胶质母细胞瘤的手术治疗进展
Advances in Surgical Treatment of Glioblastoma
摘要: 胶质母细胞瘤(GBM)是一种高度侵袭性疾病,预后不良。尽管近年来在治疗方面有所进展。手术切除肿瘤仍然是这些患者的主要治疗方法。尤其是在与辅助放化疗相结合的情况下,手术切除肿瘤仍然是治疗这些患者的主要选择。在本研究中,我们进行了全面的文献综述,探讨了外科治疗的最新进展和未来趋势。
Abstract: Glioblastoma (GBM) is a highly aggressive disease with a poor prognosis. Although there have been advances in treatment in recent years. Surgical resection of the tumor remains the primary treat-ment for these patients. Especially in combination with adjuvant radiotherapy, surgical resection of the tumor remains the main option for the treatment of these patients. In this study, we performed a comprehensive literature review to explore the latest advances and future trends in surgical treatment.
文章引用:亚森·奥斯曼, 艾山·艾麦尔, 周庆九. 胶质母细胞瘤的手术治疗进展[J]. 临床医学进展, 2023, 13(4): 5501-5506. https://doi.org/10.12677/ACM.2023.134778

1. 简介

胶质母细胞瘤(GBM)是成人最常见的原发性恶性脑肿瘤(Glioblastoma is the most common and malignant primary brain tumor in adults),5年死亡率为90% [1] [2] 。美国每年报告的病例超过1万例 [3] 。我国脑胶质瘤年发病率为5~8/10万,5年病死率在全身肿瘤中仅次于胰腺癌和肺癌 [4] 。

几十年来,GBM的标准治疗包括手术切除后的辅助放疗 [5] 。但自2005年起,辅助替莫唑胺联合术后放疗成为新的标准治疗方法,提高了这些患者的中位生存期 [6] [7] 。最大限度的安全切除仍然是这种治疗的一个基本部分,也是对这些病人进行手术的主要目标。由于它与患者的生存期有关,因此在对这些患者进行手术治疗时的主要目标是延长生存期 [8] 。

为了实现这一目标,新的技术和手术辅助手段(如荧光引导手术、术中磁共振成像(iMRI)、术中超声(IOUS))在过去几年中得到了研究和应用。然而,临床研究的结果仍然存在争议,目前研究的样本量均相对较小,且均为回顾性研究,以上新技术联合辅助胶质瘤手术的效果有待进一步研究。在本文中,我们对GBM手术治疗的最新技术和未来趋势进行了全面的文献综述。

2. 切除范围与残余肿瘤体积:共识与争议

切除范围(EOR)是GBM手术治疗中研究最多的话题之一。一方面,已经证明EOR影响GBM患者的总生存期(OS);另一方面,关于EOR的最佳阈值也存在很多争论。Lacroix等人被高度引用的论文描述说,EOR≥的中位生存率从8.8个月提高了98% (95%的置信度至13个月(95% CI11.4~14.6),p < 0.0001 [9] 。此外,他们报告了EOR与生存之间更强的关联预后因素如年龄和Karnofsky性能评分(KPS)是有利的。然而,在解释结果时必须更加谨慎,因为新诊断GBM和复发性GBM未单独评估。Orringer等人回顾性评价46例新诊断GBM,并得出EOR大于90%为GBM与1年生存率显著相关 [10] 。

Oppenlander等研究了170例复发性GBM患者,报告了EOR ≥ 80%患者的OS改善 [11] 。他们强调,与EOR < 80%的患者相比,EOR ≥ 80%的患者在术后早期出现神经系统疾病的风险更高 [11] 。然而,这种增加的风险并没有持续超过30天。另一项针对500名新诊断的GBM患者的研究显示,EOR对OS的影响也有类似的结果 [12] 。尽管更高的EOR与更高的生存率相关,但次全切除(STR)在GBM患者中的作用得到了证实,因为EOR仅为78% [12] 。这对于肿瘤位于邻近或在功能区内的患者尤其重要,在这些患者中,EOR ≥ 98%可能是不可能实现的。然而,一项涉及345例新诊断的GBM患者的研究表明,肿瘤完全切除与生存率显著提高相关(HR: 0.6, p = 0.003),而接受不完全切除的患者的OS并不比接受穿刺活检的患者长 [13] 。

Bloch等人证实,无论初始EOR如何,复发时全切除(GTR)与提高生存率相关。他们报告了在复发时接受GTR时,初始STR患者的生存期改善(15.9个月至19个月,p = 0.004) [14] 。一项荟萃分析纳入1507例患者,包括1335例复发再手术(89%),24例复发肿瘤中有3例在复发时最大限度地切除与改善生存率显著相关 [15] 。

另一项荟萃分析研究了1618名患者的3个回顾性和3个随机对照试验,并得出结论,与STR相比,GTR与更大的1年OS和PFS相关 [16] 。Chaichana等人评估了RV和EOR与新诊断GBM患者生存的关系,并建立了最低EOR和最大RV阈值。他们报告说,生存和复发的最低EOR阈值为70%,而生存和复发的最大RV阈值为5 cm3 [17] 。在另一项回顾性研究中,Chaichana等人评估了84例新诊断的GBM患者,这些患者根据术前影像学被认为适合GTR。RV和EOR与生存率独立相关。此外,他们报道了对OS影响最大的RV和EOR分别为<2 cm3和>95% [18] 。

Bette及其同事回顾性研究了209例新诊断的GBM患者,并证实手术切除仍然是一个主要的预后因素,因为即使在调整了年龄、KPS、MGMT状态和辅助放化疗等其他预后因素的模型后,RV仍然与生存显著相关 [19] 。2022年GBM切除范围的黄金法则是:在不引起神经功能恶化的情况下,尽可能多地切除增强肿瘤。由于大多数已发表的研究都是基于回顾性分析,因此医学文献提供的关于这一主题的证据水平有限。需要新的前瞻性随机研究来解决这一与GBM患者手术治疗相关的重要问题。

3. 荧光引导手术:一项不可或缺的创新

考虑到更高的EOR和更小的RV可以改善GBM患者的OS和PFS,因此有必要开发旨在提高切除率而不引起神经系统疾病的新技术。5-氨基乙酰丙酸(5-ALA)是血红蛋白的天然前体,是一种荧光染料,在手术前2~3小时口服后,肿瘤细胞更容易吸收 [20] 。改良的神经外科显微镜可以看到来自肿瘤细胞的荧光,从而提高EOR。在此背景下,Stummer等人对322例疑似恶性胶质瘤患者进行了一项多中心随机对照试验,以调查5-ala诱导的荧光是否对EOR和6个月无进展生存有显著影响,并通过MR图像评估。5-ALA组中65%的患者实现了GTR,而白光组为36% (p < 0.0001) [20] 。

与iMRI相比,5-ALA检测高级别胶质瘤(HGGs)切除腔边界肿瘤浸润的敏感性和特异性更高 [21] 。在一项涉及33例符合GTR的GBM患者的前瞻性研究中,证实了联合使用5-ALA引导的切除和iMRI对EOR的影响 [22] 。本组患者采用5-ALA和iMRI联合入路。对照组通过回顾性配对评估选择144例iMRI辅助手术患者。联合治疗组的平均EOR (99.7%)显著高于单独组iMRI (97.4%),p < 0.004。此外,联合治疗组GTR发生率显著高于对照组(100% vs. 82%, p < 0.01)。另一项涉及72例GBM患者的研究表明,在毗邻皮质脊髓束的肿瘤中,当5-ALA引导切除结合术中单极成像时,GTR的发生率更高 [23] 。

在神经外科领域,它于20世纪90年代末在日本首次用于30名患者,并显示出有希望的结果。一项前瞻性研究评估了荧光引导手术对80例GBM患者GTR和生存的影响。作者报告了荧光素引导手术患者的GTR发生率明显高于常规手术患者(83% vs. 55%)。然而,两组患者的生存率并无差异。其他研究证实荧光素钠是安全的,并且可以在增强肿瘤的完全切除中获得较高的成功率 [24] [25] 。

4. 术中MRI:技术进步与医学证据

自1993年以来,术中MRI一直被用作胶质瘤手术的辅助工具,当时它首次由布里格姆妇女医院引入 [26] 。众所周知,脑移位现象降低了常规神经导航在脑肿瘤切除术中的准确性。因此,这项创新技术背后的主要思想是通过术中更新MR图像提高EOR的可能性。这种实时评估允许在同一手术中进一步切除的可能性 [27] 。然而,目前支持这一做法的证据仍然有限,因为大多数关于iMRI的研究都是回顾性队列研究和病例对照研究。

虽然已证明iMRI可提高脑肿瘤患者的EOR,但缺乏高水平的证据支持使用这一技术进步可显著改善PFS、OS和生活质量。此外,iMRI与较长的手术时间有关,意味着使用合适的手术器械,这可能导致较高的治疗费用 [28] 。为了研究iMRI是否为GBM患者提供了显著的生存益处,需要进行更大样本量和长期随访的新的随机对照试验。

5. 术中超声:一种广泛使用和廉价的检查工具

术中超声(IOUS)被认为是脑肿瘤手术治疗中广泛使用和廉价的辅助工具。过去几十年的几项研究已经证明了它的好处 [29] 。Jakola等人研究了基于3D超声的导航系统对88例胶质瘤患者生活质量(QOL)的影响。他们认为使用IOUS可能与这些患者生活质量的保存有关 [30] 。此外,另一项研究得出结论,在脑肿瘤手术治疗中,可导航的3D US是一种多功能、有用和可靠的术中工具 [31] 。另一项研究比较了导航和非导航IOUS对HGG患者EOR的影响,报告两组间肿瘤残留大小无差异 [32] 。最近的一项研究表明,与标准神经导航相比,术中导航超声可提高EOR和神经系统预后 [33] 。值得一提的是,IOUS是一种依赖于用户的工具。因此,神经外科医生的知识、技能和经验对这种辅助工具在GBM手术治疗中的应用起着决定性的作用。国家和国际神经外科学会可能会提供官方文凭和认证,以确保教学标准、技能要求和重新验证实践 [34] 。

尽管近年来发表了许多关于这一主题的研究,但仍然需要高质量的证据。进一步的研究将提高该方法在GBM手术中的实用性。

6. 结论

GBM虽然近年来有所进展,但仍是一种预后较差的恶性疾病。手术和标准放化疗相结合是对抗这种知名疾病的最佳治疗方法。对于GBM的手术切除,最大限度的安全切除是这种治疗方式的黄金法则。手术辅助手段,如荧光引导手术、iMRI,IOUS可以在适当的情况下使用,以提高这些患者的生存和生活质量。近年来,许多临床和实验研究已经发表,新的策略也不断发布。然而,对于大多数这些新技术,高质量的证据仍然是需要进一步证实的。

NOTES

*通讯作者。

参考文献

[1] Carlsson, S.K., Brothers, S. and Wahlestedt, C. (2014) Emerging Treatment Strategies for Glioblastoma Multiforme. EMBO Molecular Medicine, 6, 1359-1370.
https://doi.org/10.15252/emmm.201302627
[2] Alifieris, C. and Tra-falis, D.T. (2015) Glioblastoma Multiforme: Pathogenesis and Treatment. Pharmacology and Therapeutics: The Journal of the International Encyclopedia of Pharmacology and Therapeutics, 152, 63-82.
https://doi.org/10.1016/j.pharmthera.2015.05.005
[3] Harter, D.H., Wilson, T.A. and Karajannis, M.A. (2014) Glioblastoma Multiforme: State of the Art and Future Therapeutics. Surgical Neurology International, 5, 64.
https://doi.org/10.4103/2152-7806.132138
[4] 国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版) [J]. 中华神经外科杂志, 2022, 38(8): 757-777.
https://doi.org/10.3760/cma.j.cn112050-20220510-00239
[5] Stupp, R., Hegi, M.E., Mason, W.P., et al. (2009) Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glio-blastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. The Lancet Oncology, 10, 459-466.
[6] Johnson, D.R. and O’neill, B.P. (2012) Glioblastoma Survival in the United States before and during the Temozolomide Era. Journal of Neuro-Oncology, 107, 359-364.
https://doi.org/10.1007/s11060-011-0749-4
[7] Stupp, R., Mason, W.P., Van den Bent, M.J., et al. (2005) Radi-otherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. The New England Journal of Medicine, 352, 987-996.
https://doi.org/10.1056/NEJMoa043330
[8] Bush, N.A.O., Chang, S.M. and Berger, M.S. (2017) Cur-rent and Future Strategies for Treatment of Glioma. Neurosurgical Review, 40, 1-14.
https://doi.org/10.1007/s10143-016-0709-8
[9] Lacroix, M., Abi-Said, D., Fourney, D.R., et al. (2001) A Multi-variate Analysis of 416 Patients with Glioblastoma Multiforme: Prognosis, Extent of Resection, and Survival. Journal of Neurosurgery, 95, 190-198.
https://doi.org/10.3171/jns.2001.95.2.0190
[10] Orringer, D., Lau, D., Khatri, S., et al. (2012) Extent of Resection in Patients with Glioblastoma: Limiting Factors, Perception of Resectability, and Effect on Survival. Journal of Neuro-surgery, 117, 851-859.
https://doi.org/10.3171/2012.8.JNS12234
[11] Oppenlander, M.E., Wolf, A.B., Snyder, L.A., et al. (2014) An Ex-tent of Resection Threshold for Recurrent Glioblastoma and Its Risk for Neurological Morbidity. Journal of Neurosur-gery, 120, 846-853.
https://doi.org/10.3171/2013.12.JNS13184
[12] Sanai, N., Polley, M.Y., Mcdermott, M.W., et al. (2011) An Ex-tent of Resection Threshold for Newly Diagnosed Glioblastomas. Journal of Neurosurgery, 115, 3-8.
https://doi.org/10.3171/2011.2.JNS10998
[13] Kreth, F.W., Thon, N., Simon, M., Westphal, M., Schackert, G., Nikkhah, G., Hentschel, B., Reifenberger, G., Pietsch, T., Weller, M., et al. (2013) Gross Total but Not Incomplete Re-section of Glioblastoma Prolongs Survival in the Era of Radiochemotherapy. Annals of Oncology, 24, 3117-3123.
https://doi.org/10.1093/annonc/mdt388
[14] Bloch, O., Han, S.J., Cha, S., et al. (2012) Impact of Extent of Resec-tion for Recurrent Glioblastoma on Overall Survival: Clinical Article. Journal of Neurosurgery, 117, 1032-1038.
https://doi.org/10.3171/2012.9.JNS12504
[15] Lu, V.M., Goyal, A., Graffeo, C.S., Perry, A., Burns, T.C., Parney, I.F., Quinones-Hinojosa, A. and Chaichana, K.L. (2019) Survival Benefit of Maximal Resection for Glioblastoma Re-operation in the Temozolomide Era: A Meta-Analysis. World Neurosurgery, 127, 31-37.
https://doi.org/10.1016/j.wneu.2019.03.250
[16] Li, X.-Z., Li, Y.-B., Cao, Y., et al. (2017) Prognostic Implications of Resection Extent for Patients with Glioblastoma Multiforme: A Meta-Analysis. Journal of Neurosurgical Sciences, 61, 631-639.
https://doi.org/10.23736/S0390-5616.16.03619-5
[17] Chaichana, K.L., Jusue-Torres, I., Navarro-Ramirez, R., Raza, S.M., Pascual-Gallego, M., Ibrahim, A., Hernandez-Hermann, M., Gomez, L., Ye, X., Weingart, J.D., et al. (2013) Establishing Percent Resection and Residual Volume Thresholds Affecting Survival and Recurrence for Patients with Newly Diagnosed Intracranial Glioblastoma. Neuro-Oncology, 16, 113-122.
https://doi.org/10.1093/neuonc/not137
[18] Chaichana, K.L., Cabrera-Aldana, E.E., Jusue-Torres, I., Wijesekera, O., Olivi, A., Rahman, M. and Quinones-Hinojosa, A. (2014) When Gross Total Resection of a Glioblastoma Is Possible, How Much Resection Should Be Achieved? World Neurosurgery, 82, e257-e265.
https://doi.org/10.1016/j.wneu.2014.01.019
[19] Bette, S., Barz, M., Wiestler, B., Huber, T., Gerhardt, J., Buch-mann, N., Combs, S.E., Schmidt-Graf, F., Delbridge, C., Zimmer, C., et al. (2017) Prognostic Value of Tumor Volume in Glioblastoma Patients: Size Also Matters for Patients with Incomplete Resection. Annals of Surgical Oncology, 25, 558-564.
https://doi.org/10.1245/s10434-017-6253-0
[20] Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O.D., Zanella, F., Reulen, H.-J. and ALA-Glioma Study Group (2006) Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. The Lancet Oncology, 7, 392-401.
https://doi.org/10.1016/S1470-2045(06)70665-9
[21] Coburger, J., Engelke, J., Scheuerle, A., Thal, D., Hlavac, M., Wirtz, C.R. and König, R. (2014) Tumor Detection with 5-Aminolevulinic Acid Fluorescence and Gd-DTPA-Enhanced Intraoperative MRI at the Border of Contrast-Enhancing Lesions: A Prospective Study Based on Histopathological As-sessment. Neurosurgical Focus, 36, E3.
https://doi.org/10.3171/2013.11.FOCUS13463
[22] Coburger, J., Hagel, V., Wirtz, C.R. and König, R. (2015) Surgery for Glioblastoma: Impact of the Combined Use of 5-Aminolevulinic Acid and Intraoperative MRI on Extent of Resection and Survival. PLOS ONE, 10, e0131872.
https://doi.org/10.1371/journal.pone.0131872
[23] Schucht, P., Seidel, K., Beck, J., Murek, M., Jilch, A., Wiest, R., Fung, C. and Raabe, A. (2014) Intraoperative Monopolar Mapping during 5-ALA-Guided Resections of Glioblastomas Adjacent to Motor Eloquent Areas: Evaluation of Resection Rates and Neurological Outcome. Neurosurgical Focus, 37, E16.
https://doi.org/10.3171/2014.10.FOCUS14524
[24] Acerbi, F., Broggi, M., Eoli, M., Anghileri, E., Cavallo, C., Boffano, C., Cordella, R., Cuppini, L., Pollo, B., Schiariti, M., et al. (2014) Is Fluorescein-Guided Technique Able to Help in Resection of High-Grade Gliomas? Neurosurgical Focus, 36, E5.
https://doi.org/10.3171/2013.11.FOCUS13487
[25] Neira, J.A., Ung, T.H., Sims, J.S., Malone, H.R., Chow, D.S., Samanamud, J.L., Zanazzi, G.J., Guo, X., Bowden, S.G., Zhao, B., et al. (2017) Aggressive Resection at the Infiltrative Margins of Glioblastoma Facilitated by Intraoperative Fluorescein Guidance. Journal of Neurosurgery, 127, 111-122.
https://doi.org/10.3171/2016.7.JNS16232
[26] Wu, J.-S., Gong, X., Song, Y.-Y., Zhuang, D.-X., Yao, C.-J., Qiu, T.-M., Lu, J.-F., Zhang, J., Zhu, W., Mao, Y., et al. (2014) 3.0-T Intraoperative Magnetic Resonance Imaging-Guided Resection in Cerebral Glioma Surgery. Neurosurgery, 61, 145-154.
https://doi.org/10.1227/NEU.0000000000000372
[27] Barone, D.G., Lawrie, T.A. and Hart, M.G. (2014) Image Guided Surgery for the Resection of Brain Tumours. Cochrane Database of Systematic Reviews, No. 1, CD009685.
https://doi.org/10.1002/14651858.CD009685.pub2
[28] Delgado-López, P.D. and Corrales-García, E.M. (2016) Survival in Glioblastoma: A Review on the Impact of Treatment Modalities. Clinical and Translational Oncology, 18, 1062-1071.
https://doi.org/10.1007/s12094-016-1497-x
[29] Garzon-Muvdi, T., Kut, C., Li, X. and Chaichana, K.L. (2017) Intraoperative Imaging Techniques for Glioma Surgery. Future Oncology, 13, 1731-1745.
https://doi.org/10.2217/fon-2017-0092
[30] Jakola, A.S., Unsgård, G. and Solheim, O. (2011) Quality of Life in Patients with Intracranial Gliomas: The Impact of Modern Image-Guided Surgery. Journal of Neurosurgery, 114, 1622-1630.
https://doi.org/10.3171/2011.1.JNS101657
[31] Moiyadi, A.V., Shetty, P.M., Mahajan, A., Udare, A. and Sridhar, E. (2013) Usefulness of Three-Dimensional Navigable Intraoperative Ultrasound in Resection of Brain Tu-mors with a Special Emphasis on Malignant Gliomas. Acta Neurochirurgica, 155, 2217-2225.
https://doi.org/10.1007/s00701-013-1881-z
[32] Hickmann, A.-K., Henkel, C., Nadji-Ohl, M., Hopf, N.J. and Renovanz, M. (2014) Navigated versus Non-Navigated Intraoperative Ultrasound: Is There Any Impact on the Extent of Resection of High-Grade Gliomas? A Retrospective Clinical Analysis. Journal of Neurological Surgery Part A: Central European Neurosurgery, 75, 224-230.
https://doi.org/10.1055/s-0033-1356486
[33] Moiraghi, A., Prada, F., Delaidelli, A., Guatta, R., May, A., Bartoli, A., Saini, M., Perin, A., Wälchli, T., Momjian, S., et al. (2019) Navigated Intraoperative 2-Dimensional Ultrasound in High-Grade Glioma Surgery: Impact on Extent of Resection and Patient Outcome. Operative Neurosurgery, 18, 363-373.
https://doi.org/10.1093/ons/opz203
[34] Ganau, M., Ligarotti, G.K. and Apostolopoulos, V. (2019) Real-Time In-traoperative Ultrasound in Brain Surgery: Neuronavigation and Use of Contrast-Enhanced Image Fusion. Quantitative Imaging in Medicine and Surgery, 9, 350-358.
https://doi.org/10.21037/qims.2019.03.06