脂质代谢在Th17细胞分化中的参与和调节作用
The Role and Regulation of Lipid Metabolism in Th17 Cell Differentiation
DOI: 10.12677/PI.2023.123031, PDF, HTML, XML, 下载: 248  浏览: 399 
作者: 徐丹蕾, 戴 岳*:中国药科大学中药学院,江苏 南京
关键词: 脂质代谢Th17细胞分化自身免疫性疾病Lipid Metabolism Th17 Cells Differentiation Autoimmune Diseases
摘要: 脂质,如脂肪酸、胆固醇、磷脂和甘油三酯等,在生物体内扮演着至关重要的角色,是细胞膜的重要构成成分,同时参与信号传导和能量供给。脂质代谢是Th17细胞的重要代谢方式之一,脂质合成有利于Th17细胞分化,而调控脂质代谢可控制Th17细胞的命运与功能。通过靶向脂质代谢抑制Th17细胞分化具有改善多种自身免疫性疾病的潜力。本文综述脂肪酸、胆固醇、磷脂和甘油三酯代谢在调节Th17细胞分化中的参与和重要性。
Abstract: Lipids, including fatty acids, cholesterol, phospholipid and triglycerides, play a vital role in living organisms, which are not only important components of cell membranes, but also participate in signal transduction and energy supply. Lipid metabolism is one of the important metabolic modes of Th17 cells, lipid synthesis is conducive to Th17 cell differentiation, and regulation of lipid metabolism can control the fate and function of Th17 cells. Inhibition of Th17 cell differentiation by targeting lipid metabolism has the potential to ameliorate several autoimmune diseases. This paper summarizes the role and importance of fatty acid, cholesterol, phospholipid and triglyceride metabolism in regulating Th17 cell differentiation.
文章引用:徐丹蕾, 戴岳. 脂质代谢在Th17细胞分化中的参与和调节作用[J]. 药物资讯, 2023, 12(3): 248-254. https://doi.org/10.12677/PI.2023.123031

1. 引言

Th17细胞是一种特殊的CD4+ T亚群,它能够分泌多种细胞因子,如IL-17A、IL-17F和IL-21等,以此有效地抵抗病原体的侵袭,清除病原菌,发挥抗感染的作用,并且可以介导多种免疫性疾病的发生发展 [1] 。与健康人群相比,炎症性肠病和银屑病患者病变组织中Th17细胞数目增多,如银屑病患者病变皮肤中的Th17细胞数目升高了约3倍 [2] [3] 。靶向Th17细胞产生的IL-17在多种自身免疫性疾病中展现出良好的临床疗效 [4] [5] 。Th17细胞分化的机制尚不完全清楚,细胞因子、转录因子和信号传导均参与其中 [6] [7] [8] 。近年来,研究发现能量代谢在Th17细胞分化过程中发挥重要的调节作用 [9] [10] [11] 。

T细胞接受刺激后会改变其能量代谢方式以满足增殖、分化以及发挥效应功能的需求 [12] 。处于静息状态的naïve T细胞依赖于氧化磷酸化,被激活后,代谢方式转变为糖酵解 [13] 。Th17细胞分化过程中葡萄糖摄取增多,糖酵解和谷氨酰胺分解增强 [9] [10] 。除此之外,脂质代谢亦发挥重要的作用 [14] [15] 。脂质主要包括脂肪酸、胆固醇、磷脂和甘油三酯,是维持细胞结构、能量供应和信号转导等各个方面所必需的。脂质代谢产生的生物中间体,可以作为信号分子,参与调节各种生理过程 [16] 。脂质代谢的改变会影响免疫细胞活化和分化,进而影响各种自身免疫性疾病的发生发展。

Th17细胞分化过程中脂肪酸合成、胆固醇合成和胆固醇摄取相关酶的基因表达增加 [14] [15] [17] ;增加的脂质合成为Th17细胞增殖所需的细胞膜提供材料,同时增加信号分子的产生。另一方面,自身免疫性疾病中脂质代谢紊乱,如患有系统性红斑狼疮的人群通常会出现明显的血脂异常 [18] 。双盲实验研究表明,膳食补充n-3多不饱和脂肪酸可改善银屑病的严重程度,现已用作银屑病的辅助治疗,接受n-3多不饱和脂肪酸治疗的银屑病患者鳞屑、红斑、受累面积和厚度改善了35%~48% [19] 。本文综述脂质代谢对Th17细胞分化的调控作用和机制,为靶向脂质代谢治疗自身免疫性疾病的药物研究提供参考。

2. 脂肪酸代谢

脂肪酸代谢分为脂肪酸合成、氧化和摄取,在调节机体免疫应答方面具有重要的作用 [20] 。正常的哺乳动物细胞主要通过外源性摄取获得脂肪酸,而Th17细胞中脂肪酸主要来源于从头合成。合成的脂肪酸可以通过调节RORγt活性调控Th17细胞分化。

2.1. 脂肪酸合成

细胞质是进行脂肪酸合成的场所,通过乙酰CoA羧化酶(ACC)和脂肪酸合成酶(FASN)合成棕榈酸或其他饱和长链脂肪酸。合成的脂肪酸可以进一步用于合成其他脂质,如磷脂、甘油三酯及胆固醇酯等。

Th17细胞可以依赖脂肪酸合成产生磷脂,增加生物膜的合成。Th17细胞分化过程中,脂肪酸合成显著上调,脂肪酸合成相关酶ATP柠檬酸裂解酶(ACLY)、ACC1和FASN的表达升高,而FASN的表达可在分化后通过再刺激进一步升高 [21] [22] [23] 。而ACLY的缺失可抑制乙酰CoA从柠檬酸盐中释放,使乙酰CoA水平降低,进而抑制Th17细胞相关细胞因子的组蛋白乙酰化,降低Th17细胞致病性 [23] 。ACC1活性的增加,使饱和脂肪酸与多不饱和脂肪酸的比例上升,增加IL-17A启动子区RORγt的转录活性,进而促进Th17细胞分化 [21] [24] 。ACC1抑制剂索拉芬A (SorA)和5-十四烷基氧基-2-糠酸(TofA)或T细胞特异性敲除ACC1则抑制Th17细胞分化,同时降低IL-17F、STAT3和IL-23R mRNA表达;由ACC1缺失引起的Th17细胞分化的抑制可通过外源性添加棕榈酸或油酸等饱和脂肪酸逆转 [11] 。此外,抑制ACC1活性使T细胞磷脂产生受损,导致生物膜合成减少,这种效应不仅减少T细胞增殖,还会阻碍细胞器的扩张 [11] 。另外,在Th17细胞分化后再刺激时给予FASN抑制剂C75,可降低IL-17的表达 [22] 。

与健康人群相比,肥胖患者的T细胞中ACC1的表达明显升高 [21] 。抑制脂肪酸合成途径可使多种自身免疫性疾病模型小鼠的疾病严重程度和发生率得到改善,如自身免疫性脑脊髓炎(EAE);另外,在葡聚糖硫酸钠(DSS)诱导的小鼠结肠炎期间给予C75可减轻小鼠疾病症状 [11] [21] [23] 。油酸和硬脂酸则加剧K14-VEGF转基因小鼠银屑病症状,增加Th17细胞在耳朵中的浸润,同时上调引流淋巴结中Th17细胞数目 [25] 。高脂饮食促进小鼠Th17细胞反应,加重EAE的进展 [21] 。

2.2. 脂肪酸氧化

脂肪酸氧化发生在线粒体中,由关键酶肉碱酰基转移酶I (CPT1)介导。与健康人群相比2型糖尿病(T2D)患者的外周血单个核细胞中CPT1A表达相对较高,敲减CPT1A或使用抑制剂依托莫司可减少Th17细胞相关细胞因子的产生,提示脂肪酸氧化在T2D中可能激活Th17细胞炎症 [26] 。未来对T2D患者的抗炎治疗可能集中于调节脂肪酸氧化。

2.3. 脂肪酸摄取

与Treg细胞不同,Th17细胞分化过程中不会主动摄取外源性脂肪酸用于获取能量维持增殖。Th17细胞更倾向于从葡萄糖合成脂肪酸,只有在内源性脂肪酸合成被抑制时才会增加脂肪酸的外部摄取,而增加外源性脂肪酸的摄取能逆转SorA或ACC1缺失引起的Th17细胞分化减少 [11] 。

3. 胆固醇代谢

胆固醇合成过程极其复杂,可分为三个阶段:首先合成甲羟戊酸,然后转化为鲨烯,最后生成胆固醇。Th17细胞分化期间胆固醇合成和摄取增强而代谢和外排被抑制 [15] 。

羟甲基戊二酰CoA (HMG-CoA)还原酶是胆固醇合成过程中的限速酶,也是他汀类药物的作用靶点。辛伐他汀通过抑制HMG-CoA还原酶活性,使合成异戊二烯的前体焦磷酸香叶基香叶酯减少,抑制蛋白香叶酰化,进而抑制Th17细胞分化 [27] 。抑制胆固醇合成酶CYP51可阻碍Th17细胞分化和相关细胞因子如IL-17A、IL-17F和IL-23R mRNA表达,该作用可被外源性添加下游产物酵母固醇逆转 [28] 。蛋白精氨酸甲基转移酶5 (PRMT5)催化精氨酸的对称二甲基化,PRMT5促进胆固醇合成酶的表达,诱导Th17细胞分化;T细胞特异性敲除PRMT5减轻EAE模型小鼠疾病症状,减少中枢神经系统T细胞浸润 [29] 。多项研究表明,他汀类药物对多种自身免疫性疾病(包括系统性红斑狼疮、多发性硬化症、类风湿性关节炎和移植物抗宿主病)表现出良好的抗炎和免疫调节作用 [30] 。

胆固醇衍生的氧化固醇,如7β, 27-二羟基胆固醇(7β, 27-OHC)和7α, 27-二羟基胆固醇(7α, 27-OHC),是已知的RORγt内源性配体,能够与RORγt的配体结合域结合,激活其转录活性,促进Th17细胞分化 [31] 。对OVA/CFA免疫模型小鼠给予7β, 27-OHC促进体内产生Th17细胞 [32] 。胆固醇-25-羟化酶(CH25H)将胆固醇转化为25-羟基胆固醇(25-OHC),后者进一步代谢为7α, 25-二羟基胆固醇(7α, 25-OHC),CH25H诱导的氧化固醇促进致脑炎的CD4+ T细胞运输到中枢神经系统,驱动EAE期间的炎症反应 [33] 。

4. 磷脂代谢

磷脂除了作为细胞膜的主要结构成分,还调节多种生理过程,包括细胞增殖、凋亡和衰老等 [34] 。甘油磷脂和鞘脂属于磷脂的两大类。研究表明,甘油磷脂和鞘脂是CD4+ T细胞分化过程中的主要指标,磷脂酰乙醇胺、磷脂酰胆碱、溶血磷脂酰胆碱、神经酰胺、鞘糖脂以及鞘磷脂在Th1、Th2、Th17和Treg细胞中水平上升 [17] 。

银屑病患者血浆中甘油磷脂代谢异常,表现为磷脂酸、溶血磷脂酰胆碱和溶血磷脂酸水平显著升高,而磷脂酰胆碱和磷脂酰肌醇水平降低 [35] 。咪喹莫特诱导的银屑病模型小鼠皮肤组织中磷脂代谢亦紊乱 [36] ,使用溶血磷脂酸局部涂抹于小鼠皮肤,会加重疾病症状,增加病变皮肤组织中Th2和Th17细胞的积累,但体外溶血磷脂酸对Th2和Th17细胞分化无明显影响 [37] 。溶血磷脂酶自分泌蛋白(ATX)介导溶血磷脂酸体内合成,ATX抑制剂能够缓解DSS诱导的结肠炎模型小鼠疾病症状,降低脾脏和肠系膜淋巴结中Th17细胞比例 [38] 。

发生β细胞自身免疫的儿童CD4+ T细胞中鞘脂途径的平均通量增加,体外敲低鞘脂合成的限速酶丝氨酸棕榈酰转移酶或葡萄糖神经酰胺合酶后,多种神经酰胺和鞘糖脂(己糖神经酰胺,二己糖神经酰胺)水平显着降低,同时降低人Th17细胞中的促炎细胞因子IL-17A和IL-17F的表达 [17] 。鞘氨醇-1-磷酸(S1P)是一种来自鞘脂代谢的多效性信号分子,鞘氨醇-1-磷酸受体1 (S1P1)以依赖于IL-6-STAT3途径的方式介导Th17细胞分化 [39] 。抑制S1P的产生能改善咪喹莫特诱导的银屑病模型小鼠的疾病症状 [40] 。Th17细胞中S1P1缺失可以缓解EAE模型小鼠疾病症状,而Treg细胞中S1P1的缺失则会加重多发性硬化模型小鼠的自身免疫反应 [41] 。

5. 甘油三酯代谢

甘油三酯是由甘油的3个羟基与3个脂肪酸分子酯化生成的甘油酯,是重要的供能和储能物质。体外研究表明,甘油三酯能够促进人CD4+ T细胞增殖,增加Th17和Th1细胞数目,上调IL-17A和IFNγ表达 [42] 。甘油三酯合成中的关键酶二酰基甘油O-酰基转移酶-1 (DGAT1)的抑制或缺失会下调Th17细胞分化和IL-17A的产生 [43] 。来自EAE模型小鼠中枢神经系统的记忆CD4+ T细胞表达相对高的DGAT1,给予DGAT1抑制剂或T细胞条件敲除DGAT1可以改善疾病症状,减少中枢神经系统炎症细胞浸润 [44] 。

6. 总结与展望

随着代谢组学的发展和应用,脂质代谢在Th17细胞分化中的作用被进一步阐明。Th17细胞分化过程中,脂质合成增强,代谢产生的中间体可进一步促进Th17细胞分化和相关疾病进展。基于脂质代谢在Th17细胞和疾病进展中的重要性,靶向Th17细胞脂质代谢途径或干预饮食有望成为预防和治疗Th17细胞介导的自身免疫性疾病的有效策略。

然而,Th17细胞为什么更倾向于耗能的脂肪酸合成而不是外源性脂肪酸摄取的问题仍然悬而未决。其次,鉴于不同代谢途径之间的相互联系和代谢与信号传导之间的串扰,同时调控多个代谢途径或同时抑制代谢途径和信号传导是否能更有效地抑制Th17细胞分化尚不清楚。虽然最近的研究已经阐明了抑制特定的代谢酶可改善各种自身免疫性疾病模型小鼠的疾病活动,但仍需要进一步的临床研究验证这些发现。因此,进一步加强Th17细胞中脂质代谢的认识,对构建靶向治疗策略具有重要的指导意义。

NOTES

*通讯作者。

参考文献

[1] Stadhouders, R., Lubberts, E. and Hendriks, R. (2018) A Cellular and Molecular View of T Helper 17 Cell Plasticity in Autoimmunity. Journal of Autoimmunity, 87, 1-15.
https://doi.org/10.1016/j.jaut.2017.12.007
[2] Kagami, S., Rizzo, H., Lee, J., et al. (2010) Circulating Th17, Th22, and Th1 Cells Are Increased in Psoriasis. Journal of Investiga-tive Dermatology, 130, 1373-1383.
https://doi.org/10.1038/jid.2009.399
[3] Atarashi, K., Tanoue, T., Ando, M., et al. (2015) Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 163, 367-380.
https://doi.org/10.1016/j.cell.2015.08.058
[4] Baeten, D., Baraliakos, X., Braun, J., et al. (2013) An-ti-Interleukin-17a Monoclonal Antibody Secukinumab in Treatment of Ankylosing Spondylitis: A Randomised, Dou-ble-Blind, Placebo-Controlled Trial. The Lancet, 382, 1705-1713.
https://doi.org/10.1016/S0140-6736(13)61134-4
[5] Reich, K., Warren, R., Lebwohl, M., et al. (2021) Bimeki-zumab versus Secukinumab in Plaque Psoriasis. The New England Journal of Medicine, 385, 142-152.
https://doi.org/10.1056/NEJMoa2102383
[6] Chang, D., Xing, Q., Su, Y., et al. (2020) The Conserved Non-Coding Sequences CNS6 and CNS9 Control Cytokine-Induced Rorc Transcription during T Helper 17 Cell Differ-entiation. Immunity, 53, 614-626.
https://doi.org/10.1016/j.immuni.2020.07.012
[7] Geng, J., Yu, S., Zhao, H., et al. (2017) The Transcriptional Coactivator TAZ Regulates Reciprocal Differentiation of TH17 Cells and Treg Cells. Nature Immunology, 18, 800-812.
https://doi.org/10.1038/ni.3748
[8] Xu, Z., Zhang, H., Li, W., et al. (2019) FAM64A Positively Regulates STAT3 Activity to Promote Th17 Differentiation and Colitis-Associated Carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 116, 10447-10452.
https://doi.org/10.1073/pnas.1814336116
[9] Kono, M. (2023) New Insights into the Metabolism of Th17 Cells. Immunological Medicine, 46, 15-24.
https://doi.org/10.1080/25785826.2022.2140503
[10] Johnson, M.O., Wolf, M.M., Madden, M.Z., et al. (2018) Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 175, 1780-1795.
https://doi.org/10.1016/j.cell.2018.10.001
[11] Berod, L., Friedrich, C., Nandan, A., et al. (2014) De Novo Fatty Acid Synthesis Controls the Fate between Regulatory T and T Helper 17 Cells. Nature Medicine, 20, 1327-1333.
https://doi.org/10.1038/nm.3704
[12] Peng, H., Lucavs, J., Ballard, D., et al. (2021) Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Frontiers in Immunology, 12, Article 652687.
https://doi.org/10.3389/fimmu.2021.652687
[13] Gaddis, E., Padgett, E., Wu, R., et al. (2021) Atherosclerosis Im-pairs Naive CD4 T-Cell Responses via Disruption of Glycolysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 2387-2398.
https://doi.org/10.1161/ATVBAHA.120.314189
[14] Lochner, M., Berod, L. and Sparwasser, T. (2015) Fatty Acid Metabolism in the Regulation of T Cell Function. Trends in Immunology, 36, 81-91.
https://doi.org/10.1016/j.it.2014.12.005
[15] Hu, X., Wang, Y., Hao, L., et al. (2015) Sterol Metabolism Controls TH17 Differentiation by Generating Endogenous RORγ Agonists. Nature Chemical Biology, 11, 141-147.
https://doi.org/10.1038/nchembio.1714
[16] Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699.
https://doi.org/10.1016/j.cmet.2022.09.023
[17] Sen, P., Andrabi, S., Buchacher, T., et al. (2021) Quantitative Ge-nome-Scale Metabolic Modeling of Human CD4+ T Cell Differentiation Reveals Subset-Specific Regulation of Glyco-sphingolipid Pathways. Cell Reports, 37, Article ID: 109973.
https://doi.org/10.1016/j.celrep.2021.109973
[18] Sun, W., Li, P., Cai, J., et al. (2022) Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Frontiers in Immunology, 13, Article 860586.
https://doi.org/10.3389/fimmu.2022.860586
[19] Son, S.-E., Koh, J.-M. and Im, D.-S. (2022) Free Fatty Acid Receptor 4 (FFA4) Activation Ameliorates Imiquimod-Induced Psoriasis in Mice. International Journal of Molec-ular Sciences, 23, Article No. 4482.
https://doi.org/10.3390/ijms23094482
[20] Zhou, X., Zhu, X. and Zeng, H. (2023) Fatty Acid Metabolism in Adaptive Immunity. FEBS Journal, 290, 584-599.
https://doi.org/10.1111/febs.16296
[21] Endo, Y., Asou, H., Matsugae, N., et al. (2015) Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1. Cell Reports, 12, 1042-1055.
https://doi.org/10.1016/j.celrep.2015.07.014
[22] Young, K., Flaherty, S., Woodman, K.M., Sharma-Walia, N. and Reynolds, J.M. (2017) Fatty Acid Synthase Regulates the Pathogenicity of Th17 Cells. Journal of Leukocyte Biology, 102, 1229-1235.
https://doi.org/10.1189/jlb.3AB0417-159RR
[23] Hochrein, S.M., Wu, H., Eckstein, M., et al. (2022) The Glucose Transporter GLUT3 Controls T Helper 17 Cell Responses through Glycolytic-Epigenetic Reprogramming. Cell Metabo-lism, 34, 516-532.
https://doi.org/10.1016/j.cmet.2022.02.015
[24] Machacek, M., Saunders, H., Zhang, Z., et al. (2019) Elevated O-GlcNAcylation Enhances Pro-Inflammatory Th17 Function by Altering the Intracellular Lipid Microenvironment. Journal of Biological Chemistry, 294, 8973-8990.
https://doi.org/10.1074/jbc.RA119.008373
[25] Zhao, Q., Yu, J., Zhou, H., et al. (2023) Intestinal Dysbiosis Ex-acerbates the Pathogenesis of Psoriasis-Like Phenotype through Changes in Fatty Acid Metabolism. Signal Transduction and Targeted Therapy, 8, Article No. 40.
https://doi.org/10.1038/s41392-022-01219-0
[26] Nicholas, D.A., Proctor, E.A., Agrawal, M., et al. (2019) Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes. Cell Metabolism, 30, 447-461.
https://doi.org/10.1016/j.cmet.2019.07.004
[27] Kagami, S.-I., Owada, T., Kanari, H., et al. (2009) Protein Geranylgeranylation Regulates the Balance between Th17 Cells and Foxp3+ Regulatory T Cells. International Immunol-ogy, 21, 679-689.
https://doi.org/10.1093/intimm/dxp037
[28] Wang, C., Yosef, N., Gaublomme, J., et al. (2015) CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell, 163, 1413-1427.
https://doi.org/10.1016/j.cell.2015.10.068
[29] Webb, L., Sengupta, S., Edell, C., et al. (2020) Protein Arginine Methyltransferase 5 Promotes Cholesterol Biosynthesis–Mediated Th17 Responses and Autoimmunity. Journal of Clin-ical Investigation, 130, 1683-1698.
https://doi.org/10.1172/JCI131254
[30] Dehnavi, S., Sohrabi, N., Sadeghi, M., et al. (2020) Statins and Autoim-munity: State-of-the-Art. Pharmacology & Therapeutics, 214, Article ID: 107614.
https://doi.org/10.1016/j.pharmthera.2020.107614
[31] Santori, F.R., Huang, P., van de Pavert, S.A., et al. (2015) Identification of Natural RORγ Ligands That Regulate the Development of Lymphoid Cells. Cell Metabolism, 21, 286-298.
https://doi.org/10.1016/j.cmet.2015.01.004
[32] Soroosh, P., Wu, J., Xue, X., et al. (2014) Oxysterols Are Agonist Ligands of RORγt and Drive Th17 Cell Differentiation. Proceedings of the National Academy of Sciences of the United States of America, 111, 12163-12168.
https://doi.org/10.1073/pnas.1322807111
[33] Chalmin, F., Rochemont, V., Lippens, C., et al. (2015) Oxysterols Regulate Encephalitogenic CD4+ T Cell Trafficking during Central Nervous System Autoimmunity. Journal of Autoim-munity, 56, 45-55.
https://doi.org/10.1016/j.jaut.2014.10.001
[34] Fu, Y., Zou, T., Shen, X., et al. (2020) Lipid Metabolism in Cancer Progression and Therapeutic Strategies. MedComm, 2, 27-59.
https://doi.org/10.1002/mco2.27
[35] Kong, Y., Jiang, J., Huang, Y., et al. (2023) Narciclasine Inhibits Phospholipase A2 and Regulates Phospholipid Metabolism to Ameliorate Psoriasis-Like Dermatitis. Frontiers in Immunology, 13, Article 1094375.
https://doi.org/10.3389/fimmu.2022.1094375
[36] Zeng, C., Wen, B., Hou, G., et al. (2017) Lipidomics Profiling Reveals the Role of Glycerophospholipid Metabolism in psoriasis. Gigascience, 6, 1-11.
https://doi.org/10.1093/gigascience/gix087
[37] Lei, L., Yan, B., Liu, P., et al. (2021) Lysophosphatidic Acid Me-diates the Pathogenesis of Psoriasis by Activating Keratinocytes through LPAR5. Signal Transduction and Targeted Therapy, 6, Article No. 19.
https://doi.org/10.1038/s41392-020-00379-1
[38] Dong, Y., Duan, X., Liu, Y., et al. (2019) Autotax-in-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice. Inflammation, 42, 1530-1541.
https://doi.org/10.1007/s10753-019-01015-z
[39] Garris, C.S., Wu, L., Acharya, S., et al. (2013) Defective Sphin-gosine 1-Phosphate Receptor 1 (S1P1) Phosphorylation Exacerbates TH17-Mediated Autoimmune Neuroinflammation. Nature Immunology, 14, 1166-1172.
https://doi.org/10.1038/ni.2730
[40] Shin, S.-H., Cho, K.-A., Hahn, S., et al. (2019) Inhibiting Sphingosine Kinase 2 Derived-Sphingosine-1-Phosphate Ameliorates Psoriasis-Like Skin Disease via Blocking Th17 Differentiation of Na-ïve CD4 T Lymphocytes in Mice. Acta Dermato-Venereologica, 99, 594-601.
https://doi.org/10.2340/00015555-3160
[41] Eken, A., Duhen, R., Singh, A.K., et al. (2017) S1P1 Deletion Dif-ferentially Affects TH17 and Regulatory T Cells. Scientific Reports, 7, Article No. 12905.
https://doi.org/10.1038/s41598-017-13376-2
[42] Tan, S., Feng, X., Liu, Z., et al. (2022) The Pro-Inflammatory Effect of Triglyceride on Human CD4+ T Cells and Experimental Autoimmune Uveitis. Clinical Immunology, 240, Arti-cle ID: 109056.
https://doi.org/10.1016/j.clim.2022.109056
[43] Chen, X., Jaiswal, A., Costliow, Z., et al. (2022) pH Sensing Controls Tissue Inflammation by Modulating Cellular Metabolism and Endo-Lysosomal Function of Immune Cells. Na-ture Immunology, 23, 1063-1075.
https://doi.org/10.1038/s41590-022-01231-0
[44] Graham, K., Werner, B., Moyer, K., et al. (2019) DGAT1 Inhib-its Retinol-Dependent Regulatory T Cell Formation and Mediates Autoimmune Encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 116, 3126-3135.
https://doi.org/10.1073/pnas.1817669116