风湿免疫性疾病患者接种COVID-19疫苗安全性的研究
The Safety of COVID-19 Vaccine Accepted in Patients with Rheumatic Immune Diseases
DOI: 10.12677/ACM.2023.134763, PDF, HTML, XML, 下载: 204  浏览: 280  科研立项经费支持
作者: 朱芳谊*, 刘静璇, 梁宏达#:青岛大学附属医院风湿免疫科,山东 青岛
关键词: 风湿免疫性疾病COVID-19疫苗免疫原性不良反应接种犹豫Rheumatic Immune Disease COVID-19 Vaccination Immunogenicity Adverse Events Vaccination Hesitancy
摘要: 目的:探索风湿免疫病患者接种COVID-19疫苗后不良反应及疾病活动的发生率。方法:采用单中心横断面的调查方法,设计调查问卷,对2021.12.1~2022.5.30期间于我院风湿免疫科门诊就诊的患者进行问卷调查,入选明确诊断并至少接种1针COVID-19疫苗的风湿性疾病患者,详细记录其接种疫苗时的治疗药物使用情况,同时记录其出现的不良反应及疾病活动度的变化。结果:我们分析了276名接种COVID-19疫苗的风湿性疾病患者,平均年龄为48.8岁,26.1%为男性,73.9%为女性。最常见的风湿性疾病是类风湿关节炎(60.5%),89.1%的患者正在服用抗风湿病药物。4例(3.4%)服用甲氨蝶呤的患者在疫苗接种时停用药物。接种COVID-19疫苗后,27例(9.8%)患者发生不良反应,报告最多的不良反应是关节/肌肉疼痛(13, 4.7%)和乏力(8, 2.9%)。仅有4例(1.4%)患者发生了疾病活动。结论:在接种COVID-19疫苗的风湿免疫病患者中,不良反应的发生率为9.8%,证明疫苗的安全性较高。应鼓励风湿免疫病患者接种COVID-19疫苗。同时风湿病医生应加强与患者的沟通,在疫苗接种时机方面提出有效的建议。
Abstract: Objective: To explore the incidence of adverse reactions and disease flares in patients with rheu-matic immunological diseases who received COVID-19 vaccination. Methods: A single-center cross- sectional survey was conducted between 2021.12.1 and 2022.5.30 in a random sample of rheuma-tology and immunology in the Affiliated Hospital of Qingdao University. Patients with rheumatic disease who received at least one dose of COVID-19 vaccine were enrolled into study. We need to record in detail the use of therapeutic drugs at the time of vaccination, as well as the occurrence of adverse reactions and disease flares. Results: We analyzed 276 patients with rheumatic diseases who received COVID-19 vaccination. The mean age was 48.8 years, 26.09% were male and 73.9% were female. The most common rheumatic disease was rheumatoid arthritis (60.5%), and 89.1% of patients were taking DMARDS. 4 patients (3.4%) taking methotrexate discontinued the drug around the time of vaccination. Adverse events occurred in 27 patients (9.8%) after COVID-19 vac-cination, with joint/muscle pain (13, 4.7%) and fatigue (8, 2.9%) being the most commonly report-ed adverse events. Only 4 patients (1.4%) had disease flares. Conclusion: The incidence of adverse reactions among patients with rheumatic immunological diseases who received COVID-19 vaccina-tion was 9.8%, indicating the high safety of the vaccine. People with rheumatic immunological dis-eases should be encouraged to be vaccinated against COVID-19. At the same time, rheumatologists should strengthen communication with patients and make effective recommendations on the tim-ing of vaccination.
文章引用:朱芳谊, 刘静璇, 梁宏达. 风湿免疫性疾病患者接种COVID-19疫苗安全性的研究[J]. 临床医学进展, 2023, 13(4): 5387-5395. https://doi.org/10.12677/ACM.2023.134763

1. 引言

SARS-COV-2病毒造成了全球范围内的健康、社会和经济危机,死亡人数已达百万余人。接种新型冠状疫苗已成为降低COVID-19感染率及不良后果的一项重要措施。随机研究表明,在不同地区被批准应用的各种疫苗已被证实在降低感染率及严重疾病发生率方面是有效的 [1] [2] [3] 。目前,我国已有4种COVID-19疫苗批准附条件上市,2种COVID-19获批紧急使用 [4] 。然而,风湿免疫病患者由于其可能存在特殊的风险,他们基本被排除在最初的疫苗临床试验之外。风湿免疫病患者对于接种新冠疫苗的有效性及安全性存在着一定的期望和担忧 [5] [6] [7] [8] 。美国风湿病学会(American College of Rheumatology, ACR)建议风湿病患者接种疫苗并认为这一群体患有严重肺炎的风险高于普通人群 [9] [10] 。目前,关于风湿免疫病患者接种新冠疫苗的有效性及安全性正在讨论中,但是真实世界的相关数据处于相对缺乏状态。本调查旨在通过现场问卷调查形式对已接种COVID-19疫苗的风湿免疫病患者的信息进行收集,重点是接种疫苗后是否停用治疗药物以及出现不良反应和疾病活动的情况。

2. 研究对象与方法

2.1. 研究设计和纳排标准

为了研究更同质的人群,并更好地了解与疫苗接种相关的人口特征和和因素,这项调查分析仅限于已接种新冠疫苗的风湿病患者。在2021.12.1~2022.5.30期间于我院风湿免疫科门诊就诊的明确诊断风湿病的患者进行问卷调查,至少接种一针疫苗及以上的患者被纳入此项分析。被调查的风湿病患者需提供姓名、年龄、性别、门诊登记号、风湿病诊断和抗风湿病药物的使用情况。以上信息如果被调查者拒绝提供任何一项,则被排除在外。报告仅诊断为骨关节炎和(或)风湿性肌痛的患者也被排除在外。采用流行病学单中心横断面调查研究,设计调查问卷,并由经过培训的风湿免疫科医生及研究生组成调查小组,对接种COVID-19疫苗的患者进行现场调查。本研究通过了伦理委员会的审批。

2.2. 资料收集

2.2.1. 人口统计数据

需采集的人口统计数据信息包括姓名、性别、年龄、身份证号码、住址、门诊登记号。

2.2.2. 风湿免疫病诊断

收集于我院风湿免疫科门诊明确诊断风湿性疾病的患者,且分别符合各自疾病的分类诊断标准。

2.2.3. 糖皮质激素、非甾体类抗炎药和抗风湿病药物的使用情况

我们需要收集问卷调查参与者的治疗方案:包括抗风湿病药物、糖皮质激素和非甾体类抗炎药物的使用情况。根据美国风湿病学会COVID-19疫苗接种指南建议需要对抗风湿病药物进行分类 [9] 。ACR指南将抗风湿病药物分为8类:1) 羟氯喹、丙种球蛋白、糖皮质激素(剂量 < 20 mg/天);2) 糖皮质激素(剂量 < 20 mg/天)、柳氮磺嘧啶、来氟米特、吗替麦考酚酯、环磷酰胺(口服)、钙调磷酸酶抑制、TNF抑制剂(恩利、益赛普、安百诺、强克、修美乐、安健宁、格乐力、欣普尼、类克、希敏佳)、IL-6 (雅美罗)、IL-17 (可善挺);3) 甲氨喋呤(MTX);4) JAK通路抑制剂;5) 环磷酰胺(静脉注射);6) 利妥昔单抗;7) 阿巴西普(皮下注射);8) 阿巴西普(静脉注射)。暂停使用免疫抑制剂可能会增强风湿病患者接种新冠疫苗后的免疫原性 [11] [12] [13] 。

2.2.4. 治疗药物的停用

同时需要详细记录接种每一针COVID-19疫苗后是否暂时停用治疗药物,若停用药物,则需记录停用时间。

2.2.5. 接种COVID-19疫苗后的不良事件

问卷调查还涉及风湿免疫病患者接种疫苗后是否出现了不良反应,如发热、皮疹、关节疼痛、关节肿胀、腰痛、感染等情况。除此之外,我们还需向调查参与者询问及评估是否出现自身免疫病的疾病活动度的变化。

2.3. 统计分析

采用SPSS25.0软件对统计数据进行描述性分析,包括平均值、标准差和比例及95%置信区间。

3. 结果

共纳入了2021.12.1~2022.5.30期间于青岛大学附属医院风湿免疫科门诊就诊的276例风湿免疫病患者,他们至少接种一针以上的新冠疫苗。分析样本的流程图见图1

Figure 1. Flow chart

图1. 流程图

根据问卷调查结果分析显示:共纳入风湿性疾病患者276例,平均年龄为48.8岁,其中男性72例(26.1%),女性204例(73.9%)。参与调查者的人口学特征见表1

Table 1. Demographic characteristics of participants who received COVID-19 vaccines (N = 276)

表1. 接种COVID-19疫苗的参与者的人口特征(N = 276)

疾病构成包括58例强直性脊柱炎(21.0%)、15例原发性干燥综合征(5.4%)、167例类风湿关节炎(60.5%)、20例系统性红斑狼疮(7.3%),3例系统性硬化症(1.1%)、2例复发性多软骨炎(0.7%)、8例结缔组织病(2.9%)、3例皮肌炎(1.1%)。以类风湿性关节炎占比最高。

276例患者有35例(12.6%)在接种COVID-19仍在使用糖皮质激素,43例(15.6%)使用非甾体抗炎药,246例(89.1%)使用1种及以上抗风湿病药物。使用最多的抗风湿病药物是甲氨蝶呤(116, 42.0%)、羟氯喹(93, 33.7%)。其次为抗肿瘤坏死抑制剂(65, 23.6%)和来氟米特(62, 22.5%)。其余抗风湿病药物,JAK通路抑制剂、吗替麦考酚酯、环磷酰胺、钙调磷酸酶抑制、IL-17使用较少。利妥昔单抗在参与调查者中仅有1例使用,阿巴西普尚无人使用。

276例患者均接种了第一针COVID-19疫苗。其中260例(94.2%)完成两针COVID-19疫苗的接种,140例(50.7%)完成三针COVID-19疫苗的接种。

由于接受免疫抑制治疗的患者被排除在三期临床之外 [14] [15] ,在疫苗接种前后是否需要调整治疗药物的服用时间和剂量尚不清楚。根据ACR指南推荐,在COVID-19疫苗接种前后需要暂时停用的抗风湿病药物有甲氨蝶呤、JAK通路抑制剂、吗替麦考酚酯、利妥昔单抗、阿巴西普。我们对问卷调查者停药情况进行统计(表2)。服用甲氨蝶呤的患者中只有4例(3.4%)患者暂停药物;余患者均维持当前的治疗方案。这反映出风湿病患者对于接种COVID-19疫苗相关知识较为缺乏。

Table 2. Discontinuation of COVID-19 vaccines after vaccination

表2. 接种COVID-19疫苗后的停药情况

在所有的问卷调查参与者中,共有27例(9.8%)患者发生了1种或1种以上不良反应。关节/肌肉疼痛(13, 4.7%)是最常见的不良反应,其次是乏力(5, 2.9%)和发热(5, 1.8%)。其中有4例(1.4%)患者报告了新冠疫苗接种之后出现风湿性疾病的活动(见表3)。

Table 3. Adverse effects following COVID-19 vaccination

表3. COVID-19疫苗接种的相关不良反应表现

4. 讨论

这是一项关于风湿病患者接种新冠疫苗前后是暂停应用抗风湿病药物以及接种疫苗后不良反应发生情况的问卷调查。风湿免疫病患者是一个特殊的群体,免疫失调、免疫抑制剂的使用以及并发症使这类群体更容易感染COVID-19 [16] [17] [18] 。在接种新冠疫苗时,抗风湿病药物的停用时机及时长,目前尚无确切的数据。我们的调查结果显示,服用甲氨蝶呤的患者中只有4/116 (3.4%)例在接种疫苗时停用药物,服用JAK通路抑制剂、吗替麦考酚酯、利妥昔单抗均未停用药物。几乎所有调查参与没有改变治疗药物的使用时间。在最近发表的一项前瞻性对照试验显示,类风湿关节炎患者在每次新冠疫苗接种完毕后停用两周甲氨蝶呤,可以提高抗SARS-CoV-2 IgG的血清阳性率 [19] 。关于免疫原性降低的假设也已经在最近的抗体滴度的研究中被证实 [20] [21] 。在新冠疫苗接种时暂时停用药物,有利于提高疫苗的免疫原性及IgG抗体血清阳性率。这意味着医疗保健的相关人员在接种疫苗的时机方面需加强与风湿病患者的沟通,以提高COVID-19疫苗的有效性。

在问卷调查信息采集过程中,我们与受访者进行沟通,一部分患者存在疫苗接种犹豫(指尽管有疫苗接种服务,但是延迟或拒绝接种疫苗 [22] ),另一部分患者对疫苗接种的时机及治疗风湿病药物的调整方面存在疑惑。风湿病医生在宣传接种疫苗的风险和益处方面发挥着重要作用。此前对风湿病患者的调查显示,他们与风湿病医生或者其他相关医疗服务提供者交流有限,特别是在治疗药物调整方面 [23] [24] [25] 。除此之外,尚有调查表明在患者疫苗接种犹豫时,许多临床医生并没有给患者一个明确的建议 [26] [27] 。所以,临床医生需加强与风湿病患者的沟通,建议临床医生向患者普及新冠疫苗接种的有效性,减少患者的疫苗接种犹豫;并根据患者病情评估的情况及当前抗风湿病药物的使用情况,给与风湿病患者有效的疫苗接种时机和药物调整建议。这将很大程度上推动风湿免疫病患者的疫苗接种的覆盖率,并且可以改善疫苗的免疫原性及机体的免疫应答率。

此外,我们还对参与者接种新冠疫苗后出现的不良反应进行了统计。随着疫苗的普及,关于风湿病患者接种新冠疫苗后的不良反应的报道一直在增加。风湿免疫病患者接种新冠疫苗后不良反应的发生率与普通人群相当,严重的不良反应非常罕见 [7] [28] [29] [30] 。我们的调查结果显示276例参与者中,只有少数患者出现了不良反应,如关节/肌肉疼痛、乏力、发热等。调查结果是可信的并且与其他同类型的研究结果一致 [7] [29] 。

接种新冠疫苗后可能会引发疾病活动已经成为目前引起医护人员及风湿病患者担忧的主要问题 [31] 。我们的调查结果显示,只有4例患者在新冠疫苗接种后出现了疾病活动。在两个前瞻性队列研究中,接种COVID-19疫苗后风湿病患者的疾病保持稳定 [7] [32] 。这两项研究的结果为接种新冠疫苗在风湿病患者中的安全性和免疫原性提供了可靠的证据。本研究具有一定的局限性。该研究为横断面单中心研究,存在一定的选择偏倚和研究偏倚。且该研究的样本量较小,未来需要更大样本的前瞻性研究来为疫苗接种的安全性提供数据支撑。

5. 结论

这项调查研究为风湿病患者群体接种COVID-19疫苗的安全性方面提供了一定临床证据。尽管几乎所有患者在接种疫苗时未停用治疗药物,但是只有少数患者出现了不良反应及疾病的活动。风湿病医生应紧跟指南的更新,在疫苗接种方面加强与患者的沟通。合适的疫苗接种时机,既可以提高疫苗的免疫原性又可以减少暂停抗风湿病药物带来疾病活动的风险。未来的研究需要在寻找最佳疫苗接种时机方面做出努力。

基金项目

山东省自然科学基金项目(ZR2020MH221)。

NOTES

*第一作者。

#通讯作者Email: lianghongda@qdu.edu.cn

参考文献

[1] (2021) Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 384, 1576-1578.
https://doi.org/10.1056/NEJMc2036242
[2] Baden, L.R., et al. (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 384, 403-416.
https://doi.org/10.1056/NEJMoa2035389
[3] Ramasamy, M.N., et al. (2020) Safety and Immunogenicity of ChAdOx1 nCoV-19 Vaccine Administered in a Prime- Boost Regimen in Young and Old Adults (COV002): A Sin-gle-Blind, Randomised, Controlled, Phase 2/3 Trial. The Lancet, 396, 1979-1993.
https://doi.org/10.1016/S0140-6736(20)32466-1
[4] Rocha-Muñoz, A.D., et al. (2015) Anti-Cyclic Citrullinated Peptide Antibodies and Severity of Interstitial Lung Disease in Women with Rheumatoid Arthritis. Journal of Immunol-ogy Research, 2015, Article ID: 151626.
[5] Furer, V., et al. (2021) Point of View on the Vaccination against COVID-19 in Patients with Autoimmune Inflammatory Rheumatic Diseases. RMD Open, 7, e001594.
https://doi.org/10.1136/rmdopen-2021-001594
[6] Felten, R., et al. (2021) Vaccination against COVID-19: Ex-pectations and Concerns of Patients with Autoimmune and Rheumatic Diseases. The Lancet Rheumatology, 3, e243-e245.
https://doi.org/10.1016/S2665-9913(21)00039-4
[7] Furer, V., et al. (2022) Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Adult Patients with Autoimmune Inflammatory Rheumatic Dis-eases and in the General Population: A Multicentre Study. Annals of the Rheumatic Diseases, 81, e133.
[8] Neg-ahdaripour, M., et al. (2021) Administration of COVID-19 Vaccines in Immunocompromised Patients. International Immunopharmacology, 99, Article ID: 108021.
https://doi.org/10.1016/j.intimp.2021.108021
[9] Curtis, J.R., et al. (2021) American College of Rheumatology Guidance for COVID-19 Vaccination in Patients with Rheumatic and Musculoskeletal Diseases: Version 1. Arthritis & Rheumatology, 73, 1093-1107.
https://doi.org/10.1002/art.41734
[10] Bower, H., et al. (2021) Impact of the COVID-19 Pandemic on Morbidity and Mortality in Patients with Inflammatory Joint Diseases and in the General Population: A Nationwide Swedish Cohort Study. Annals of the Rheumatic Diseases, 80, 1086-1093.
https://doi.org/10.1136/annrheumdis-2021-219845
[11] Park, J.K., et al. (2017) Effect of Methotrexate Discontinu-ation on Efficacy of Seasonal Influenza Vaccination in Patients with Rheumatoid Arthritis: A Randomised Clinical Trial. Annals of the Rheumatic Diseases, 76, 1559-1565.
https://doi.org/10.1136/annrheumdis-2017-211128
[12] Park, J.K., et al. (2018) Impact of Temporary Methotrexate Discontinuation for 2 Weeks on Immunogenicity of Seasonal Influenza Vaccination in Patients with Rheumatoid Arthri-tis: A Randomised Clinical Trial. Annals of the Rheumatic Diseases, 77, 898-904.
https://doi.org/10.1136/annrheumdis-2018-213222
[13] Winthrop, K.L., et al. (2016) The Effect of Tofacitinib on Pneumococcal and Influenza Vaccine Responses in Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 75, 687-695.
https://doi.org/10.1136/annrheumdis-2014-207191
[14] Polack, F.P., et al. (2020) Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383, 2603-2615.
https://doi.org/10.1056/NEJMoa2034577
[15] Walsh, E.E., et al. (2020) Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine, 383, 2439-2450.
https://doi.org/10.1056/NEJMoa2027906
[16] Listing, J., Gerhold, K. and Zink, A. (2013) The Risk of Infections Associated with Rheumatoid Arthritis, with Its Comorbidity and Treatment. Rheumatology, 52, 53-61.
https://doi.org/10.1093/rheumatology/kes305
[17] Ogdie, A., et al. (2017) Cause-Specific Mortality in Patients with Psoriatic Arthritis and Rheumatoid Arthritis. Rheumatology, 6, 907-911.
https://doi.org/10.1093/rheumatology/kew502
[18] Danza, A. and Ruiz-Irastorza, G. (2013) Infection Risk in Sys-temic Lupus Erythematosus Patients: Susceptibility Factors and Preventive Strategies. Lupus, 22, 1286-1294.
https://doi.org/10.1177/0961203313493032
[19] Araujo, C.S.R., et al. (2022) Two-Week Methotrexate Discontin-uation in Patients with Rheumatoid Arthritis Vaccinated with Inactivated SARS-CoV-2 Vaccine: A Randomised Clinical Trial. Annals of the Rheumatic Diseases, 81, 889-897.
https://doi.org/10.1136/annrheumdis-2021-221916
[20] Deepak, P., et al. (2021) Glucocorticoids and B Cell De-pleting Agents Substantially Impair Immunogenicity of mRNA Vaccines to SARS-CoV-2. MedRxiv.
https://doi.org/10.1101/2021.04.05.21254656
[21] Haberman, R.H., et al. (2021) Methotrexate Hampers Immuno-genicity to BNT162b2 mRNA COVID-19 Vaccine in Immune-Mediated Inflammatory Disease. MedRxiv.
https://doi.org/10.1101/2021.05.11.21256917
[22] MacDonald, N.E. (2015) Vaccine Hesitancy: Definition, Scope and Determinants. Vaccine, 33, 4161-4164.
https://doi.org/10.1016/j.vaccine.2015.04.036
[23] Glintborg, B., et al. (2021) Self-Protection Strategies and Health Behaviour in Patients with Inflammatory Rheumatic Diseases during the COVID-19 Pandemic: Results and Predictors in More Than 12,000 Patients with Inflammatory Rheumatic Diseases Followed in the Danish DANBIO Registry. RMD Open, 7, e001505.
https://doi.org/10.1136/rmdopen-2020-001505
[24] George, M.D., et al. (2021) Concerns, Healthcare Use, and Treatment Interruptions in Patients with Common Autoimmune Rheumatic Diseases during the COVID-19 Pandemic. The Journal of Rheumatology, 48, 603-607.
https://doi.org/10.3899/jrheum.201017
[25] Rosenbaum, J.T., et al. (2020) Biologics, Spondylitis and COVID-19. Annals of the Rheumatic Diseases, 79, 1663-1665.
https://doi.org/10.1136/annrheumdis-2020-217941
[26] Hua, C., et al. (2015) Reasons for Non-Vaccination in French Rheumatoid Arthritis and Spondyloarthritis Patients. Rheumatology, 54, 748-750.
https://doi.org/10.1093/rheumatology/keu531
[27] Nguyen, M.T.T., Lindegaard, H., Hendricks, O. and Fri-is-Møller, N. (2017) Factors Associated with Influenza and Pneumococcal Vaccine Uptake among Rheumatoid Arthritis Patients in Denmark Invited to Participate in a Pneumococcal Vaccine Trial (Immunovax_RA). Scandinavian Journal of Rheumatology, 46, 446-453.
https://doi.org/10.1080/03009742.2016.1242774
[28] Cherian, S., et al. (2021) Safety of the ChAdOx1 nCoV-19 and the BBV152 Vaccines in 724 Patients with Rheumatic Diseases: A Post-Vaccination Cross-Sectional Survey. Rheumatology International, 41, 1441-1445.
https://doi.org/10.1007/s00296-021-04917-0
[29] Bartels, L.E., et al. (2021) Local and Systemic Reactogenicity of COVID-19 Vaccine BNT162b2 in Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis. Rheumatolo-gy International, 41, 1925-1931.
https://doi.org/10.1007/s00296-021-04972-7
[30] Sattui, S.E., et al. (2021) Early Experience of COVID-19 Vac-cination in Adults with Systemic Rheumatic Diseases: Results from the COVID-19 Global Rheumatology Alliance Vac-cine Survey. RMD Open, 7, e001814.
https://doi.org/10.1136/rmdopen-2021-001814
[31] Schulze-Koops, H., Specker, C. and Skapenko, A. (2021) Vaccination of Patients with Inflammatory Rheumatic Diseases Against Sars-CoV-2: Considerations Before Widespread Availability of the Vaccines. RMD Open, 7, e001553.
https://doi.org/10.1136/rmdopen-2020-001553
[32] Geisen, U.M., et al. (2021) Immunogenicity and Safety of an-ti-SARS-CoV-2 mRNA Vaccines in Patients with Chronic Inflammatory Conditions and Immunosuppressive Therapy in a Monocentric Cohort. Annals of the Rheumatic Diseases, 80, 1306-1311.
https://doi.org/10.1136/annrheumdis-2021-220272