间充质干细胞外泌体对于糖尿病足溃疡的治疗策略
Therapeutic Strategies of Mesenchymal Stem Cell Exosomes for Diabetic Foot Ulcer
DOI: 10.12677/ACM.2023.1351110, PDF, HTML, XML, 下载: 112  浏览: 240 
作者: 郭正阳, 李 毅*:青海大学附属医院烧伤整形外科,青海 西宁
关键词: 间充质干细胞外泌体糖尿病糖尿病足糖尿病足溃疡Mesenchymal Stem Cell Exosomes Diabetes Diabetic Foot Diabetic Foot Ulcer
摘要: 糖尿病足溃疡(DFU)是糖尿病患者神经病变和不同程度的外周血管病变的组合,导致下肢感染、溃疡形成和深部组织坏死。糖尿病患者伤口愈合困难是由患者的高葡萄糖环境和各种生物因素引起的。患者的皮肤局部微环境改变和免疫趋化反应功能障碍。伤口容易反复损伤和溃疡,但难以愈合,最终发展为慢性溃疡。DFU是一个复杂的生物过程,其中许多细胞相互作用。从伤口释放的各种生长因子对于协调和促进愈合是必要的。间充质干细胞(MSCs)是再生治疗的理想细胞来源,在糖尿病足溃疡(DFU)中起着重要作用。外泌体是MSCs的关键分泌产物之一,类似于亲代MSCs的作用。它们可以穿梭各种蛋白质、信使RNA (mRNA)和microRNAs (miRNAs),调节受体细胞的活性,并在皮肤伤口愈合中发挥重要作用。与间充质干细胞相比,外泌体更便于储存和运输。此外,它们还避免了与细胞移植相关的许多风险。因此,MSC-外泌体介导的治疗可能更安全有效。本文对糖尿病足溃疡的治疗策略的变化及发展作归纳,并就间充质干细胞外泌体对于糖尿病足溃疡的研究进展及治疗策略进行汇总,探讨其未来对于DFU的治疗策略的影响。
Abstract: Diabetic Foot Ulcer (DFU) is a combination of neuropathy and peripheral vascular diseases of vary-ing degrees in diabetic patients, leading to infection of the lower extremities, ulcer formation and deep tissue necrosis. The difficulty of wound healing in diabetic patients is caused by the patient’s high glucose environment and various biological factors. The patient’s skin’s local microenviron-ment changes and immunochemotactic response dysfunction is impaired. Wounds are prone to re-peated injuries and ulcers, but are difficult to heal and eventually develop chronic ulcers. DFU is a complex biological process in which many cells interact with each other. The release of various growth factors from the wound is necessary to coordinate and promote healing. Mesenchymal stem cells (MSCs) are an ideal source of cells for regenerative therapy and play an important role in dia-betic foot ulcers (DFU). Exosomes are one of the key secretory products of MSCs, similar to the role of parental MSCs. They can shuttle various proteins, messenger RNA (mRNA) and microRNAs (miR-NAs), regulate the activity of recipient cells, and play an important role in skin wound healing. Exo-somes are easier to store and transport than mesenchymal stem cells. In addition, they avoid many of the risks associated with cell transplantation. Therefore, MSC-exosome mediated therapy may be safer and more effective. In this paper, the changes and development of therapeutic strategies for diabetic foot ulcer are summarized, and the research progress and therapeutic strategies of mes-enchymal stem cell exosomes for diabetic foot ulcer are summarized, and their future influence on the therapeutic strategies for DFU is discussed.
文章引用:郭正阳, 李毅. 间充质干细胞外泌体对于糖尿病足溃疡的治疗策略[J]. 临床医学进展, 2023, 13(5): 7934-7938. https://doi.org/10.12677/ACM.2023.1351110

1. 介绍

1) 间充质干细胞(MSCs):

一种多能祖细胞,可以分化为脂肪细胞,成骨细胞,软骨细胞和其他中胚层来源的细胞类型 [1] 。间充质干细胞具有自我更新能力强、免疫原性和免疫调节能力低的特点,在临床细胞治疗中发挥着重要作用。间充质干细胞来源广泛,最初是从骨髓中分离出来的 [2] 。随后的研究发现,间充质干细胞可以从各种人体组织中分离出来,例如脂肪组织,脐带,滑膜,牙龈,经血和尿液 [3] [4] 。间充质干细胞的低免疫原性使其成为移植的良好材料。移植后,间充质干细胞能化学吸引到受损组织附近,分泌多种生长因子和抗炎因子,促进受损组织的修复 [5] 。然而,MSCs和间充质肿瘤细胞具有许多相同的干细胞表型,这强烈表明一些早期肿瘤细胞来源于MSC [6] 。此外,先前的研究发现,MSCs通过血管形成,免疫调节和促进肿瘤间质重塑(促进肿瘤形成 [7] [8] )。这些因素极大地限制了间充质干细胞的临床应用。先前的研究发现,从MSC培养基中分离的外泌体具有类似于MSCs的修复功能,并且没有肿瘤形成的风险 [9] [10] 。

2) 外泌体(Exosome):

来自人脐带间充质干细胞(hucMSC-exosome) [11] 、人脂肪间充质干细胞(hASC-exosome) [12] 和人诱导多能干细胞来源的间充质干细胞(hiPS-MSCexosome) [13] 的外泌体可通过传递各种功能蛋白、rna和可溶性细胞因子促进皮肤伤口愈合 [14] [15] [16] 。有研究结果证实,HucMSC-exosomes通过传递Wnt4和14-3-3ζ蛋白来促进皮肤烧伤创面愈合 [17] [18] ;Leoni等人发现含有annexina1的肠上皮细胞来源外泌体可促进上皮再生 [19] 。有研究表明,hucmsc-外泌体导致Wnt4的表达显著升高,进一步证实,hucmsc-外泌体通过传递Wnt4激活皮肤细胞中的Wnt/β-catenin,从而促进皮肤伤口愈合 [11] 。其他研究表明,3,3-二吲哚基甲烷(DIM)衍生的外泌体通过转移Wnt11预处理hucMSCs,激活Wnt/β-catenin通路,促进皮肤伤口愈合,恢复损伤后皮肤完整性 [12] 。综上所述,MCS-外泌体介导活性蛋白,因此是皮肤再生和修复的有效策略。

3) 水凝胶敷料在创面的应用:

慢性创面管理的传统疗法依赖于日常伤口管理:使用伤口敷料提供潮湿环境或吸收伤口渗出物,以及清创去除感染和/或坏死组织。先进的伤口治疗包括杀菌敷料、生长因子的应用和皮肤替代品 [20] [21] 。如今,泡沫、薄膜、水凝胶、亲水胶体和纳米纤维等现代敷料提供了理想的伤口愈合条件,提供了潮湿的环境和抗菌愈合环境,并积极促进伤口愈合过程,因此引起了更多的关注 [22] 。在这些敷料中,水凝胶具有高孔隙率、生物相容性、可改变的降解速率、互连的微孔网络、保持湿润微环境的能力和组织渗出物的吸收能力,以及为促进细胞功能(如增殖和迁移)提供了合适的条件,因此具有许多优点。它们是三维亲水凝胶,在水中迅速膨胀并形成半固体基质。水凝胶的含水量超过90%,为保持伤口界面的潮湿环境提供了更好的条件 [23] [24] 。潮湿的环境提供凉爽的感觉,并降低疤痕形成的风险。此外,由于水凝胶的高孔隙率,促进了氧气的传输,从而使组织能够“呼吸”。它们表现出独特的性能,例如良好的弹性、不粘附和与细胞外基质(ECM)的结构相似性。此外,水凝胶由于其温和的加工条件以及掺入生物活性剂的能力,作为伤口敷料提供了多种好处。水凝胶伤口敷料的进步包括活性敷料的开发,其中设计了包含增强伤口愈合过程的试剂的水凝胶。不同的生物活性剂,如抗炎分子、抗生素、抗氧化剂、干细胞、生长因子等。可以掺入水凝胶中以促进伤口愈合。彻底了解伤口愈合过程和水凝胶制造的生化线索将有助于获得最佳伤口愈合结果。

2. 糖尿病足溃疡的治疗策略

在临床工作中,糖尿病足溃疡的治疗,可分为预防,创面护理,手术治疗。

1) 糖尿病足溃疡的预防:

在我们临床工作中,建议每年对溃疡风险极低的人进行保护性感觉丧失和外周动脉疾病的筛查,对风险较高的人进行其他危险因素筛查。为了预防足部溃疡,教育有风险的患者适当的足部自我护理,并治疗足部的任何溃疡前体征。指导中高风险患者穿合适的合身治疗鞋,并考虑指导他们监测足部皮肤温度。使用在步行过程中具有足底压力缓解作用的治疗鞋,以防止足底溃疡复发。遵循这些建议将有助于医疗保健专业人员为有足部溃疡风险的糖尿病患者提供更好的护理,增加无溃疡天数,并减轻糖尿病足病的患者和医疗保健负担。如果在有患足部溃疡风险的糖尿病患者的足部护理中实施循证预防性治疗,糖尿病足病的全球患者和经济负担可大大减轻。在这些人群中,降低溃疡风险也会降低感染、住院和下肢截肢的风险。虽然与足部溃疡的管理相比,足部溃疡的预防只引起了临床医生和研究人员的有限关注,但预防足部溃疡是预防糖尿病患者严重发病率和死亡率的最佳方法。遵循糖尿病足溃疡治疗指南中的预防治疗建议将有助于卫生保健专业人员和团队为有溃疡风险的糖尿病患者提供更好的护理 [25] 。

2) 糖尿病足溃疡的手术治疗:

对于活动性或即将发生的溃疡非手术治疗失败的患者,应考虑手术干预;应避免使用神经减压手术。为高危患者提供综合足部护理,预防溃疡复发。糖尿病足的发病机制涉及多种机制,治疗涉及足踝外科、血管外科、内分泌科、感染控制科。治疗需要多学科诊断和治疗。清创术是治疗糖尿病足溃疡的基础,在此过程中应保持正常的解剖结构。真空密封引流(Vacuum Sealing Draina, VSD)和含抗生素骨水泥(Antibiotic-Loaded Bone Cements, ALBC)在控制感染和溃疡创面愈合方面具有更多优势,可取得较好的临床效果。肌腱延长可以缓解足底应力集中引起的溃疡发生和进展问题,应用广泛,具有预防足部溃疡形成的优点。皮瓣移植可以解决伤口愈合的问题,但需要考虑移植的皮瓣是否可以具有与足底组织相同的功能 [26] 。

3) 糖尿病足溃疡的护理:

DFU治疗的标准做法包括手术清创、敷料以促进湿润的伤口环境和分泌物控制、伤口减压、血管评估、感染和血糖控制。最好由多学科协调治疗,即使采用这种综合方法,DFU结果仍有改进的空间。有研究表示几种辅助治疗以减少DFU愈合时间和截肢率。辅助治疗包括以下类别:非手术清创剂、敷料和外用药物、高压氧治疗、VSD疗法、脱细胞生物制品、创面外用人表皮生长因子、能量基础疗法和全身疗法 [27] 。由于多数DM患者均在糖尿病并发症发生时,即DFU时才会选择住院治疗,因此不同的患者情况不同,创面的严重程度及血糖波动范围不一致,对临床治疗增加了难度。但对于已出现DFU创面的患者来说,住院初期由于感染的存在,几乎都要进行长期的换药及扩创术。在创面换药及伤口处理时,为了促进创面愈合,多数可使用人表皮生长因子凝胶等外用药物,那么根据近年的研究,是否可将MCSs-外泌体作为治疗药物还是有待考证。

3. 外泌体水凝胶作为治疗DFU的展望

由于慢性病发病率的增加和人口老龄化,迫切需要开发改进的先进伤口敷料。水凝胶的整体特性,如优异的生物相容性、生物降解性、良好的保水能力、可调功能、在伤口表面提供冷却效果的能力以及吸收过量渗出物的能力,使其成为加速伤口愈合的合适敷料。水凝胶已被广泛用作伤口敷料,因为它们易于制造、功能化和修饰。水凝胶采用天然或合成聚合物配制而成,它们可以装载离散的生物活性物质,以促进伤口愈合。本文总结了DFU不同阶段的几种治疗方法,简单阐述了水凝胶,外泌体在临床治疗的优势及相关进展。笔者认为,今后可考虑将间充质干细胞来源外泌体作为创面治疗药物,配合水凝胶的上述优良特质,甚至加入一些实验有效的促进愈合药物,可制成为一种新型的治疗DFU的药物,给DFU及其他慢性创面患者带来希望,减轻疾病痛苦,缩短愈合时间,减少DFU带来的长期的沉重的负担。

NOTES

*通讯作者。

参考文献

[1] Moon, S.Y., Park, Y.B., Kim, D.S., Oh, S.K. and Kim, D.-W. (2006) Generation, Culture, and Differentiation of Human Embryonic Stem Cells for Therapeutic Applications. Molecular Therapy, 13, 5-14.
https://doi.org/10.1016/j.ymthe.2005.09.008
[2] Vining, K.H. and Mooney, D.J. (2017) Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration. Nature Reviews Molecular Cell Biology, 18, 728-742.
https://doi.org/10.1038/nrm.2017.108
[3] Kasoju, N., Wang, H., Zhang, B., George, J., Gao, S., Triffitt, J.T., Cui, Z. and Ye, H. (2017) Transcriptomics of Human Multipotent Mesenchymal Stromal Cells: Retrospective Analysis and Future Prospects. Biotechnology Advances, 35, 407-418.
https://doi.org/10.1016/j.biotechadv.2017.04.005
[4] Packer, M. (2018) The Alchemist’s Nightmare: Might Mes-enchymal Stem Cells That Are Recruited to Repair the Injured Heart Be Transformed into Fibroblasts Rather than Car-diomyocytes? Circulation, 137, 2068-2073.
https://doi.org/10.1161/CIRCULATIONAHA.117.032190
[5] Jadalannagari, S. and Aljitawi, O.S. (2015) Ecto-dermal Differentiation of Wharton’s Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Tissue Engineering Part B: Reviews, 21, 314-322.
https://doi.org/10.1089/ten.teb.2014.0404
[6] Galiè, M., Konstantinidou, G., Peroni, D., Scambi, I., Marchini, C., Lisi, V., Krampera, M., Magnani, P., Merigo, F., Montani, M., Boschi, F., Marzola, P., Orrù, R., Farace, P., Sbarbati, A. and Amici, A. (2008) Mesenchymal Stem Cells Share Molecular Signature with Mesenchymal Tumor Cells and Favor Early Tumor Growth in Syngeneic Mice. Oncogene, 27, 2542-2551.
https://doi.org/10.1038/sj.onc.1210920
[7] Yu, J.M., Jun, E.S., Bae, Y.C. and Jung, J.S. (2008) Mesenchymal Stem Cells Derived from Human Adipose Tissues Favor Tumor Cell Growth in Vivo Stem Cells and Development, 17, 463-473.
https://doi.org/10.1089/scd.2007.0181
[8] Bagley, R.G, Weber, W., Rouleau, C., Yao, M., Honma, N., Kataoka, S., Ishida, I., Roberts, B.L. and Teicher, B.A. (2009) Human Mesenchymal Stem Cells from Bone Marrow Ex-press Tumor Endothelial and Stromal Markers. International Journal of Oncology, 34, 619-627.
https://doi.org/10.3892/ijo_00000187
[9] Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, .P, Blanc-Brude, O., Jorgensen, C. and Noël, D. (2018) Mesenchymal Stem Cells-Derived Exosomes Are More Immunosuppressive than Microparticles in Inflammatory Arthritis. Theranostics, 8, 1399-1410.
https://doi.org/10.7150/thno.21072
[10] Timmers, L, Lim, S.K, Arslan, F., Armstrong, J.S., Hoefer, I.E., Doeven-dans, P.A., Piek, J.J., El Oakley, R.M., Choo, A., Lee, C.N., Pasterkamp, G. and de Kleijn, D.P. (2007) Reduction of Myocardial Infarct Size by Human Mesenchymal Stem Cell Conditioned Medium. Stem Cell Research, 1, 129-137.
https://doi.org/10.1016/j.scr.2008.02.002
[11] Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., et al. (2015) HucMSC-Exosome Mediated-Wnt4 Signaling Is Required Forcutaneous Wound Healing. Stem Cells, 33, 2158-2168.
https://doi.org/10.1002/stem.1771
[12] Shi, H., Xu, X., Zhang, B., Xu, J., Pan, Z., Gong, A., et al. (2017) 3,3’-Diindolylmethane Stimulates Exosomal Wnt11 Autocrine Signaling in Human Umbilical Cord Mesenchymal Stem Cells to Enhance Wound Healing. Theranostics, 7, 1674-1688.
https://doi.org/10.7150/thno.18082
[13] Zhang, J., Guan, J., Niu, X., Hu, G., Guo, S., Li, Q., et al. (2015) Exo-somesreleased from Human Induced Pluripotent Stem Cells-Derived MSCs Facilitate Cutaneous Wound Healing by Promoting Collagen Synthesis and Angiogenesis. Journal of Translational Medicine, 13, Article No. 49.
https://doi.org/10.1186/s12967-015-0417-0
[14] Fang, S., Xu, C., Zhang, Y., Xue, C., Yang, C., Bi, H., et al. (2016) Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Dif-ferentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway during Wound Healing. Stem Cells Translational Medicine, 5, 1425-1439.
https://doi.org/10.5966/sctm.2015-0367
[15] Zhou, Y., Zhou, G., Tian, C., Jiang, W., Jin, L., Zhang, C., et al. (2016) Exosome-Mediated Small RNA Delivery for Gene Therapy. WIREs RNA, 7, 758-771.
https://doi.org/10.1002/wrna.1363
[16] Torreggiani, E., Perut, F., Roncuzzi, L., Zini, N., Baglìo, S.R. and Baldini, N. (2014) Exosomes: Novel Effectors of Human Platelet Lysateactivity. European Cells and Materials, 28, 137-151.
https://doi.org/10.22203/eCM.v028a11
[17] Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., et al. (2015) Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/β-Catenin Pathway. Stem Cells Translational Medicine, 4, 513-522.
https://doi.org/10.5966/sctm.2014-0267
[18] Zhang, B., Shi, Y., Gong, A., Pan, Z., Shi, H., Yang, H., et al. (2016) HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of Yap during Cutaneous Regeneration. Stem Cells, 34, 2485-2500.
https://doi.org/10.1002/stem.2432
[19] Leoni, G., Neumann, P.-A., Kamaly, N., Quiros, M., Nishio, H., Jones, H.R., et al. (2015) Annexin A1-Containing Extracellular Vesicles and Polymeric Nanoparticles Promote Epithelial Wound Repair. Journal of Clinical Investigation, 125, 1215-1227.
https://doi.org/10.1172/JCI76693
[20] Yao, Y., Zhang, A., Yuan, C., Chen, X. and Liu, Y. (2021) Recent Trends on Burn Wound Care: Hydrogel Dressings and Scaf-folds. Biomaterials Science, 9, 4523-4540.
https://doi.org/10.1039/D1BM00411E
[21] Prusty, K. and Swain, S.K. (2019) Chitosan-Based Nanobiocomposites for Wound-Healing Applications. In: Swain, S.K. and Jawaid, M., Eds., Nanostructured Polymer Composites for Biomedical Applications, Elsevier, Amsterdam, 295-314.
https://doi.org/10.1016/B978-0-12-816771-7.00015-6
[22] Du, J. and Wong, K.K.Y. (2019) Nanomaterials for Wound Healing: Scope and Progress. In: Cui, W. and Zhao, X., Eds., Theranostic Bionanomaterials, Elsevier, Amster-dam, 211-230.
https://doi.org/10.1016/B978-0-12-815341-3.00009-2
[23] Asadi, N., Pazoki-Toroudi, H., Del Bakhshayesh, A.R., Akbarzadeh, A., Davaran, S. and Annabi, N. (2021) Multifunctional Hydrogels for Wound Healing: Special Focus on Biomacromolecular Based Hydrogels. International Journal of Biological Macromolecules, 170, 728-750.
https://doi.org/10.1016/j.ijbiomac.2020.12.202
[24] Rodrigues, M., Kosaric, N., Bonham, C.A. and Gurtner, G.C. (2019) Wound Healing: A Cellular Perspective. Physiological Reviews, 99, 665-706.
https://doi.org/10.1152/physrev.00067.2017
[25] Bus, S.A., Lavery, L.A., Monteiro-Soares, M., Rasmussen, A., Raspovic, A., Sacco, I.C.N. and van Netten, J.J. (2020) Guidelines on the Prevention of Foot Ulcers in Persons with Diabetes (IWGDF 2019 Update). Diabetes/Metabolism Research and Reviews, 36, e3269.
https://doi.org/10.1002/dmrr.3269
[26] 李桥, 胡飞剑, 聂静, 祖罡, 毕大卫. 糖尿病足部溃疡外科保肢治疗进展[J]. 中国骨伤, 2020, 33(10): 986-990.
[27] Everett, E. and Mathioudakis, N. (2018) Update on Management of Di-abetic Foot Ulcers. Annals of the New York Academy of Sciences, 1411, 153-165.
https://doi.org/10.1111/nyas.13569