妊娠期高血糖患者黄斑浅层血流变化的研究
A Study of Macular Superficial Blood Flow Changes in Patients with Hyperglycemia during Pregnancy
DOI: 10.12677/ACM.2023.1351153, PDF, HTML, XML, 下载: 128  浏览: 168 
作者: 宗 辉:青岛大学医学部,山东 青岛;青岛市市立医院眼科中心,山东 青岛;于 蓝, 公慧敏*:青岛市市立医院眼科中心,山东 青岛;史娇妮:大连医科大学医学部,辽宁 大连
关键词: 光学相干断层扫描血管成像妊娠期高血糖黄斑区浅层毛细血管丛血流密度Optical Coherence Tomography Angiography Gestational Hyperglycemia Macular Superficial Capillary Plexus Blood Flow Density
摘要: 目的:采用光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)观察妊娠期高血糖(hyperglycemia in pregnancy, HIP)患者黄斑区浅层毛细血管丛(superficial capillary plexus, SCP)血流密度的变化,分析HIP视网膜生理病理改变。方法:横断面观察性临床研究。纳入妊娠组和对照组:妊娠组根据妊娠前是否患有糖尿病以及糖耐量试验血糖情况分为高血糖组(HIP组),正常血糖组。其中,高血糖组分为孕前糖尿病(pregestational diabetes mellitus, PGDM)和妊娠期糖尿病(gestational diabetes mellitus, GDM)两个小组;正常血糖组作为孕妇对照组(IP组),健康育龄期女性作为对照组(NP组)。对所有研究对象进行双眼黄斑区OCTA检查,并分析黄斑区SCP的血管长度密度(vessel length density, VLD)、血管灌注密度(vessel perfusion density, VPD)和黄斑中心凹无血管区(foveal avascular zone, FAZ)等参数。结果:本研究对象共98例183眼:HIP组48例92眼(50.27%),其中PGDM组18例34眼,GDM组30例58眼。IP组25例48眼(26.23%),NP组25例43眼(23.50%)。IP组在黄斑区内环及总体区域的SCP-VLD、SCP-VPD低于NP组,差异有统计学意义。GDM组与IP组在黄斑区SCP-VLD、SCP-VPD的差异无统计学意义。PGDM组在黄斑区SCP-VLD低于IP组差异有统计学意义,在黄斑区中心和总体区域的SCP-VPD低于IP组,差异有统计学意义;PGDM组在黄斑区中心区域的SCP-VLD、SCP-VPD低于GDM组,差异有统计学意义。PGDM组的FAZ形态指数低于NP组,差异有统计学意义。结论:妊娠期间的适应性变化包括视网膜血管系统。在妊娠和高血糖状态下,黄斑浅层血流密度降低且内环区域变化显著,PGDM患者变化更加明显。
Abstract: Objective: To observe the superficial capillary plexus (SCP) blood flow density in the macula of pa-tients with hyperglycemia in pregnancy (HIP) using optical coherence tomography angiography (OCTA). The changes of blood flow density in the superficial capillary plexus (SCP) of the macula in patients with hyperglycemia in pregnancy (HIP) were observed by OCTA to analyze the physio-pathological changes of the HIP retina. Methods: Cross-sectional observational clinical study. Preg-nancy and control groups were included: the pregnancy group was divided into a hyperglycemic group (HIP group), and a normoglycemic group according to whether they had diabetes before pregnancy and the glycemic status of the glucose tolerance test. Among them, the hyperglycemic group was divided into two groups of pregestational diabetes mellitus (PGDM) and gestational dia-betes mellitus (GDM); the normoglycemic group served as a control group for pregnant women (IP group) and healthy women of reproductive age as a control group (NP group). OCTA of the macular area was performed in both eyes and the parameters of vessel length density (VLD), vessel perfu-sion density (VPD) and foveal avascular zone (FAZ) and other parameters were analyzed in the macular SCP of all study subjects. Results: There were 98 cases and 183 eyes in this study: 48 cases and 92 eyes in the HIP group (50.27%), including 18 cases and 34 eyes in the PGDM group and 30 cases and 58 eyes in the GDM group; 25 cases and 48 eyes in the IP group (26.23%) and 25 cases and 43 eyes in the NP group (23.50%). The differences between the GDM group and the IP group in the macular area SCP-VLD and SCP-VPD were not statistically significant. the differences between the PGDM group in the macular area SCP-VLD were lower than those of the IP group, and the differ-ences in the macular area center and overall area SCP-VPD were lower than those of the IP group, and the differences were statistically significant; the PGDM group in the macular area center area SCP-VLD and SCP-VPD in the central region of the macula were lower in the PGDM group than in the GDM group, and the difference was statistically significant. The FAZ morphological index in the PGDM group was lower than in the NP group, and the difference was statistically significant. Conclu-sion: Adaptive changes during pregnancy include the retinal vascular system. In pregnancy and hyperglycemic state, the superficial macular blood flow density decreased and the inner ring region changed significantly, and the changes were more pronounced in PGDM patients.
文章引用:宗辉, 于蓝, 史娇妮, 公慧敏. 妊娠期高血糖患者黄斑浅层血流变化的研究[J]. 临床医学进展, 2023, 13(5): 8239-8247. https://doi.org/10.12677/ACM.2023.1351153

1. 引言

妊娠是一个具有多种生理适应机制的时期。糖尿病是以血糖升高为基本特征,受内外环境多因素影响的疾病,其临床表现和病理生理改变呈多维度变化和高度异质性 [1] 。妊娠期高血糖(hyperglycemia in pregnancy, HIP)包括妊娠期不同类型的糖代谢异常 [2] 。根据世界卫生组织(WHO) 2013年指南 [3] ,将HIP分为孕前糖尿病(pregestational diabetes mellitus, PGDM)和妊娠期糖尿病(gestational diabetes mellitus, GDM)。全球20岁以上HIP患病率15.8% [4] ,我国各地区患病率有差异,平均17.5% [5] 。2019年IDF世界糖尿病地图显示,GDM占HIP 83.6%,PGDM占16.4% [4] 。我国作为糖尿病大国,患病人数快速增长且发病年龄逐渐年轻化。随着生活方式的改变以及女性生育年龄推迟导致高龄产妇增加,HIP的发生率持续升高,已经成为妊娠期最常见的并发症之一,对母婴远期代谢产生诸多不利影响 [6] ,有明显的远期效应,从而给我国的医疗资源和卫生经济带来巨大的挑战和负担。HIP还会引起眼部的异常变化,例如屈光变化,角膜厚度增加,微血管瘤、硬性渗出、黄斑水肿、出血、视网膜微循环异常及视网膜脱离等 [7] [8] 。在眼部病理性改变中,大多数发生在视网膜。由于担心孕妇的安全问题,妊娠期视网膜影像学检查受到限制。

光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)是一种无创的视网膜成像技术,可以显示体内不同血管层内的血流变化,是研究毛细血管密度和血管形态变化的理想工具,并提供视网膜微血管可视化结果的定量分析 [9] [10] [11] 。OCTA技术的出现使我们可以进一步研究妊娠期妇女的眼底情况。大部分HIP患者的眼底并没有显示出临床可观察到的视网膜病变,这类患者视网膜是否具有毛细血管异常尚未得到很好的研究 [2] 。在本研究中,我们并未局限于观察视网膜异常改变,通过量化分析PGDM和GDM患者视网膜微循环系统的变化,试图以此更好地理解疾病发生发展过程中的病理生理学机制。

2. 对象和方法

2.1. 对象

选取2020年1月~2022年1月于青岛市市立医院产检并经产科确诊为HIP孕妇48例92眼,健康孕妇25例48眼,年龄相匹配的健康育龄女性25例43眼。

纳入标准:1) 无糖尿病以外的全身疾病史、无屈光不正以外的眼部疾病、无外伤及手术史;2) 孕前双眼最佳矫正视力不低于0.8且眼压正常;3) 等效球镜屈光度在−6.00 D~+6.00 D以内;

排除标准:1) 妊娠期高血压等其他并发症;2) 最佳矫正视力低于0.8;3) 等效球镜屈光度大于6 D;4) 屈光介质混浊妨碍OCTA成像。

妊娠期高血糖诊断标准:1) 妊娠前已确诊为糖尿病的患者;2) 妊娠24~28周行75 g口服葡萄糖耐量试验(OGTT) [12] :空腹、口服葡萄糖后1 h、2 h的血糖阈值分别为5.1、10.0、8.5 mmol/L,任何一个时间点血糖值达到或超过上述标准的患者。

分组:1) 健康育龄期女性作为对照组(NP组);2) 健康妊娠期孕妇作为孕妇对照组(IP组);3) 糖耐量试验超过血糖阈值标准但未达到非孕期糖尿病标准的患者为GDM组;4) 妊娠前已确诊为糖尿病的患者以及妊娠期产前检查发现血糖升高的程度已经达到非孕期糖尿病的标准的患者均为PGDM组。

本研究经医院伦理委员会批准,并经患者或其家属知情同意。

2.2. 方法

所有研究对象均进行基础的眼科检查:视力、眼压(日本TOPCON公司)、电脑验光(日本TOPCON公司)、OCTA检查(德国Carl Zeiss公司Cirrus OCTA 5000)。所有检查均进行3次测量,取平均值。OCTA测量方法:瞳孔处于生理状态下,测量黄斑区6 mm × 6 mm范围,通过使用跟踪模式获得较高的成像质量。所有扫描的结果应用自带软件(AngioPlex,软件版本10.0)进行定量分析黄斑区浅层毛细血管丛(superficial capillary plexus, SCP)血流密度的变化,包括血管长度密度(vessel length density, VLD)、血管灌注密度(vessel perfusion density, VPD)和黄斑中心凹无血管区(foveal avascular zone, FAZ)等参数。VLD、VPD各区域包括总体、中心、内环和外环;Foveal avascular zone,FAZ参数包括面积、周长和形态指数。形态指数定义为FAZ面积除以等半径圆面积的值。见图1

统计学分析:采用SPSS27.0统计学软件进行数据分析,计量资料以均数 ± 标准差表示,采用单因素方差分析(one-way analysis of variance, ANOVA),两两比较采用Dunnett’s t test进行分析。以P < 0.05为差异有统计学意义。

(A) (B) (C)A为浅层毛细血管层血管长度密度;B为浅层毛细血管层血管灌注密度;C为中心凹无血管区。

Figure 1. Schematic diagram of quantitative analysis of blood flow density in the macular region of OCTA

图1. OCTA黄斑区血流密度量化分析示意图

3. 结果

3.1. 一般情况

共98例研究对象:年龄为23~42 (32.97 ± 4.65)岁,等效球镜度数为−5.25~+2.25 (−2.92 ± 1.60) D。各组在年龄及等效球镜度差异无统计学意义(P > 0.05),IP组、GDM组和PGDM组在孕周及血糖上的差异具有统计学意义(P < 0.001)。见表1

Table 1. Comparison of basic clinical information of the study subjects

表1. 研究对象的临床基本资料比较

3.2. 血管长度密度情况

IP组在黄斑区内环及总体区域的SCP-VLD低于NP组,差异有统计学意义(P = 0.015; P = 0.043)。GDM组与IP组在黄斑区SCP-VLD、SCP-VPD的差异无统计学意义。PGDM组在黄斑区SCP-VLD低于IP组,差异有统计学意义(P < 0.001; P = 0.014; P = 0.007; P = 0.004);PGDM组在黄斑区中心区域的SCP-VLD低于GDM组,差异有统计学意义(P = 0.002)。见表2

3.3. 灌注密度情况

IP组在黄斑区内环及总体区域的SCP-VPD低于NP组,差异有统计学意义(P = 0.007, P = 0.045)。GDM组与IP组在黄斑区SCP-VLD、SCP-VPD的差异无统计学意义。PGDM组在黄斑区中心和总体区域的SCP-VPD低于IP组,差异有统计学意义(P = 0.003; P = 0.048);PGDM组在黄斑区中心区域的SCP-VLD低于GDM组,差异有统计学意义(P = 0.001)。见表2

3.4. 黄斑中心凹无血管区情况

PGDM组在FAZ形态指数的低于NP组,差异有统计学意义(P = 0.005)。见表2

Table 2. Comparison of macular blood flow parameters by OCTA between groups

表2. 各组间OCTA检查黄斑血流参数的比较

注:a:与NP组相比,P < 0.005;b:与IP组相比,P < 0.005;c:与GDM组相比,P < 0.005。

4. 讨论

妊娠期女性的血流动力学和激素水平明显改变,循环需求增加以支持发育中的胎儿,期间各系统都有独特的适应性变化,这可能会导致孕妇本身视网膜血流的变化。Lin等 [13] 研究表明妊娠中期黄斑区SCP-VLD和SCP-VPD显著降低。Hepokur等 [14] 报道了妊娠期间中心凹周围区域SCP的血流密度降低。关于黄斑区SCP血流密度的变化我们的研究与上述两项研究一致。本研究发现妊娠期女性在黄斑区内环及总体区域的SCP-VLD、SCP-VPD降低,说明妊娠期间黄斑区浅层视网膜血管的长度和直径都发生了改变,局部血流灌注减少。在妊娠期灌注增大的情况下黄斑区浅层血管血流密度降低,血流的再分布可能是视网膜毛细血管自动调节的结果,该机制有助于视网膜应对妊娠状态下的激素及血液动力学变化。在Chanwimol等 [15] 的研究中,妊娠晚期整个黄斑区域SCP-VPD显著降低,SCP-VLD无差异。但我们的研究发现妊娠期间黄斑区SCP-VLD呈现下降趋势。Kiziltunc等 [16] 报道妊娠期中心凹区域SCP-VPD差异不大、中心凹周围区域SCP-VPD显著增加,这与大多数研究结果并不一致。不同研究中的可变结果 [13] [14] [15] [16] 可能是由于检查设备的差异导致分析的区域划分不同以及年龄种族的差异等等。

视网膜毛细血管容易受到高血糖的攻击。HIP患者微血管改变与血糖严重程度以及病程密切相关 [7] [17] 。糖尿病持续时间短和血糖控制好不会引起明显的毛细血管异常,大多数HIP患者能够通过控制饮食或使用胰岛素很好地控制血糖,并且在分娩后从高血糖状态中恢复,故从眼底检查中仅发现小部分HIP患者具有可观察到的视网膜病变,而大多数患者眼底表现正常。但我们猜测短暂高血糖状态可能还会出现微循环的变化,且HIP患者妊娠期间激素和代谢变化引起的血管损伤可能不局限于妊娠期,妊娠后可以持续并导致亚临床改变,导致随后血管健康下降 [18] 。本研究我们并未局限于分析异常OCTA图像,没有显示出任何临床视网膜病变的HIP患者视网膜微循环也是观察的重点。

通过检索我们发现,应用OCTA观察HIP患者血管密度变化的研究较少,而且相关研究都是基于血管灌注密度测算方法进行评估的。在本研究中,灌注密度结合长度密度评估可能会带来新的发现与变化。我们的研究中发现灌注密度和长度密度的变化具有一致性。Liu等 [19] 报道了妊娠期及GDM患者毛细血管从浅层向深层的重新分布,这与本研究中SCP血流密度降低的结果相一致。Sugimoto等 [20] 表明GDM和PGDM患者黄斑区3 × 3 mm范围测量的FAZ面积较正常无差异。我们的研究中发现各组之间6 × 6 mm范围的FAZ面积的确差异不大,但PGDM组在FAZ形态指数低于NP组。值得关注的是在本研究中GDM组与IP组在黄斑区SCP-VLD、SCP-VPD没有明显差异,这表明短暂的高血糖状态并未对浅层血流密度造成明显改变,血流密度的变化可能需要更长的发育期。PGDM组相较IP组,在黄斑区所有区域的SCP-VLD和黄斑区中心和总体区域的SCP-VPD降低,相较GDM组,仅在黄斑区中心区域的SCP-VLD、SCP-VPD降低,这表明在长期持续的高血糖环境下,SCP血流密度进一步减少开始逐渐发生长度和直径的变化。PGDM是一种慢性疾病,妊娠又是其恶化的危险因素,导致的糖尿病性视网膜病变是缺血驱动的过程,会损伤内皮细胞并阻塞血管,血–视网膜屏障功能受到损害,增加视网膜血管的通透性,导致视网膜水肿和缺血,从而直接影响血管的直径和长度 [15] [21] 。我们还发现内环区域差异较外环区域差异更加明显,由此我们猜测血流密度从内环开始逐渐向周边发生改变。这些变化的机制可能是由于HIP患者激素和炎症因子的变化、系统适应以及视网膜的自动调节。

在妊娠期间,生长激素被胎盘生长激素取代,胎盘生长激素调节促血管生成因子的分泌,会导致妊娠期视网膜病变的进展。HIP患者的胎盘会产生VEGF等炎症因子,导致视网膜缺血缺氧损伤、血管内皮损伤等多种病理过程,均会对毛细血管的完整性造成破坏 [22] 。视网膜缺血可以继发视网膜出血、水肿、渗出乃至脱离等一系列病理改变,其本质是视网膜血管退化。

性激素能引起眼睛生理或病理变化,在多种眼部疾病的发病机制中起作用 [23] [24] 。性激素通过脉络膜视网膜受体以及其mRNA的表达对视网膜循环产生不同的影响 [25] [26] 。HIP患者血清雌激素、孕酮和肾素–血管紧张素的异常表达,上调一氧化氮水平氧化,导致氧化亚氮合成的增加、内皮素-I合成的减少,血管舒张剂释放减少有助于视网膜毛细血管扩张,降低血管阻力 [27] 。过量的性激素可以降低妊娠期间的眼压 [8] ,升高的静水压和较低的眼压使视网膜毛细血管灌注压升高、视网膜血管收缩,导致血管密度降低 [15] [19] 。性激素究竟如何影响视网膜血流密度,应通过评估妊娠激素水平与OCTA测定的血管密度之间的关系加以澄清。

循环系统在妊娠期间会发生原发性和代偿性的改变,高动态循环状态以满足母亲和胎儿增加的代谢需求:全身外周动脉收缩,静脉扩张,血管阻力降低,心输出量、心率和血浆容量增加 [28] ,从而增加不同器官的血流量 [29] [30] ,也可能导致眼部血流量增加。代偿性视网膜血管收缩的自动调节机制在高血糖患者中由于肾素–血管紧张素–醛固酮系统减少而紊乱,进而导致视网膜毛细血管扩张,影响视网膜血管系统的生理变化 [31] [32] 。

视网膜脉管系统响应各种生理刺激,不断自我调节血流。Delaey等人 [33] 记录了视网膜循环是由自动调节和局部因素控制的,没有自主神经支配。在血压变化以及局部组织内液体转移的情况下,视网膜血流可以保持相对稳定 [34] [35] ,但不同毛细血管层内血管密度的变化不一致 [36] [37] 。Zong等人 [38] 认为视网膜不同区域的血管自动调节结果不同可能是由于视网膜血管丛结构和功能的差异而受到不同的影响。没有平滑肌的视网膜毛细血管也具有正向调节血流的能力,参与视网膜血管的自我调节。其机制主要依赖于周细胞和星形胶质细胞 [39] [40] ,它们受到内皮素I,血管紧张素II,去甲肾上腺素等血管活性因子的刺激 [41] ,通过细胞收缩诱导毛细血管调节。高血糖患者微循环障碍,视网膜血管退化使自我调节能力也遭到破坏。

在目前的研究中仍存在不足,还需要进一步开展更大样本量和更长随访期的研究。对同一妊娠不同妊娠阶段的OCTA参数进行评估,可以得到更详细的结果。尽管大多数HIP患者的视网膜异常可以在婴儿分娩后恢复,但我们的研究未随访到患者产后血管密度的变化,未来的纵向研究可能会进一步了解这一复杂过程的生理学。我们没有测量孕妇的代谢状况和他们的血管活性因子水平,无微循环如何随着激素变化而变化的数据。所以我们并不能完全解释不同研究中SCP血流密度结果不一致的原因,需要进一步的分子研究完全揭示这一差异。下一步研究我们会继续补充收集这部分人群的参数指标,进一步探讨HIP视网膜循环。

综上所述,我们研究表明,妊娠期间的适应性变化包括视网膜血管系统。妊娠期视网膜病变具体进展机制尚未完全清楚,OCTA对于视网膜血流变化的显示将有助于揭示妊娠特异性视网膜病变的生理病理变化。通过观察视网膜结构完整性、是否存在微血管形态的异常及毛细血管无灌注区,可以为临床医生提供信息,更早期更准确地介入疾病的管理中,尽早控制血糖,降低妊娠并发症的发生风险,对母体和胎儿的健康具有重要意义。

NOTES

*通讯作者。

参考文献

[1] 翁建平. 糖尿病诊疗思维的变迁、实践、探索和展望[J]. 中华糖尿病杂志, 2022, 14(5): 413-415.
[2] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398.
[3] (2014) Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy: A World Health Organization Guideline. Diabetes Research and Clinical Practice, 103, 341-363.
https://doi.org/10.1016/j.diabres.2013.10.012
[4] Pouya, S., Inga, P., Paraskevi, S., et al. (2019) Global and Re-gional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabe-tes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[5] Zhu, W.W., Yang, H.X., Wei, Y.M., et al. (2015) Comparing the Diagnostic Criteria for Gestational Diabetes Mellitus of World Health Organization 2013 with 1999 in Chinese Popu-lation. Chinese Medical Journal, 128, 125-127.
https://doi.org/10.4103/0366-6999.147858
[6] 中华医学会妇产科学分会产科学组, 中华医学会围产医学分会, 中国妇幼保健协会妊娠合并糖尿病专业委员会. 妊娠期高血糖诊治指南(2022) [第一部分] [J]. 中华妇产科杂志, 2022, 57(1): 3-12.
[7] Pedro, M.F., Ana, M.F., Pedro, M., et al. (2018) Ocular Changes During Pregnancy. Re-vista Brasileira de Ginecologia e Obstetricia: Revista da Federacao Brasileira das Sociedades de Ginecologia e Obste-tricia, 40, 32-42.
[8] Khong, E.W.C., Chan, H.H.L., Watson, S.L., et al. (2021) Pregnancy and the Eye. Current Opinion in Ophthalmology, 32, 527-535.
https://doi.org/10.1097/ICU.0000000000000778
[9] Jacqueline, C., Ra-lene, S., Bingyao, T., et al. (2020) Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy. Journal of Clinical Medicine, 9, 1723.
[10] La, S.C., Carnevali, A., Marchese, A., et al. (2017) Reproducibility and Re-liability of Optical Coherence Tomography Angiography for Foveal Avascular Zone Evaluation and Measurement in Different Settings. Retina (Philadelphia, Pa.), 37, 1636-1641.
https://doi.org/10.1097/IAE.0000000000001426
[11] Rayan, A.A., Hasenin, A., Rami, D., et al. (2018) Measure-ment of Normative Foveal Avascular Zone Parameters in Healthy Adults Using Optical Coherence Tomography Angi-ography. Journal of VitreoRetinal Diseases, 2, 213-218.
https://doi.org/10.1177/2474126418778492
[12] 中华医学会妇产科学分会产科学组, 中华医学会围产医学分会妊娠合并糖尿病协作组. 妊娠合并糖尿病诊治指南(2014) [J]. 中华妇产科杂志, 2014, 49(8): 561-569.
[13] Lin, B.R., Lin, F., Su, L., et al. (2021) Relative Postpartum Retinal Vasoconstriction Detected with Optical Coherence To-mography Angiography. Translational Vision Science & Technology, 10, 40.
https://doi.org/10.1167/tvst.10.2.40
[14] Hepokur, M., Gönen, B., Hamzaoglu, K., et al. (2021) Investigation of Retinal Vascular Changes during Pregnancy Using Optical Coherence Tomography Angiography. Seminars in Oph-thalmology, 36, 19-27.
https://doi.org/10.1080/08820538.2021.1884268
[15] Chanwimol, K., Balasubramanian, S., Nassisi, M., et al. (2019) Retinal Vascular Changes during Pregnancy Detected with Optical Coherence Tomography Angiography. Inves-tigative Ophthalmology & Visual Science, 60, 2726-2732.
https://doi.org/10.1167/iovs.19-26956
[16] Kızıltunç, P.B., Varlı, B., Büyüktepe, T.Ç., et al. (2020) Ocular Vascu-lar Changes during Pregnancy: An Optical Coherence Tomography Angiography Study. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 395-401.
https://doi.org/10.1007/s00417-019-04541-6
[17] Li, L.J., Tan, K.H., Aris, I.M., et al. (2018) Retinal Vasculature and 5-Year Metabolic Syndrome among Women with Gestational Di-abetes Mellitus. Metabolism, 83, 216-224.
https://doi.org/10.1016/j.metabol.2017.10.004
[18] Yee, K.H., Tan, K.H., Aris, I.M., et al. (2019) History of Gestational Diabetes Mellitus and Postpartum Maternal Retinal Microvascular Struc-ture and Function. Diabetic Medicine: A Journal of the British Diabetic Association, 36, 784-786.
https://doi.org/10.1111/dme.13928
[19] Liu, G.D. and Wang, F. (2021) Macular Vascular Changes in Pregnant Women with Gestational Diabetes Mellitus by Optical Coherence Tomography Angiography. BMC Ophthalmology, 21, Article No. 170.
https://doi.org/10.1186/s12886-021-01927-1
[20] Sugimoto, M., Wakamatsu, Y., Miyata, R., et al. (2019) Rela-tionship between Size of the Foveal Avascular Zone and Carbohydrate Metabolic Disorders during Pregnancy. BioMed Research International, 2019, Article ID: 3261279.
https://doi.org/10.1155/2019/3261279
[21] 汪东生, 杨金奎. 糖尿病视网膜病变发病情况调查与发病机制研究的新进展[J]. 中华眼科医学杂志(电子版), 2016, 6(6): 273-282.
[22] 秦时月, 徐国旭, 张敬法. 炎症因素在糖尿病性黄斑水肿中的作用及展望[J]. 国际眼科杂志, 2022, 22(8): 1281-1287.
[23] FitzPatrick, A.M. (2022) Is Es-trogen a Missing Culprit in Thyroid Eye Disease? Sex Steroid Hormone Homeostasis Is Key to Other Fibrogenic Auto-immune Diseases—Why Not This One? Frontiers in Immunology, 13, Article ID: 898138.
https://doi.org/10.3389/fimmu.2022.898138
[24] Nuzzi, R., Scalabrin, S., Becco, A., et al. (2019) Sex Hormones and Optic Nerve Disorders: A Review. Frontiers in Neuroscience, 13, Article No. 57.
https://doi.org/10.3389/fnins.2019.00057
[25] Gupta, P.D., Johar, K., Nagpal, K., et al. (2005) Sex Hormone Re-ceptors in the Human Eye. Survey of Ophthalmology, 50, 274-284.
https://doi.org/10.1016/j.survophthal.2005.02.005
[26] Wickham, L.A., Gao, J., Toda, I., et al. (2000) Identification of Androgen, Estrogen and Progesterone Receptor mRNAs in the Eye. Acta Ophthalmologica Scandinavica, 78, 146-153.
https://doi.org/10.1034/j.1600-0420.2000.078002146.x
[27] Sato, T., Sugawara, J., Aizawa, N., et al. (2017) Lon-gitudinal Changes of Ocular Blood Flow Using Laser Speckle Flowgraphy during Normal Pregnancy. PLOS ONE, 12, e0173127.
https://doi.org/10.1371/journal.pone.0173127
[28] Carlin, A. (2008) Physiological Changes of Preg-nancy and Monitoring. Best Practice & Research Clinical Obstetrics & Gynaecology, 22, 801-823.
https://doi.org/10.1016/j.bpobgyn.2008.06.005
[29] Belfort, M.A., Tooke-Miller, C., Allen, J.C., et al. (2001) Changes in Flow Velocity, Resistance Indices, and Cerebral Perfusion Pressure in the Maternal Middle Cerebral Artery Distribution during Normal Pregnancy. Acta Obstetricia et Gynecologica Scandinavica, 80, 104-112.
https://doi.org/10.1034/j.1600-0412.2001.080002104.x
[30] Flo, K., Wilsgaard, T., Vårtun, A., et al. (2010) A Longitudinal Study of the Relationship between Maternal Cardiac Output Measured by Impedance Cardiography and Uterine Artery Blood Flow in the Second Half of Pregnancy. BJOG: An International Journal of Obstetrics and Gynae-cology, 117, 837-844.
https://doi.org/10.1111/j.1471-0528.2010.02548.x
[31] Caufriez, A., Frankenne, F., Englert, Y., et al. (1990) Pla-cental Growth Hormone as a Potential Regulator of Maternal IGF-I during Human Pregnancy. The American Journal of Physiology, 258, E1014-E1019.
https://doi.org/10.1152/ajpendo.1990.258.6.E1014
[32] Lauszus, F., Klebe, J.G., Bek, T. and Flyvbjerg, A. (2003) Increased Serum IGF-I during Pregnancy Is Associated with Progression of Diabetic Retinopathy. Diabetes, 52, 852-856.
https://doi.org/10.2337/diabetes.52.3.852
[33] Delaey, C. and Van De Voorde, J. (2000) Regulatory Mechanisms in the Retinal and Choroidal Circulation. Ophthalmic Research, 32, 249-256.
https://doi.org/10.1159/000055622
[34] Meng, L.Z., Wang, Y.W., Zhang, L., et al. (2019) Heterogeneity and Var-iability in Pressure Autoregulation of Organ Blood Flow: Lessons Learned over 100+ Years. Critical Care Medicine, 47, 436-448.
https://doi.org/10.1097/CCM.0000000000003569
[35] Sathi, D.A. (2022) Commentary: Exercise, Intraocular Pressure, and Ocular Blood Flow. Indian Journal of Ophthalmology, 70, 4234-4236.
https://doi.org/10.4103/ijo.IJO_2238_22
[36] Kornfield, T.E. and Newman, E.A. (2014) Regulation of Blood Flow in the Retinal Trilaminar Vascular Network. The Journal of Neuroscience: The Official Journal of the Society for Neuro-science, 34, 11504-11513.
https://doi.org/10.1523/JNEUROSCI.1971-14.2014
[37] Duan, A., Bedggood, P.A., Bui, B.V., et al. (2016) Evi-dence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply. PLOS ONE, 11, e0162621.
https://doi.org/10.1371/journal.pone.0162621
[38] Zong, Y., Xu, H., Yu, J., et al. (2017) Retinal Vascular Autoregulation during Phase IV of the Valsalva Maneuver: An Optical Coherence Tomography Angi-ography Study in Healthy Chinese Adults. Frontiers in Physiology, 8, Article No. 553.
https://doi.org/10.3389/fphys.2017.00553
[39] Peppiatt, C.M., Howarth, C., Mobbs, P., et al. (2006) Bidirectional Control of CNS Capillary Diameter by Pericytes. Nature, 443, 700-704.
https://doi.org/10.1038/nature05193
[40] Li, H., Bui, B.V., Cull, G., et al. (2017) Glial Cell Contribution to Basal Vessel Diameter and Pressure-Initiated Vascular Responses in Rat Retina. Investigative Ophthalmology & Visual Science, 58, 1-8.
https://doi.org/10.1167/iovs.16-20804
[41] Herman, I.M. and D’Amore, P.A. (1985) Microvascular Pericytes Contain Muscle and Nonmuscle Actins. The Journal of Cell Biology, 101, 43-52.
https://doi.org/10.1083/jcb.101.1.43