4\pi {c}^{3}}{\beta \left({v}_{1}^{2}-{v}_{2}^{2}\right)}=10.93\left(\text{years}\right)$ (9)

$\frac{2\pi r}{{\lambda }_{beat}}=0.0031$ (10)

Figure 6. The equatorial circumference 2pr only occupies a little part of the beat wavelength, what we see is the expansion and contraction of the nucleon density

5. 大气循环与季节钟

(a) (b)

Figure 7. (a) Mutual cascade-interference will lead to the symmetry of the earth’s density distribution; (b) Zonal winds on Jupiter (the photo from public News)

$\begin{array}{l}\text{sphericalsymmetry:}\rho \left(r,A,\phi \right)=\rho \left(r\right)\text{ }⇒\text{ }\psi \left(r,A,\phi \right)=\psi \left(r\right)\\ \text{or:}{\psi }_{A}={\psi }_{equator}=0.0031\end{array}$ (11)

$\begin{array}{l}\psi \left(r,A\right)={\psi }_{air}\left(r,A\right)+C{\psi }_{shell}\left(r,A\right)={\psi }_{air}\left(r,A\right)+C{\psi }_{shell\text{_}equator}\left(r\right)\\ {T}_{beat}\simeq \frac{4\pi {c}^{3}}{\beta \left({v}_{shell_equator}^{2}-{v}_{air}^{2}\right)}\\ {v}_{shell_equator}=\omega r\\ {v}_{air}=\omega r\mathrm{cos}\left(A\right)+{v}_{wind}+{v}_{sun\text{_}effect}\end{array}$ (12)

(1) 受迫震荡

(2) 太阳直接照耀的纬度上无风，风速为零

${v}_{sun\text{_}effect}=\text{369}\text{.788}-\omega r\mathrm{cos}\left({A}_{1}\right);\text{ }\left(\text{units}:\text{m}/\text{s}\right)$ (13)

${v}_{sun\text{_}effect}=\text{369}\text{.788}\mathrm{cos}\left(A-{A}_{1}\right)-\omega r\mathrm{cos}\left(A\right)$ (14)

(3) 风速公式

${v}_{wind}=\sqrt{{\omega }^{2}{r}^{2}-\frac{4\pi {c}^{3}}{\beta {T}_{beat}}}-\omega r\mathrm{cos}\left(A\right)-{v}_{sun\text{_}effect}$ (15)

(4) 第2脊和第3脊

(5) 北半球的风速曲线

(a) (b)

Figure 8. (a) Calculation of west winds in the northern hemisphere; (b) The atmospheric circulation in the northern hemisphere

< Clet2020 Script > //C source code [9]

double beta,H,M,r,rc, rs, rot,v1,v2, Year,T,Lamda,V,a,b,w,Fmax,N[500],S[500],F[100]; int i, j, k, t, m, n, s, f,Type,x;

int main(){beta=1.377075e+14; H=SPEEDC*SPEEDC*SPEEDC/beta;

M=5.97237e24; rs=6.371e6; rot=2*PI/(24*3600); Year=24*3600*365.2422;

Type=1; x=10; if(Type>1) x=-30;//v2=rs*rot; a=v2*v2-4*PI*H/Year; V=sqrt(a)-v2;

if(Type==1)SetAxis(X_AXIS,0,0,90Latitude#n(°N);0;30;60;90;);

elseSetAxis(X_AXIS,-90,-90,90Latitude#n(°N);=90;-60;-30;0;30;60;90;);

SetAxis(Y_AXIS,-100,-100,100West wind (m/s);-100;-80;-60;-40;-20;0;20;40;60;80;100;);

DrawFrame(0x016a,Type,0xafffaf);//Polyline(2-90,0,90,0);

Check(15,k); if(k>24) k=24; if(k<-24) k=-24; //TextAt(100,10V=%f,V);

T=Year/2; Wind(); f=0; Findf(); t=N[m+m]; T=Year; Wind(); f=0; Findf();

SetPen(2,0xff); Polyline(n,N,x,70Wind for T#sdbeat#t=1 year); if(Type>1) Polyline(s,S);

F[0]=N[0];F[1]=N[1]; F[2]=N[m+m]; F[3]=N[m+m+1];t=(t+F[2])/2;//midst of two ridges

t=t-F[2]+m; Fmax=N[t+t+1]; //TextAt(100,20t=%d, Fmax=%f ,t,Fmax);

f=Fmax; Findf(); F[4]=N[m+m]; F[5]=N[m+m+1];

T=Year/2; Wind(); f=-Fmax/2; Findf(); t=m;f=Fmax/2; Findf();

SetPen(2,0x80ff00); Polyline(n,N,x,-50Wind for T#sdbeat#t=0.5 years); if(Type>1) Polyline(s,S);

F[6]=N[t+t]; F[7]=N[t+t+1];F[8]=N[m+m]; F[9]=N[m+m+1];

T=0.37*Year; Wind(); f=-Fmax/4; Findf(); t=m;f=Fmax/4; Findf();

SetPen(2,0x9933fa); Polyline(n,N,x,-70Wind for T#sdbeat#t=0.37 years); if(Type>1) Polyline(s,S);

F[10]=N[t+t]; F[11]=N[t+t+1];F[12]=N[m+m]; F[13]=N[m+m+1];F[14]=90; F[15]=0;

//Draw(ELLIPSE,0,2,XYX,1015,20,25,35);TextHang(5,40,0a route);

SetPen(3,0xff0000); Polyline(8,F,x,-90Prediction); TextHang(x,90,0The first ridge=%d°N, k);

}

Wind(){n=0;s=0;

for(i=0;i<90;i+=1){ a=i*PI/180; b=(i-k)*PI/180; v1=rot*rs*cos(a); v2=rot*rs;

w=369.788*cos(b)-v2*cos(k*PI/180); a=v2*v2-4*PI*H/T; V=sqrt(a)-v1-w;

if(V>-40 && V<60) {N[n+n]=i; N[n+n+1]=V; n+=1;}}

for(i=0;i<90;i+=1){ a=-i*PI/180; b=(-i-k)*PI/180; v1=rot*rs*cos(a); v2=rot*rs;

w=369.788*cos(b)-v2*cos(k*PI/180); a=v2*v2-4*PI*H/T; V=sqrt(a)-v1-w;

if(V>-40 && V<60) {S[s+s]=-i; S[s+s+1]=V; s+=1;}} }

Findf(){a=1e10; for(i=0;i

}//if(k==12) ClipJob(APPENDi=%d,V=%f,i,V);

#v07=?>A

(a) (b)

Figure 9. NCEP/NCAR data, mean west winds over 40 years (1958~1997) [14] ; (a) winter; (b) summer

(6) 北半球的风速矢量

${v}_{wind}^{2}={v}_{r}^{2}+{v}_{A}^{2}+{v}_{\phi }^{2}$ (16)

$〈{v}_{r}^{2}〉=〈{v}_{A}^{2}〉=〈{v}_{\phi }^{2}〉=\frac{1}{3}{v}_{wind}^{2}$ (17)

(7) 季节钟

(8) 赤道的东风(Easterlies)

6. 人类生物钟

Figure 10. (a) A human sketch with the head pointing to the North Pole; (b) the biological clock

$\begin{array}{l}{|\psi |}^{2}={|{\psi }_{blood}+C{\psi }_{shell}|}^{2}=1+{C}^{2}+2C\mathrm{cos}\left[\frac{2\pi }{{\lambda }_{beat}}{\int }_{L}\text{d}l-\frac{2\pi }{{T}_{beat}}t\right]\\ \frac{2\pi }{{T}_{beat}}\simeq \frac{\beta }{{c}^{3}}\left(\frac{{v}_{blood}^{2}}{2}-\frac{{v}_{shell}^{2}}{2}\right);\text{ }\frac{2\pi }{{\lambda }_{beat}}=\frac{\beta }{{c}^{3}}\left({v}_{blood}-{v}_{shell}\right);\text{ }{v}_{shell}=\omega r\end{array}$ (18)

$\begin{array}{l}{v}_{shell}=r\omega =463.8\text{\hspace{0.17em}}\text{m}/\text{s};\text{ }{v}_{blood}={v}_{shell}±1\text{\hspace{0.17em}}\text{m}/\text{s}\\ {T}_{beat}\simeq \frac{4\pi {c}^{3}}{\beta \left({v}_{blood}^{2}-{v}_{shell}^{2}\right)}=±84\left(\text{years}\right);\text{ }{\lambda }_{beat}=1.2\text{e}+12\left(\text{m}\right)\end{array}$ (19)

< Clet2020 Script > // [9]

double beta,H,M,r,rc, rs, rot,v1,v2, Year,T,Lamda,V,a,b,x,y,w;

int main(){beta=1.377075e+14; H=SPEEDC*SPEEDC*SPEEDC/beta;

M=5.97237e24; rs=6.378e6; rot=2*PI/(24*3600); Year=24*3600*365.2422;

v1=rot*rs;v2=v1+1; a=v2*v2-v1*v1; T=4*PI*H/a;

T/=Year; Lamda=2*PI*H/(v2-v1); b=Lamda/(2*PI*rs);

TextAt(100,20v1=%f, v2=%f, T=%f, L=%e, b=%e,v1,v2,T,Lamda,b);

}#v07=?>A

${|\psi |}^{2}\propto \rho$ (20)

${\int }_{0}^{T}\frac{F\left(C\right)\text{d}t}{{T}_{beat}\left(t\right)}={\int }_{0}^{T}\frac{F\left(C\right)\beta \left({v}_{blood}^{2}-{v}_{shell}^{2}\right)}{4\pi {c}^{3}}\text{d}t=1$ (21)

Figure 11. The ψ as if a balloon, the three dark dots represent tree molecules of a biological cell

7. 生物钟的抗衰老指南

(1) 睡觉姿势

Figure 12. Lying-stretched out, lying on a side with the head pointing to the North Pole; (b) facing the sun

(2) 药物

(3) 办公室时间

(4) 建筑与环境

(5) 移民到其它行星与寿命减少

< Clet2020 Script > // [9]

double ABeta[10]={ 2.961520e+10, 1.377075e+14 , 2.581555e+15, 4.016793e+13, 7.183397e+13, 1.985382e+15, 2.077868e+15,};

double Ar[10]={1, 1,0.5326, 11.209, 9.449, 4.007, 3.882,};

double AD[10]={1, 24, 24.6,9.9, 10.35,17.25, 16.1,};

int i,j; double beta,H,M,r,rs,rot,v1,v2, Year,T,Lamda,a,b,d;

int main(){j=50; rs=6.378e6; Year=24*3600*365.2422;

for(i=1;i<7;i+=1) {

rot=2*PI/(d*3600); v1=rot*r; v2=v1+1; a=v2*v2-v1*v1; T=4*PI*H/a;

T/=Year; Lamda=2*PI*H/(v2-v1); b=Lamda/(2*PI*r);

TextAt(100,jv1=%f, v2=%f, T=%f, L=%e, b=%e,v1,v2,T,Lamda,b);

j+=30;}

}#v07=?>A

8. 结论

 [1] De Broglie, L. (1923) Waves and Quanta. Nature, 112, 540. https://doi.org/10.1038/112540a0 [2] De Broglie, L. (1925) Recherches sur la théorie des Quanta. Annales de Physique, 10, 22-128. https://doi.org/10.1051/anphys/192510030022 [3] Marletto, C. and Vedral, V. (2017) Gravitationally Induced Entanglement between Two Massive Particles Is Sufficient Evidence of Quantum Effects in Gravity. Physical Review Letters, 119, Article ID: 240402. https://doi.org/10.1103/PhysRevLett.119.240402 [4] Guerreiro, T. (2020) Quantum Effects in Gravity Waves. Classical and Quantum Gravity, 37, Article ID: 155001. https://doi.org/10.1088/1361-6382/ab9d5d [5] Carlip, S., Chiou, D., Ni, W. and Woodard, R. (2015) Quantum Gravity: A Brief History of Ideas and Some Prospects. International Journal of Modern Physics D, 24, Article ID: 1530028. https://doi.org/10.1142/S0218271815300281 [6] Cui, H.Y. (2021) Relativistic Matter Wave and Quan-tum Computer. Kindle EBook, Amazon, Seattle. [7] NASA. https://solarscience.msfc.nasa.gov/interior.shtml [8] Schneider, S.E. and Arny, T.T. (2018) Pathways to Astron-omy. 5th Edition, McGraw-Hill Education, London. [9] Clet Lab (2022) Clet: C Compiler. https://drive.google.com/file/d/1OjKqANcgZ-9V56rgcoMtOu9w4rP49sgN/view?usp=sharing [10] Orbital Debris Pro-gram Office (2018) History of On-Orbit Satellite Fragmentations. 15th Edition, National Aeronautics and Space Admin-istration, Washington DC. [11] Wright, D. (2007) Space Debris. Physics Today, 60, 35-40. https://doi.org/10.1063/1.2800252 [12] 唐志美, 等. 北极78˚N地区空间碎片凝视探测统计对比研究[J]. 空间碎片研究, 2017(17): 1-7. [13] Cox, N. (2001) Allen’s Astrophysical Quantities. 4th Edition, Springer, New York. https://doi.org/10.1007/978-1-4612-1186-0 [14] 李丽萍, 等. 大气环流概论[M]. 第2版. 北京: 科学出版社, 2021. [15] Cui, H.Y. (2022) Study of European Cold Streams Per 2.24 Years Based on Quantum Gravity Theory with Ultimate Acceleration. ViXra: 2211.0051. https://vixra.org/abs/2211.0051 [16] 百度百科. 动物寿命[EB/OL]. https://baike.baidu.com/item/%E5%8A%A8%E7%89%A9%E5%AF%BF%E5%91%BD [17] 上海市人民政府网. 上海市健康老龄化行动方案出台[EB/OL]. https://www.shanghai.gov.cn/nw4411/20221009/e6a23fd0549d45d3a5d73f4fec5d4753.html, 2022-10-09. [18] 青海机关党建网. 2021年健康青海行动扎实推进[EB/OL]. https://www.qhjgdj.gov.cn/contentChild.jsp?contentId=14238, 2022-02-22. [19] 云南省人民政府网. “云南这十年”系列新闻发布会[EB/OL]. https://www.yn.gov.cn/ynxwfbt/html/twzb/959.html, 2022-09-09. [20] 中国政府网. 平均中选价格约770元 国家组织冠脉支架集采接续采购开标[EB/OL]. http://www.gov.cn/xinwen/2022-11/30/content_5729549.htm, 2022-11-30. [21] Cui, H.Y. (2022) Study of Earthquakes in Japanese Islands Using Quantum Gravity Theory with Ultimate Acceleration. ViXra: 2209.0149. https://vixra.org/abs/2209.0149 [22] Cui, H.Y. (2023) Determination of Solar Radius and Earth’s Radius by Relativistic Matter Wave. Journal of Applied Mathematics and Physics, 11, 69-84. https://doi.org/10.4236/jamp.2023.111006