广泛期小细胞肺癌免疫治疗疗效预测
Prediction of Efficacy of Immunotherapy for Extensive Stage Small Cell Lung Cancer
DOI: 10.12677/ACM.2023.1351193, PDF, HTML, XML, 下载: 221  浏览: 319 
作者: 李斯琴高娃:内蒙古医科大学,第一临床医学院,内蒙古 呼和浩特;呼 群*:内蒙古医科大学附属医院肿瘤内科,内蒙古 呼和浩特
关键词: 小细胞肺癌免疫治疗治疗疗效生物标志物Small Cell Lung Cancer Immunotherapy Therapeutic Efficacy Biomarker
摘要: 小细胞肺癌(small cell lung cancer, SCLC)是异质性、侵袭性较强的神经内分泌肿瘤。由于SCLC恶性程度极高,极早发生远处转移,且确诊时大多已进入广泛期小细胞肺癌(extensive stage small cell lung cancer, ES-SCLC)。虽然ES-SCLC对化疗极度敏感,但其进展速度极快,故预后极差。因此,为ES-SCLC患者提供新的治疗方案尤为重要。近年来,免疫治疗已经在SCLC治疗方面取得了一些进展。免疫治疗不仅价格昂贵而且有些患者会出现较为严重的不良反应,因此寻找有效生物标记物用来评估患者免疫治疗是否获益从而减轻患者的病痛折磨及经济负担的关键。本研究针对ES-SCLC免疫治疗疗效及预测生物标志物进行综述。
Abstract: Small cell lung cancer (SCLC) is a heterogeneous and aggressive neuroendocrine tumor. Due to the extremely high degree of malignancy of SCLC, distant metastasis occurs very early, and most pa-tients have entered extensive stage small cell lung cancer (ES-SCLC) when diagnosed. Although ES-SCLC is extremely sensitive to chemotherapy, it progresses rapidly and has a poor prognosis. Therefore, it is particularly important to provide new treatment options for patients with ES-SCLC. In recent years, immunotherapy has made some progress in the treatment of SCLC. Immunotherapy is not only expensive but also causes serious adverse reactions in some patients. Therefore, the search for effective biomarkers is the key to evaluating whether patients benefit from immuno-therapy. This study reviews the efficacy and predictive biomarkers of ES-SCLC immunotherapy.
文章引用:李斯琴高娃, 呼群. 广泛期小细胞肺癌免疫治疗疗效预测[J]. 临床医学进展, 2023, 13(5): 8519-8525. https://doi.org/10.12677/ACM.2023.1351193

1. 前言

小细胞肺癌(SCLC)约占原发性支气管肺癌15%,近70%的确诊SCLC患者初诊时已处于广泛期(ES-SCLC),且具有生长速度较快、恶性程度较高、转移较早及预后较差等特点 [1] [2] 。根据国际肺癌研究协会标准“TNM”分期,SCLC可分为两个阶段:局限期小细胞肺癌(LS-SCLC)和广泛期小细胞肺癌(ES-SCLC)。其中位总生存期(median overall survival, MOS)仅约为10个月,而且5年生存率不足3% [3] [4] 。近三十年来,铂类和依托泊苷仍然是一线标准化疗药物,但缺点是极易出现耐药,从而导致疾病复发及进展迅速 [5] 。目前研究表明,免疫系统在控制肿瘤生长和进展方面起着关键作用,这一过程被称为癌症免疫监视。肿瘤可以通过诱导调节性T细胞来促进T细胞和自然杀伤(NK)细胞的功能障碍,从而逃避免疫监视 [6] 。在SCLC患者中观察到这种免疫抑制状态,这可能会影响这些患者的预后 [7] 。例如,先前存在的T细胞的炎症减少在SCLC中比在非SCLC中更常见 [8] 。免疫治疗通过逆转免疫抑制状态来发挥抗肿瘤作用,其为SCLC患者带来新希望。免疫检查点抑制剂和过继细胞疗法的临床前和临床试验预示着SCLC治疗的新时代。以Impower133 [9] 和CASPIAN [10] 两项III期临床研究率先证实了免疫检查点抑制剂联合化疗一线治疗ES-SCLC的有效性和安全性,进而使SCLC患者生存期取得了极大的改善。而细胞免疫疗法(cellular immunotherapy, CIT)、肿瘤疫苗和免疫调节剂对于肿瘤的治疗疗效方面现有研究较少,仍需进一步研究。

然而并非所有ES-SCLC患者都能从免疫联合治疗中获益,且疗效改善有限,仅使患者的MOS延长2~4个月左右,因此研究如何评估免疫治疗潜在受益是极其重要的。本文综述ES-SCLC免疫治疗疗效预测生物标志物的研究进展,从而提供提高SCLC患者免疫治疗疗效的新策略。

2. ES-SCLC一线化疗

自1980年代以来,ES-SCLC一线治疗的标准治疗一直是铂类双联化疗,联合或不联合预防性颅脑照射(Preventive cranial irradiation, PCI)。这使得疾病缓解率达70%,但无进展生存期仅为5.5个月,中位MOS不到10个月 [11] 。ES-SCLC是一种不可治愈的疾病,以铂类为基础的化疗是治疗的基石。一线联合用药时,常选择的联合铂类的药物是依托泊苷和伊立替康,即EP方案和IP方案。尽管SCLC在治疗的早期阶段对化疗具有很高的初始敏感性,但超过90%的患者最终会出现临床耐药性并因复发而死亡 [12] [13] 。目前,关于IP和EP在ES-SCLC治疗中的治疗效果和安全耐受性存在很大争议。2002年在日本进行的一项随机、多中心、III期试验(J9511)报告说,接受IP治疗的ES-SCLC患者的mOS仅为12.8个月,而接受EP治疗的患者的MOS为9.4个月(P = 0.002)。此外,IP组和EP组的1年生存率分别为58.4%和37.7%,中位无进展生存期(median progression free survival, mPFS)分别为12.8个月和9.4个月 [14] 。此外,Hermes [15] 等人研究了220名ES-SCLC患者,结果显示,接受IP的患者的MOS略高于接受EP的患者(分别为8.5月和7.1月,P = 0.04)。然而,令人惊讶的是,在随后的1项III期试验中,IP组和EP组的疗效和生存率并没有显着差异 [16] 。目前,4至6个周期的EP是临床上大多数SCLC广泛使用的标准疗法,客观缓解率为50%~80% [17] 。然而,ES-SCLC患者的中位MOS仅为9个月,只有2%的患者在5年后仍存活 [18] 。虽然SCLC通常在治疗的早期阶段对化疗方案反应良好,但90%以上的患者中会出现随后的临床耐药性和疾病复发 [12] [13] 。可能是因为存在对细胞毒性治疗相对耐药的癌症干细胞的缘故。化疗不能破坏残留的肿瘤细胞,导致SCLC复发率高,耐药率高 [19] 。化疗的原发性耐药性或获得性耐药性是肺癌患者预后不良的主要因素。

3. ES-SCLC免疫治疗

近几年临床应用免疫检查点抑制剂(immuno-checkpoint inhibitors, ICIs)来抗肿瘤,取得显著效果。自此给SCLC患者带来了新希望。免疫检查点可防止健康组织出现异常的自身免疫损伤 [20] ;肿瘤介导的这些检查点激活可逃避免疫应答 [21] 。细胞毒性T淋巴细胞(CTL)是抗癌免疫反应的主要力量 [22] 。在肿瘤微环境中,免疫检查点通路通常过度活跃,然后导致免疫抑制状态。免疫细胞上的免疫检查点受体,例如CTL相关蛋白4 (CTLA-4) (11)和程序性死亡1 (PD-1),当被其配体CD80/CD86和PD-L1/PD-L2分别参与时,可以传递抑制信号,维持自我耐受性并停止抗肿瘤免疫反应 [23] 。已经研发出ICIs来破坏这些相互作用,从而逆转肿瘤介导的免疫抑制,这通常可以产生持久的抗肿瘤反应 [24] 。

3.1. 一线疗法

已经有四项III期试验评估了ICIs加化疗作为ES-SCLC的一线治的有效性。CA184 [25] 156名随机患者接受化疗(依托泊苷100 mg/m2和顺铂75 mg/m2或曲线下卡铂面积5)每3周一次,持续四个周期,在第10周期和第478周期加用伊匹木单抗476 mg/kg (n = 3)或安慰剂(n = 4),然后在第5周期和第6周期单独使用伊匹木单抗或安慰剂,然后每12周维持一次伊匹木单抗或安慰剂,持续长达3年。主要终点是接受至少单剂量研究治疗的患者的总生存期。在ipilimumab加化疗组和安慰剂加化疗组10.5个月的中位随访中位随访中,与安慰剂组相比,ipilimumab的MOS没有显着改善(10.2个月vs 11.0个月;风险比[HR]为0.94,95%置信区间[CI]是0.81~1.09;P = 0.38)。ipilimumab组的中位PFS为4.4个月,安慰剂组为4.6个月(HR,0.85;95%CI,0.75~0.97;P = 0.016,未正式测试显著性)。两组ORR相同(62%),ipilimumab组的中位缓解持续时间为3.5个月,安慰剂组为4.0个月。与安慰剂加化疗组相比,伊匹木单抗联合化疗组因治疗相关不良事件(TRAEs)和治疗相关死亡而停止治疗的比率更高,而3/4级TRAE的发生率相当。

IMpower133的III期研究也招募了403名初治ES-SCLC患者,患者分为2组,接受EP或atezolizumab (一种抗PD-L1抑制剂) + EP [26] 。两个主要终点是研究者评估的意向治疗人群的无进展生存期和总生存期。结果显示,接受阿替利珠单抗 + EP (A + EP)治疗的患者的移动OS比接受EP的患者长两个月(12.3个月比10.3个月,HR为0.70;95%CI是0.54~0.91;P = 0.0096),接受A + EP的患者的中位PFS比接受EP的患者长5个月(2.4个月vs 3.0个月,HR为0.77;95%CI是0.62~0.96;P = 0.02)。在ES-SCLC的一线治疗中,在化疗中加用阿替利珠单抗比单独化疗的总生存期和无进展生存期显著延长。作为SCLC免疫治疗的首个同时显示出OS和PFS两个显著终点获益的临床研究,atezolizumab于2019年3月被FDA批准用于ES-SCLC的一线治疗。

CASPIAN 3期研究作为一项全球性、随机、开放标签和多中心临床研究,CASPIAN试验招募了初治ES-SCLC患者(n = 12),允许涉及无症状或已治疗且稳定的脑转移。患者分为三组分别接受EP,durvalummab + EP (D + EP)和durvalummab + tremelimumab + EP (D + T + EP)。与EP单药治疗相比,D + EP组的OS遥遥领先。D + EP组的中位总生存期(mOS)延长了两个月(12.9个月vs 10.5个月,HR,0.71;95%CI:0.60~0.86;P = 0.0003)。D + EP组至EP组的2年OS率为22.9% vs 13.9%,D + EP组至EP组的3年OS率为17.6% vs 5.8%。D + EP组的显著长期OS获益显示免疫治疗的长生存期。然而,D + T + EP的患者没有获得任何显著的益处(10.4个月vs 10.5个月;HR,0.81;95%CI:0.67~0.97;P = 0.02)。durvalummab联合化疗不仅疗效显著,而且安全性良好,其不良事件是可以耐受的。

与针对抗PD-L133抑制剂的CAPIAN和IMpower1试验取得的显著成果相比,KEYNOTE-604针对抗PD-1抑制剂帕博利珠单抗的研究结果并不好 [27] 。尽管帕博利珠单抗联合化疗可改善mPFS (HR为0.75;95%CI是0.61~0.91;P = 0.0023),免疫治疗未获得良好的OS获益。

3.2. 一线维持性治疗

一项II期临床试验显示,ES-SCLC患者在化疗后每3周接受一次帕博利珠单抗(200 mg)治疗 [28] ;共招募符合标准的患者45例,其MOS为9.6个月,(无进展生存期) mPFS为1.4个月,接受帕博利珠单抗并没有得到显著的生存获益。在一项III期试验评估了ICI作为对铂类化疗持续有效的ES-SCLC患者一线治疗后的维持治疗。三臂双盲CheckMate 451试验评估了纳武利尤单抗加ipilimumab 3周予以一次或纳武利尤单抗240 mg每2周单独给予与与安慰剂相比,纳武利尤单抗加伊匹木单抗的MOS没有显著改善。总体而言,在化疗中加入ICI相关的毒性增加很小,并且大多数肺部临床医生对ICI相关不良反应管理的熟悉程度支持将其作为一线ES-SCLC治疗。

4. 寻找有效生物标志物筛选对ICI有反应的SCLC患者

Impower 133和CASPIAN研究表明,接受ICIs的患者的OS只有2个月的益处,这表明相当大比例的患者不能从ICI中受益。因此,如何选择可以从免疫治疗中受益的患者至关重要。

4.1. 程序性死亡配体1 (PD-L1)

PD-L1仅在18%~32%的SCLC患者中表达,而在NSCLC患者中为60% [29] 。在CASPIAN研究的277个可观样本中,1%患者的PD-L95肿瘤比例评分(TPS)低于1%,PD-L1与生存指数之间没有相关性 [30] 。在Impower研究的137个样本中,无论选择1%还是5%作为PD-L1 TPS的阈值,与OS都没有显著相关性 [31] 。以上结果表明,PD-L1无法预测ICIs加化疗在ES-SCLC一线治疗中的疗效。

4.2. 肿瘤基因突变负荷(Tumor Mutational Burden, TMB)

一般来说,较高的TMB与较高的OS和PFS相关,SCLC是一种TMB较高的实体瘤 [32] 。在CheckMate 032试验中,研究人员对肿瘤组织进行了全外显子组测序(WES),并将这些样本分为高,中和低TMB组。结果表明,接受纳武利尤单抗或纳武利尤单抗加伊匹木单抗治疗的高TMB组的OS和PFS优于中低TMB组,提示高TMB组SCLC患者可能获得更多生存获益 [33] 。

4.3. 肿瘤浸润淋巴细胞(TIL)和T细胞发炎的(Gene-Expression Profile, GEP)

肿瘤浸润淋巴细胞(TIL)的浸润程度也是免疫治疗效果的预后指标。一些研究表明,TIL数量高的SCLC患者在免疫治疗前预后更好 [34] 。KEYNOTE-028研究中发现TIL与ORR和mPFS相关 [35] 。GEP显示,GEP可预测帕博利珠单抗治疗20种实体瘤的临床疗效 [36] 。GEP作为炎症性肿瘤微环境的炎症标志物,与TMB呈中等相关性,可独立预测患者的临床反应。GEP和PD-L1表达高或TMB的患者可以获得更多的临床益处。这些指标一起可以作为潜在的生物标志物,以确定可能从ICI中受益的患者。

4.4. 其他

辅助性T细胞(Th)是机体重要免疫调节细胞,Th1、Th2、Th17及其所分泌的细胞因子在抗肿瘤免疫、肿瘤免疫逃避等方面发挥重要作用 [37] [38] 。肺免疫预后指数(Lung immune prognostic index, LIPI)是由结合衍生的中性粒细胞/淋巴细胞比值(dNLR)和乳酸脱氢酶(LDH)组成的风险因素。已有研究表明,LIPI作为预测非小细胞肺癌、胃癌、局限其小细胞肺癌预后的生物指标 [39] [40] [41] 。然而LIPI与Th1/2/17作为预测广泛期小细胞肺癌的预测指标的研究尚为缺少,我们可以继续探索。

PD-L1和TMB似乎都不适合作为ICI在ES-SCLC一线治疗中疗效的预测因素,可能是因为SCLS是一种高度侵袭性,增殖性和不稳定的实体瘤。现有研究表明外周血结合衍生的中性粒细胞/淋巴细胞比值(dNLR)和乳酸脱氢酶(LDH)、辅助性T细胞(Th) Th1、Th2、Th17及其所分泌的细胞因子可作为预测因子,但现有的临床试验表明这些指标的预测值有限。寻求有效生物标记物来提高免疫治疗疗效是我们研究的重点。

5. 未来和前景

Caspian和Impower133的研究结果显示,ICIs具有良好的毒性特征和持久的反应,在ES-SCLC的单次治疗策略方面取得了突破,并引发了对SCLC一线治疗未来的考虑。联合治疗显示出巨大的前景,应进一步研究。双ICI治疗策略、双特异性抗体、ICIs联合化疗、放疗、靶向治疗等其他疗法,是ES-SCLC治疗的一种新模式,通过多种协同机制取得更大的治疗效果。未来的研究重点是探索SCLC的基础生物学,并确定响应SCLC中ICI的新型预测生物标志物至关重要。目前,SCLC的预后生物标志物仍不清楚,探索更敏感有效的生物标志物,科学指导,对患者进行个体化治疗仍然是我们努力的方向。希望随着ICIs治疗SCLC的临床试验的发展,更有效的治疗策略将实现ES-SCLC的治疗。目前,关于ICI联合化疗的剂量和周期尚未达成一致。已有研究表明,联合治疗的临床疗效可能受到剂量、用药频率、周期以及化疗和ICIs顺序的影响,这应该是未来联合治疗研究的重点。

6. 小结

总之,ICI联合化疗(包括度伐利尤单抗或阿替利珠单抗加铂–依托泊苷)已被批准作为ES-SCLC一线治疗的标准治疗策略。ASTRUM-005试验的有利OS益处有望使Serplulimab成为ES-SCLC一线治疗的首个PD-1药物。因此,ICI在有限期SCLC (LS-SCLC)中的作用备受期待。相信随着我们对SCLC免疫微环境的免疫系统复杂机制和分子特征的了解,精准免疫治疗将有助于克服SCLC的治疗瓶颈,提高SCLC患者的生存率。

参考文献

[1] Zhang, W., Girard, L., Zhang, Y.A., et al. (2018) Small Cell Lung Cancer Tumors and Preclinical Models Display Het-erogeneity of Neuroendocrine Phenotypes. Translational Lung Cancer Research, 7, 32-49.
https://doi.org/10.21037/tlcr.2018.02.02
[2] Guo, H., Li, L. and Cui, J. (2020) Advances and Challenges in Im-munotherapy of Small Cell Lung Cancer. Chinese Journal of Cancer Research, 32, 115-128.
https://doi.org/10.21147/j.issn.1000-9604.2020.01.13
[3] 徐瑜, 白莉. 广泛期小细胞肺癌免疫治疗新理念[J]. 中华肺部疾病杂志(电子版), 2021, 14(4): 407-411.
[4] Mathieu, L., Shah, S., Pai-Scherf, L., et al. (2021) FDA Ap-proval Summary: Atezolizumab and Durvalumab in Combination with Platinum-Based Chemotherapy in Extensive Stage Small Cell Lung Cancer. Oncologist, 26, 433-438.
https://doi.org/10.1002/onco.13752
[5] 徐张闻笛, 黄华艳, 夏立亮, 等. 广泛期小细胞肺癌免疫治疗疗效预测和增敏策略[J]. 实用肿瘤杂志, 2022, 37(6): 495-500.
https://doi.org/10.13267/j.cnki.syzlzz.2022.084
[6] Savage, P.A., Leventhal, D.S. and Malchow, S. (2014) Shaping the Repertoire of Tumor-Infiltrating Effector and Regulatory T Cells. Immunological Reviews, 259, 245-258.
https://doi.org/10.1111/imr.12166
[7] Becker, J.C., Andersen, M.H., Schrama, D. and thor Straten, P. (2013) Immune-Suppressive Properties of the Tumor Microenvironment. Cancer Immunology, Immunotherapy, 62, 1137-1148.
https://doi.org/10.1007/s00262-013-1434-6
[8] Ott, P.A., Elez, E., Hiret, S., et al. (2017) Pembrolizumab in Pa-tients with Extensive-Stage Small-Cell Lung Cancer: Results from the Phase Ib KEYNOTE-028 Study. Journal of Clini-cal Oncology, 35, 3823-3829.
https://doi.org/10.1200/JCO.2017.72.5069
[9] Liu, S.V., Reck, M., Mansfield, A.S., et al. (2021) Updated Over-all Survival and PD-L1 Subgroup Analysis of Patients with Extensive-Stage Small-Cell Lung Cancer Treated with Ate-zolizumab, Carboplatin, and Etoposide (IMpower133). Journal of Clinical Oncology, 39, 619-630.
https://doi.org/10.1200/JCO.20.01055
[10] Goldman, J.W., Dvorkin, M., et al. (2021) CASPIAN Investigators. Durvalumab, with or without Tremelimumab, plus Platinum-Etoposide versus Platinum-Etoposide Alone in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): Updated Results from a Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncology, 22, 51-65.
https://doi.org/10.1016/S1470-2045(20)30539-8
[11] Foster, N.R., Qi, Y., Shi, Q., et al. (2011) Tumor Response and Progression-Free Survival as Potential Surrogate Endpoints for Overall Survival in Extensive Stage Small-Cell Lung Cancer: Findings on the Basis of North Central Cancer Treatment Group Trials. Cancer, 117, 1262-1271.
https://doi.org/10.1002/cncr.25526
[12] Schiller, J.H., Adak, S., Cella, D., et al. (2001) Topotecan versus Observa-tion after Cisplatin plus Etoposide in Extensive-Stage Small-Cell Lung Cancer: E7593—A Phase III Trial of the Eastern Cooperative Oncology Group. Journal of Clinical Oncology, 19, 2114-2122.
https://doi.org/10.1200/JCO.2001.19.8.2114
[13] Jett, J.R., Schild, S.E., Kesler, K.A. and Kalemkerian, G.P. (2013) Treatment of Small Cell Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143, e400S-e419S.
https://doi.org/10.1378/chest.12-2363
[14] Noda, K., Nishiwaki, Y., Kawahara, M., et al. (2002) Irinotecan plus Cisplatin Compared with Etoposide plus Cisplatin for Extensive Small-Cell Lung Cancer. New England Journal of Medi-cine, 346, 85-91.
https://doi.org/10.1056/NEJMoa003034
[15] Hermes, A., Bergman, B., Bremnes, R., et al. (2008) Irinotecan plus Carboplatin versus Oral Etoposide plus Carboplatin in Extensive Small-Cell Lung Cancer: A Randomized Phase III Trial. Journal of Clinical Oncology, 26, 4261-4267.
https://doi.org/10.1200/JCO.2007.15.7545
[16] Zatloukal, P., Cardenal, F., Szczesna, A., et al. (2010) A Multicen-ter International Randomized Phase III Study Comparing Cisplatin in Combination with Irinotecan or Etoposide in Pre-viously Untreated Small-Cell Lung Cancer Patients with Extensive Disease. Annals of Oncology, 21, 1810-1816.
https://doi.org/10.1093/annonc/mdq036
[17] Rossi, A., Di Maio, M., Chiodini, P., et al. (2012) Carboplatin- or Cisplatin-Based Chemotherapy in First-Line Treatment of Small-Cell Lung Cancer: The COCIS Meta-Analysis of Indi-vidual Patient Data. Journal of Clinical Oncology, 30, 1692-1698.
https://doi.org/10.1200/JCO.2011.40.4905
[18] Ogino, H., Hanibuchi, M., Kakiuchi, S., et al. (2016) Analysis of the Prognostic Factors of Extensive Disease Small-Cell Lung Cancer Patients in Tokushima University Hospital. The Journal of Medical Investigation, 63, 286-293.
https://doi.org/10.2152/jmi.63.286
[19] Goldie, J.H. and Coldman, A.J. (1979) A Mathematic Model for Relating the Drug Sensitivity of Tumors to Their Spontaneous Mutation Rate. Cancer Treatment Reports, 63, 1727-1733.
[20] Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Re-views Cancer, 12, 252-264.
https://doi.org/10.1038/nrc3239
[21] Harvey, R.D. (2014) Immunologic and Clinical Effects of Targeting PD-1 in Lung Cancer. Clinical Pharmacology & Therapeutics, 96, 214-223.
https://doi.org/10.1038/clpt.2014.74
[22] Oh, D.Y. and Fong, L. (2021) Cytotoxic CD4+ T Cells in Cancer: Ex-panding the Immune Effector Toolbox. Immunity, 54, 2701-2711.
https://doi.org/10.1016/j.immuni.2021.11.015
[23] Haanen, J.B.A.G. and Robert, C. (2015) Immune Checkpoint Inhibitors. In: Michielin, O. and Coukos, G., Eds., Immuno-Oncology. Progress in Tumor Research, Vol. 42, Karger Publishers, Basel, 55-66.
https://doi.org/10.1159/000437178
[24] Ahn, M.J. (2019) Discussion: One Step Further toward Filling the Gap. IASLC World Conference on Lung Cancer, Barcelona, 7-10 September 2019.
[25] Reck, M., Luft, A., Szczesna, A., et al. (2016) Phase III Randomized Trial of Ipilimumab plus Etoposide and Platinum versus Placebo plus Etoposide and Platinum in Extensive-Stage Small-Cell Lung Cancer. Journal of Clinical Oncology, 34, 3740-3748.
https://doi.org/10.1200/JCO.2016.67.6601
[26] Horn, L., Mansfield, A.S., Szczęsna, A., et al. (2018) First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. New England Journal of Medicine, 379, 2220-2229.
https://doi.org/10.1056/NEJMoa1809064
[27] Rudin, C.M., Awad, M.M., Navarro, A., et al. (2020) Pembroli-zumab or Placebo plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Ran-domized, Double-Blind, Phase III KEYNOTE-604 Study. Journal of Clinical Oncology, 38, 2369-2379.
https://doi.org/10.1200/JCO.20.00793
[28] Gadgeel, S.M., Pennell, N.A., Fidler, M.J., et al. (2018) Phase II Study of Maintenance Pembrolizumab in Patients with Extensive-Stage Small Cell Lung Cancer (SCLC). Journal of Thoracic Oncology, 13, 1393-1399.
https://doi.org/10.1016/j.jtho.2018.05.002
[29] Morgensztern, D., Besse, B., Greillier, L., et al. (2019) Efficacy and Safety of Rovalpituzumab Tesirine in Third-Line and Beyond Patients with DLL3-Expressing, Relapsed/Refractory Small-Cell Lung Cancer: Results from the Phase II TRINITY Study. Clinical Cancer Research, 25, 6958-6966.
https://doi.org/10.1158/1078-0432.CCR-19-1133
[30] Paz-Ares, L., Dvorkin, M., Chen, Y., et al. (2019) Durval-umab plus Platinum-Etoposide versus Platinum-Etoposide in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet, 394, 1929-1939.
https://doi.org/10.1016/S0140-6736(19)32222-6
[31] Reck, M., Mok, T.S.K., Mansfield, A., et al. (2022) Brief Report: Exploratory Analysis of Maintenance Therapy in Patients with Extensive-Stage SCLC Treated First Line with Atezolizumab plus Carboplatin and Etoposide. Journal of Thoracic Oncology, 17, 1122-1129.
https://doi.org/10.1016/j.jtho.2022.05.016
[32] Liu, X., Xing, H. and Liu, B. (2022) Current Status and Future Perspectives of Immune Checkpoint Inhibitors in Extensive-Stage Small Cell Lung Cancer. American Journal of Cancer Research, 12, 2447-2464.
[33] Antonia, S.J., López-Martin, J.A., Bendell, J., et al. (2016) Nivolumab Alone and Nivolumab plus Ipilimumab in Recurrent Small-Cell Lung Cancer (CheckMate 032): A Multicentre, Open-Label, Phase 1/2 Trial. The Lancet Oncology, 17, e270.
https://doi.org/10.1016/S1470-2045(16)30098-5
[34] Iams, W.T., Shi-uan, E., Meador, C.B., et al. (2019) Improved Prognosis and Increased Tumor-Infiltrating Lymphocytes in Patients Who Have SCLC with Neurologic Paraneoplastic Syndromes. Journal of Thoracic Oncology, 14, 1970-1981.
https://doi.org/10.1016/j.jtho.2019.05.042
[35] Chung, H.C., Piha-Paul, S.A., et al. (2020) Pembrolizumab after Two or More Lines of Previous Therapy in Patients with Recurrent or Metastatic SCLC: Results from the KEYNOTE-028 and KEYNOTE-158 Studies. Journal of Thoracic Oncology, 15, 618-627.
https://doi.org/10.1016/j.jtho.2019.12.109
[36] Ott, P.A., Bang, Y.-J., Piha-Paul, S.A., et al. (2019) T-Cell–Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Pre-dict Efficacy in Patients Treated with Pembrolizumab across 20 Cancers: KEYNOTE-028. Journal of Clinical Oncology, 37, 318-327.
https://doi.org/10.1200/JCO.2018.78.2276
[37] 庞连胜, 赵万春. 外周血淋巴细胞免疫表型检验在恶性肿瘤患者细胞免疫功能评价中的应用价值[J]. 国际免疫学杂志, 2019, 42(3): 280-284.
[38] 王玲, 邱志敏, 傅颖媛. DC-CIK细胞免疫治疗恶性肿瘤的研究进展[J]. 实用癌症杂志, 2017, 32(2): 345-348.
[39] Garon, E.B., Rizvi, N.A., Hui, R., et al. (2015) Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. New England Journal of Medicine, 372, 2018-2028.
https://doi.org/10.1056/NEJMoa1501824
[40] 侯柏村, 刘婷婷, 李涛, 胡毅. LIPI评分与晚期胃癌患者免疫检查点抑制剂治疗疗效及预后的关系[J]. 解放军医学院学报, 2020, 41(5): 436-439+445.
[41] Sun, B., Hou, Q., Liang, Y., et al. (2022) Prognostic Ability of Lung Immune Prognostic Index in Limited-Stage Small Cell Lung Cancer. BMC Cancer, 22, Article No. 1233.
https://doi.org/10.1186/s12885-022-10351-7