老年慢阻肺合并肌少症的相关研究进展
Research Progress of Chronic Obstructive Pulmonary Disease Complicated with Sarcopenia in the Elderly
DOI: 10.12677/ACM.2023.1361252, PDF, HTML, XML, 下载: 208  浏览: 312 
作者: 冀玲玉*:青海大学临床医学院,青海 西宁;赵成玉:青海大学附属医院老年医学科,青海 西宁
关键词: 老年慢阻肺肌少症研究进展COPD in Old Age Sarcopenia Research Progress
摘要: 慢性阻塞性肺病(COPD)是一种复杂、异质和多组分的疾病,除肺功能异常外,还常并发其他器官疾病,在COPD的多种并发症中,肌肉减少症是常见疾病之一,肌肉减少症是一种以肌肉质量、力量和健康减少为特征的综合征,其可以影响患者的死亡率和住院率。近年来,引起COPD患者肌肉功能障碍的新机制、预测其发生的生物标志物、相关危险因素及治疗被广泛研究,本文就老年COPD合并肌肉减少症的相关研究进展进行综述。
Abstract: Chronic obstructive pulmonary disease (COPD) is a complex, heterogeneous and multicomponent disease, in addition to lung function abnormalities, also often complicated with other organ diseases; among the multiple complications of COPD, sarcopenia is one of the common diseases. Sarcopenia is a syndrome characterized by reduced muscle mass, strength and health. It can affect patient mor-tality and hospitalization rates. In recent years, the new mechanism of muscle dysfunction in pa-tients with COPD, biomarkers to predict its occurrence, related risk factors and treatment have been widely studied. This article reviews the research progress of COPD combined with sarcopenia in the elderly.
文章引用:冀玲玉, 赵成玉. 老年慢阻肺合并肌少症的相关研究进展[J]. 临床医学进展, 2023, 13(6): 8945-8952. https://doi.org/10.12677/ACM.2023.1361252

1. 近年来,已经研究了COPD与共病肌肉减少症之间的潜在机制

1.1. 帕金介导的线粒体自噬不足引起肌肉减少

香烟烟雾(CS)暴露是COPD的主要原因,可诱发线粒体损伤,这与肌肉减少症发病机制有关。线粒体自噬是一种机制,通过这种机制,功能失调的线粒体被选择性地递送以进行溶酶体降解,其中PINK1-Parkin (一种E3-泛素连接酶) (帕金介导的线粒体自噬)途径在其中起着至关重要的作用 [1] [2] 。帕金介导的线粒体底物泛素化是SQSTM1/p62 (一种衔接蛋白)识别的关键步骤,以选择性隔离自噬体受损的线粒体。有针对帕金介导的线粒体自噬发生在COPD发病机制期间CS诱导的细胞衰老的调节中的研究 [3] [4] 。帕金过度表达会导致肌肉肥大,而帕金敲除会导致肌肉萎缩 [5] [6] 。帕金介导的线粒体自噬通过调节线粒体ROS的产生在调节肌管萎缩中起关键作用。线粒体ROS增加通过激活MuRF-1介导的MHC降解引起肌管萎缩。帕金介导的线粒体自噬不足引起的线粒体ROS增加通过MuRF-1表达参与了COPD相关肌肉减少症的发展 [7] 。

1.2. 表型异质性和基因多态性可导致缺氧环境下肌少症发生

COPD中肌肉减少症的严重程度是可变的。有一项针对遗传因素与COPD肌少症表型和加速衰老的变异性相关性研究,为鉴定COPD中与肌肉减少症相关的基因变异[单核苷酸多态性(SNPs)],对英国32,426名(NHW) COPD患者进行了无脂肪质量指数(FFMI)的全基因组关联研究(GWAS),研究表明脂肪量和肥胖相关(FTO)基因中的几个snp与肌肉减少症相关,FTO是第一个在2型糖尿病全基因组关联研究(GWAS)中被确定为成人和儿童肥胖的基因位点之一 [8] ,有研究表明FTO是骨骼肌细胞肌源性分化和线粒体生物发生所必需的FTO基因的蛋白产物调节rna的外转录组修饰 [9] 。AC090771.2基因被认为是lncRNA,其可能具有重塑染色质和基因组结构、稳定RNA和调控转录等多种活性。FTO和AC090771.2基因的遗传变异与两组COPD患者的肌肉质量损失之间存在很强的联系,基因变异导致了COPD患者肌肉减少症严重程度的异质性。FTO的抑制降低了肌管直径,并导致有丝分裂后衰老,在缺氧时更严重,可能导致慢性阻塞性肺病中肌肉减少的发生 [10] 。

1.3. 肠道肌肉轴(肠道菌群)

肌肉减少症,部分是由肌肉合成代谢阻力介导的。有观察表明肠肌轴可以对抗合成代谢抵抗和降低肌肉减少症风险。人体肠道微生物群的结构和多样性在生理、代谢和免疫功能中起着关键的调节作用,从而影响人类健康和疾病风险 [11] 。有针对肌少症–肠道肌肉轴的研究表明,在啮齿动物的研究中,肠道微生物群可能与肌肉减少症有关。老年肌肉减少症大鼠与健康成年大鼠相比,Sutterella与Barneseilla比例更高,相应的炎症和免疫特征改变,三头肌和腓肠肌大小下降。肠道菌群可能与肌肉减少症有关的假设也在人类中进行了检验。与健康对照组相比,肌肉减少症患者中乳杆菌丰度更高 [12] ,与健康的年轻成人对照相比,老年患者组的厚壁菌门/杆菌门比例更高,总体微生物丰富度更低。研究表明肠道菌群和肌肉萎缩之间存在联系,从而支持肠道肌肉轴假说,在一定程度上解释了衰老过程中骨骼肌功能障碍的原因 [13] 。

1.4. 肌质网应激升高和肌核紊乱

研究了慢性阻塞性肺病患者肌浆网(SR)蛋白稳态(一种称为SR应激的病症)和肌核紊乱与肌肉减少症的慢性失调的关联。SR应激的标志物及其下游后果(包括细胞凋亡和炎症)在COPD患者中上调。最大SR Ca (含钙)与健康对照组相比,晚期COPD患者的ATP酶(SERCA)活性显著降低。晚期COPD患者的单肌纤维直径和每个肌核的细胞质结构域明显小于健康对照组。与健康对照组相比,COPD患者的肌核组织破坏增加。SR功能障碍的这些变化伴随着全球氧化应激水平的升高,包括脂质过氧化和线粒体活性氧(ROS)的产生。有数据表明,晚期COPD的肌肉无力部分与SR蛋白和钙稳态的破坏及其病理后果有关 [14] 。

2. 标志物:研究发现衰老相关的标志物参与COPD与肌少症的发生

2.1. 抗衰老激素α-klotho

在COPD骨骼肌损伤的背景下有一种抗衰老激素α-klotho (简称klotho)。Klotho作为成纤维细胞生长因子23的辅助受体,可激活全身各种成纤维细胞生长因子受体 [15] ,并且是多种组织中正常线粒体功能所必需的,包括骨骼肌 [16] 。研究表明,klotho与骨骼肌的正常衰老有关,klotho敲除小鼠表现出过早衰老的特征,包括肌肉力量减少和疲劳性增加 [17] 。对klotho在COPD患者肺和骨骼肌中的作用进行了研究,结果发现COPD吸烟者klotho水平明显低于非吸烟者和非COPD吸烟者。klotho也是骨骼肌中鸢尾素释放减少的一个可能因素,鸢尾素的破坏导致COPD能量稳态异常。综上所述,缺乏a-klotho可引起COPD患者骨骼肌代谢紊乱,血清α-klotho似乎可以预测股四头肌肌肉力量 [18] 。

2.2. 生长分化因子-15 (GDF15)

GDF15是转化生长因子β超家族的成员,GDF15表达通常因组织病理学损伤而显着升高,GDF15已被提出作为人类生物衰老的新型生物标志物 [19] 研究表明,循环GDF15水平升高与健康个体 [20] 或慢性病患者 [21] 的肌肉功能和身体功能差密切相关,GDF15可用作炎症标志物。吸烟(CS)提取物可在人小气道上皮细胞中诱导GDF15表达 [22] 小鼠GDF15的缺失减少了CS相关的肺部炎症。CS诱导GDF15还通过激活素受体样激酶1/Smad1途径促进细胞衰老,并增加气道上皮细胞中细胞衰老标志物的表达 [23] 有研究发现,血清GDF15水平与运动耐量呈中度相关。身体性能下降是COPD患者的一个重要特征,并且是由骨骼肌功能障碍引起的,研究发现较高的血清GDF15水平(>357.5 pg/mL)显示出对肌肉减少症的良好预测能力 [24] 。

2.3. NMJ降解的循环生物标志物

研究评估了NMJ降解的循环生物标志物,包括c末端农业片段-22 (CAF22),脑源性神经营养因子(BDNF)和神经胶质细胞系来源的神经营养因子(GDNF)作为肺康复(PR)期间COPD肌肉减少症的预测因子。是肌肉减少症多因素病因的中心焦点 [25] 。NMJ崩解可引发肌肉萎缩和衰老虚弱,以及与氧化应激增加相关的疾病。NMJ的不稳定性是与COPD相关的肌肉减少症的重要因素 [26] 。在NMJ局部释放时,这些神经营养因子可防止分解代谢条件下的去神经和肌肉损失。随着BDNF的循环,这种保护作用在肌肉减少症中丧失,GDNF水平随着年龄的增长而下降,老年人BDNF和GDNF上调的减少可能导致COPD肌肉减少。CAF22最近已成为NMJ降解和肌肉损失的潜在循环生物标志物。CAF22是agrin的副产物,agrin是一种神经元蛋白聚糖,参与运动终板和乙酰胆碱受体的精确对准 [27] 在包括COPD在内的呼吸系统疾病中,血浆CAF22水平与肌肉减少症表型呈负相关 [28] 。评估了血浆BDNF,GDNF和CAF22水平以及PR期间COPD肌肉质量,力量和步行速度的变化。发现在诊断COPD时CAF22升高,BDNF和GDNF血浆水平降低。较高的血浆CAF22水平与肌肉质量、力量和步速降低有关。研究表明代表所有三种生物标志物的累积风险评分可以提高肌肉减少症的诊断准确性,并且可以共同成为预测和/或诊断老年人和高危人群肌肉减少症的适当评估工具 [29] 。

2.4. 抵抗素

抵抗素作为一种脂肪因子,影响骨骼肌质量或功能以多种方式,如通过内分泌,炎症和能量代谢 [30] 。研究发现阻力素水平与肌肉质量和股四头肌力量呈负相关。抵抗抑制骨骼肌卫星细胞分化为骨骼肌细胞并促进分化为脂肪细胞,导致骨骼肌质量减少 [31] 。抵抗作用由Toll样受体4 (TLR4)受体介导,导致p38丝裂原活化蛋白激酶(MAPK)和核因子-κB (NF-κB)通路的激活,参与肌肉萎缩和肌肉功能障碍的发生和发展过程。抵抗素还通过miR-696诱导小鼠骨骼肌细胞C2C12中的脂质异位沉积。骨骼肌的异位脂肪沉积已被公认为肌肉减少症的重要组成部分 [32] 。研究表明,肌肉减少症患者的血清抵抗素水平显著高于无肌肉减少症患者,抵抗素对肌肉减少症患者具有良好的预测能力。

3. 危险因素COPD患者肌肉萎缩的推定触发因素包括很多,这些因素会聚集在一起,可能单独或协同作用加速肌肉萎缩

3.1. 吞咽困难舌力下降

吞咽困难常见于慢性阻塞性肺病(COPD)患者。一项关于慢性肺疾病吞咽困难的系统评价显示,许多既往研究报道了COPD患者吞咽困难的患病率 [33] 。有研究表明较低的(舌压) MTP (<20 kPa)是肌萎缩侧索硬化症(ALS)患者吸入性肺炎的危险因素。舌压下降也是吞咽困难的原因之一,在肌肉减少症患者中经常观察到。舌压与肌肉减少症之间的关系已在以前的研究中报道。MTP与年龄、血清白蛋白浓度、日常生活活动和肌肉减少症有关,在研究中,COPD患者的MTP显著低于对照组。与对照组相比,COPD患者中肌肉减少症的患病率更高。作为肌肉减少症的征兆之一,COPD患者的MTP较低,SMI和握力较低。总之,与正常受试者相比,COPD肌少症患者的舌头力量较低 [34] 。

3.2. 吸烟与饮酒

越来越多的证据表明,吸烟和长期过量饮酒对健康的影响延伸到肌肉骨骼系统,这是由调节肌肉蛋白质代谢的代谢途径的下调和随后增加的肌肉减少症风险所介导的。长期使用烟草制品可能通过口腔健康和多巴胺受体功能障碍导致营养不良,并结合全身炎症,可能损害MPS的基础发生率。同样,过量饮酒与MPS刺激受损有关,主要是由于mTORC1信号通路上游发生的禁忌症是由促炎细胞因子的表达驱动的。吸烟和长期饮酒也会通过牙周炎、慢性阻塞性肺病和肝脏疾病等潜在疾病导致代谢损伤,这些疾病可能协同作用以抑制骨骼肌功能 [35] 。

3.3. 缺铁

特异性骨骼肌病是HF,COPD等慢性病的共同特征,其特征是骨骼肌氧化能力丧失。体外和动物研究的证据表明,缺铁主要通过限制氧化代谢有利于糖酵解以及改变碳水化合物和脂肪分解代谢加工来影响骨骼肌功能。铁在骨骼肌功能中起着至关重要的作用,特别是在能量代谢的背景下。细胞氧化代谢强烈依赖于铁的可用性,这对于充足的氧气供应和有效的底物分解代谢是必不可少的。铁过载和缺铁(ID)都被证明对构成细胞能量中心的线粒体有害 [36] 。从动物和体外研究中收集的证据表明,ID会损害不同水平的骨骼肌能量。

3.4. 长期使用质子泵抑制剂(PPI)

在肌肉萎缩相关的慢性疾病患者(COPD,糖尿病等)中长期使用质子泵抑制剂(PPI)很常见。低镁血症(血清镁低于0.7 mmol/L)是使用PPI的已知副作用 [37] 。镁含量低与肌肉功能受损有关。PPI对肌肉功能的这种不良副作用在不同的疾病背景下都有描述。此外,PPI的使用已被描述为改变肠道中微生物群的组成,这可能导致炎症增加。PPI是全球使用最广泛的药物之一,处方率很高,尤其是老年人 [38] 。据报道,长期使用PPI可导致多发性肌炎,这是一种肌肉慢性炎症。使用PPI的另一种可能但罕见的副作用是横纹肌溶解,这种疾病是受损肌肉迅速分解,使用质子泵抑制剂可能会增加慢性病患者肌肉功能丧失的症状 [39] 。

3.5. 口腔健康不良

口腔健康状况不佳可能使人容易通过牙周病患上慢性低度炎症,这是众所周知的导致虚弱和肌肉减少症的危险因素。严重的牙齿脱落以及吞咽和咀嚼问题在一定程度上导致了老年人饮食选择受限和营养状况不良,从而导致虚弱和肌肉减少症 [40] 。研究调查了口腔科门诊老年患者肌肉减少症的发生率高达40.5%,说明肌肉减少症与较差的口腔健康状况相关。口腔健康状况不佳的会引起咀嚼吞咽困难、营养摄入不足,进而引起肌肉萎缩,导致发生肌肉减少症。肌肉萎缩进一步又可促进不良的生活质量和口腔健康,因此肌肉减少和口腔健康状况可能是恶性循环的关系 [41] 。

3.6. 查尔森合并症指数(CCI)升高

老年人慢性病共病是指2种及以上的慢性病共存于同一个60岁及以上的老年人 [42] ,且疾病之间相互影响,简称为共病。随着年龄增长,患有合并症的老年人的发病率和死亡率很高,老查尔森合并症指数(CCI) [43] 是目前最常用的共病评估工具。CCI是用于预测短期和长期患者死亡风险的指数。研究发现SMI/步速与CCI之间存在显著的负相关关系。当多种疾病并存时,营养素的消耗越高,尤其是肌肉消耗,CCI评分越高,老年人的肌肉面积越低。当CCI评分超过6.5时,临床医生应警惕判断患者是否骨骼肌质量低。可通过使用CCI合并症评估工具评估老年人肌肉减少症的风险。在老年人群中,CCI评分越高可能表明骨骼肌质量越低,肌肉减少症的风险越大 [44] 。

4. 治疗

肌肉减少症的管理选择包括非药物和药物方法。非药物方法包括阻力运动、充足的营养和保持口腔健康。在两者中,阻力运动是肌肉减少症的标准非药物治疗方法,具有重要的积极证据。另一方面,增强口腔预防保健,可能有助于保护肌肉功能。一些饮食方法,如摄入足够的蛋白质、维生素D、抗氧化营养素、益生菌和长链多不饱和脂肪酸,已被证明对肌肉减少症有积极作用,目前,美国食品和药物管理局尚未批准用于治疗肌肉减少症的特定药物。然而,推荐使用几种药物,包括生长激素、合成代谢或雄激素类固醇、褪黑素、选择性雄激素受体调节剂、蛋白质合成代谢药物、食欲兴奋剂、肌生长抑制素抑制剂、激活II受体药物、β受体阻滞剂、血管紧张素转换酶抑制剂和肌钙蛋白激活剂,并已被证明具有不同的疗效 [45] 。

5. 小结

肌少症是一种临床上常见的衰弱性疾病,在相当大比例的老年慢阻肺患者中存在。两者之间相互作用,肌肉减少症已成为密集研究的焦点,尽管近些年COPD合并肌少症已有了一定了解,但如何采取有效的治疗方法预防疾病进展,逆转功能恶化,改善预后仍是临床面临的新挑战,综上所述在稳定期老年慢阻肺患者的临床评估中,针对肌少症的发病机制,早期标志物识别,诊断危险因素,并寻找减轻其对个体生活质量影响的综合治疗策略,对改善稳定期老年慢阻肺患者的肺功能、生活质量及预后有重要的临床意义。

NOTES

*通讯作者。

参考文献

[1] Geisler, S., Holmström, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J. and Springer, W. (2010) PINK1/ Par-kin-Mediated Mitophagy Is Dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12, 119-131.
https://doi.org/10.1038/ncb2012
[2] Rubinsztein, D.C., Mariño, G. and Kroemer, G. (2011) Autophagy and Ag-ing. Cell, 146, 682-695.
https://doi.org/10.1016/j.cell.2011.07.030
[3] Araya, J., Tsubouchi, K., Sato, N., Ito, S., Minagawa, S., Hara, H., Hosaka, Y., Ichikawa, A., Saito, N., Kadota, T., Yoshida, M., Fujita, Y., Utsumi, H., Kobayashi, K., Yanagisawa, H., Hashimoto, M., Wakui, H., Ishikawa, T., Numata, T., Kaneko, Y., et al. (2019) PRKN-Regulated Mitophagy and Cellu-lar Senescence during COPD Pathogenesis. Autophagy, 15, 510-526.
[4] Ito, S., Araya, J., Kurita, Y., et al. (2015) PARK2-Mediated Mitophagy Is Involved in Regulation of HBEC Senescence in COPD Pathogenesis. Autophagy, 11, 547-559.
https://doi.org/10.1080/15548627.2015.1017190
[5] Leduc-Gaudet, J.P., Reynaud, O., Hussain, S.N. and Gouspillou, G. (2019) Parkin Overexpression Protects from Ageing-Related Loss of Muscle Mass and Strength. The Journal of Physiology, 597, 1975-1991.
https://doi.org/10.1113/JP277157
[6] Peker, N., Donipadi, V., Sharma, M., McFarlane, C. and Kambadur, R. (2018) Loss of Parkin Impairs Mitochondrial Function and Leads to Muscle Atrophy. American Journal of Physiology. Cell Physiology, 315, C164-C185.
https://doi.org/10.1152/ajpcell.00064.2017
[7] Ito, A., Hashimoto, M., Tanihata, J., Matsubayashi, S., Sasaki, R., Fujimoto, S., Kawamoto, H., Hosaka, Y., Ichikawa, A., Kadota, T., Fujita, Y., Takekoshi, D., Ito, S., Minagawa, S., Numata, T., Hara, H., Matsuoka, T., Udaka, J., Araya, J., Saito, M. and Kuwano, K. (2022) Involvement of Par-kin-Mediated Mitophagy in the Pathogenesis of Chronic Obstructive Pulmonary Disease-Related Sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 13, 1864-1882.
https://doi.org/10.1002/jcsm.12988
[8] Hess, M.E. and Brüning, J.C. (2014) The Fat Mass and Obesi-ty-Associated (FTO) Gene: Obesity and Beyond? Biochimica et Biophysica Acta, 1842, 2039-2047.
https://doi.org/10.1016/j.bbadis.2014.01.017
[9] Yang, G., Shi, R. and Zhang, Q. (2020) Hypoxia and Oxy-gen-Sensing Signaling in Gene Regulation and Cancer Progression. International Journal of Molecular Sciences, 21, Ar-ticle 8162.
https://doi.org/10.3390/ijms21218162
[10] Attaway, A.H., Bellar, A., Welch, N., Sekar, J., Kumar, A., Mishra, S., Hatipoğlu, U., McDonald, M.L., Regan, E.A., Smith, J.D., Washko, G., Estépar, R.S.J., Bazeley, P., Zein, J. and Dasarathy, S. (2023) Gene Polymorphisms Associated with Heterogeneity and Senescence Characteristics of Sarco-penia in Chronic Obstructive Pulmonary Disease. Journal of Cachexia, Sarcopenia and Muscle, 14, 1083-1095.
https://doi.org/10.1002/jcsm.13198
[11] Guinane, C.M. and Cotter, P.D. (2013) Role of the Gut Microbiota in Health and Chronic Gastrointestinal Disease: Understanding a Hidden Metabolic Organ. Therapeutic Advances in Gas-troenterology, 6, 295-308.
https://doi.org/10.1177/1756283X13482996
[12] Qiu, Y., Yu, J., Li, Y., Yang, F., Yu, H., Xue, M., Zhang, F., Jiang, X., Ji, X. and Bao, Z. (2021) Depletion of Gut Microbiota Induces Skeletal Muscle Atrophy by FXR-FGF15/19 Signalling. Annals of Medicine, 53, 508-522.
https://doi.org/10.1080/07853890.2021.1900593
[13] Prokopidis, K., Chambers, E., Ni Lochlainn, M. and Witard, O.C. (2021) Mechanisms Linking the Gut-Muscle Axis with Muscle Protein Metabolism and Anabolic Resistance: Im-plications for Older Adults at Risk of Sarcopenia. Frontiers in Physiology, 12, Article 770455.
https://doi.org/10.3389/fphys.2021.770455
[14] Qaisar, R., Ustrana, S., Muhammad, T. and Shah, I. (2022) Sar-copenia in Pulmonary Diseases Is Associated with Elevated Sarcoplasmic Reticulum Stress and Myonuclear Disorgani-zation. Histochemistry and Cell Biology, 157, 93-105.
https://doi.org/10.1007/s00418-021-02043-3
[15] Lakhdar, R., McGuinness, D., Drost, E.M., Shiels, P.G., Bastos, R., MacNee, W. and Rabinovich, R.A. (2018) Role of Accelerated Aging in Limb Muscle Wasting of Patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease, 13, 1987-1998.
https://doi.org/10.2147/COPD.S155952
[16] Cheikhi, A., Barchowsky, A., Sahu, A., Shinde, S. N., Pius, A., Clemens, Z.J., Li, H., Kennedy, C.A., Hoeck, J.D., Franti, M. and Ambrosio, F. (2019) Klotho: An Elephant in Aging Research. The Journals of Gerontology. Series A, biological Sciences and Medical Sciences, 74, 1031-1042.
https://doi.org/10.1093/gerona/glz061
[17] Lee, J., Tsogbadrakh, B., Yang, S., Ryu, H., Kang, E., Kang, M., Kang, H.G., Ahn, C. and Oh, K.H. (2021) Klotho Ameliorates Diabetic Nephropathy via LKB1-AMPK-PGC1α-Mediated Re-nal Mitochondrial Protection. Biochemical and Biophysical Research Communications, 534, 1040-1046.
https://doi.org/10.1016/j.bbrc.2020.10.040
[18] Patel, M.S., Donaldson, A.V., Lewis, A., Natanek, S.A., Lee, J.Y., Andersson, Y.M., Haji, G., Jackson, S.G., Bolognese, B.J., Foley, J.P., Podolin, P.L., Bruijnzeel, P.L., Hart, N., Hop-kinson, N.S., Man, W.D., Kemp, P.R. and Polkey, M.I. (2016) Klotho and Smoking—An Interplay Influencing the Skeletal Muscle Function Deficits that Occur in COPD. Respiratory Medicine, 113, 50-56.
https://doi.org/10.1016/j.rmed.2016.02.004
[19] Semba, R.D., Gonzalez-Freire, M., Tanaka, T., Biancotto, A., Zhang, P., Shardell, M., Moaddel, R., Consortium, C. and Ferrucci, L. (2020) Elevated Plasma Growth and Differentia-tion Factor 15 Is Associated with Slower Gait Speed and Lower Physical Performance in Healthy Community-Dwelling Adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75, 175-180.
https://doi.org/10.1093/gerona/glz071
[20] Conte, M., Martucci, M., Mosconi, G., Chiariello, A., Cappuccilli, M., Totti, V., Santoro, A., Franceschi, C. and Salvioli, S. (2020) GDF15 Plasma Level Is Inversely Associated with Level of Physical Activity and Correlates with Markers of Inflammation and Muscle Weakness. Frontiers in Immunology, 11, Ar-ticle 915.
https://doi.org/10.3389/fimmu.2020.00915
[21] Lee, S.H., Lee, J.Y., Lim, K.H., Lee, Y.S. and Koh, J.M. (2022). Associations between Plasma Growth and Differentiation Factor-15 with Aging Phenotypes in Muscle, Adipose Tissue and Bone. Calcified tissue international, 110, 236- 243.
https://doi.org/10.1007/s00223-021-00912-6
[22] Jiang, G., Liu, C.T. and Zhang, W.D. (2018) IL-17A and GDF15 Are Able to Induce Epithelial-Mesenchymal Transition of Lung Epithelial Cells in Response to Cigarette Smoke. Experimental and Therapeutic Medicine, 16, 12-20.
https://doi.org/10.3892/etm.2018.6145
[23] Wu, Q., Jiang, D., Matsuda, J.L., Ternyak, K., Zhang, B. and Chu, H.W. (2016) Cigarette Smoke Induces Human Airway Epithelial Senescence via Growth Differentiation Factor 15 Pro-duction. American Journal of Respiratory Cell and Molecular Biology, 55, 429-438.
https://doi.org/10.1165/rcmb.2015-0143OC
[24] Gruet, M. (2018) Fatigue in Chronic Respiratory Diseases: Theo-retical Framework and Implications for Real-Life Performance and Rehabilitation. Frontiers in Physiology, 9, Article 1285.
https://doi.org/10.3389/fphys.2018.01285
[25] Karim, A., Muhammad, T. and Qaisar, R. (2021) Prediction of Sarcopenia Using Multiple Biomarkers of Neuromuscular Junction Degeneration in Chronic Obstructive Pulmonary Disease. Journal of Personalized Medicine, 11, Article 919.
https://doi.org/10.3390/jpm11090919
[26] Rygiel, K.A., Picard, M. and Turnbull, D.M. (2016) The Ageing Neuromuscular System and Sarcopenia: A Mitochondrial Per-spective. The Journal of Physiology, 594, 4499-4512.
https://doi.org/10.1113/JP271212
[27] Qaisar, R., Karim, A. and Muhammad, T. (2020) Plasma CAF22 Levels as a Useful Predictor of Muscle Health in Patients with Chronic Ob-structive Pulmonary Disease. Biology, 9, Article 166.
https://doi.org/10.3390/biology9070166
[28] Karim, A., Iqbal, M.S., Muhammad, T. and Qaisar, R. (2022) Evaluation of Sarcopenia Using Biomarkers of the Neuromuscular Junction in Parkinson’s Disease. Journal of Molecular Neuroscience, 72, 820-829.
https://doi.org/10.1007/s12031-022-01970-7
[29] O’Leary, M.F., Wallace, G.R., Davis, E.T., Murphy, D.P., Ni-cholson, T., Bennett, A.J., Tsintzas, K. and Jones, S.W. (2018) Obese Subcutaneous Adipose Tissue Impairs Human Myogenesis, Particularly in Old Skeletal Muscle, via Resistin-Mediated Activation of NFκB. Scientific Reports, 8, Article No. 15360.
https://doi.org/10.1038/s41598-018-33840-x
[30] Wen, F., Zhang, H., Bao, C., Yang, M., Wang, N., Zhang, J., Hu, Y., Yang, X., Geng, J. and Yang, Z. (2015) Resistin Increases Ectopic Deposition of Lipids through miR-696 in C2C12 Cells. Biochemical Genetics, 53, 63-71.
https://doi.org/10.1007/s10528-015-9672-2
[31] Sheng, C. H., Du, Z.W., Song, Y., Wu, X.D., Zhang, Y.C., Wu, M., Wang, Q. and Zhang, G.Z. (2013) Human Resistin Inhibits Myogenic Differentiation and Induces Insulin Resistance in Myocytes. BioMed Research International, 2013, Article ID: 804632.
https://doi.org/10.1155/2013/804632
[32] Yuan, F., Zhang, Q., Dong, H., Xiang, X., Zhang, W., Zhang, Y. and Li, Y. (2021) Effects of Des-Acyl Ghrelin on Insulin Sensitivity and Macrophage Polarization in Adipose Tissue. Journal of Translational Internal Medicine, 9, 84-97.
https://doi.org/10.2478/jtim-2021-0025
[33] Maeda, K. and Akagi, J. (2015) Decreased Tongue Pressure Is Asso-ciated with Sarcopenia and Sarcopenic Dysphagia in the Elderly. Dysphagia, 30, 80-87.
https://doi.org/10.1007/s00455-014-9577-y
[34] Sugiya, R., Higashimoto, Y., Shiraishi, M., Tamura, T., Kimura, T., Chiba, Y., Nishiyama, O., Arizono, S., Fukuda, K. and Tohda, Y. (2022) Decreased Tongue Strength Is Related to Skeletal Muscle Mass in COPD Patients. Dysphagia, 37, 636-643.
https://doi.org/10.1007/s00455-021-10314-3
[35] Prokopidis, K. and Witard, O.C. (2022) Understanding the Role of Smoking and Chronic Excess Alcohol Consumption on Reduced Caloric Intake and the Development of Sarcopenia. Nutrition Research Reviews, 35, 197-206.
https://doi.org/10.1017/S0954422421000135
[36] Galy, B., Ferring-Appel, D., Sauer, S.W., Kaden, S., Lyoumi, S., Puy, H., Kölker, S., Gröne, H.J. and Hentze, MW. (2010) Iron Regulatory Proteins Secure Mitochondrial Iron Suffi-ciency and Function. Cell Metabolism, 12, 194-201.
https://doi.org/10.1016/j.cmet.2010.06.007
[37] Freedberg, D.E., Kim, L.S. and Yang, Y.-X. (2017) The Risks and Benefits of Long-Term Use of Proton Pump Inhibitors: Expert Review and Best Practice Advice From the American Gastroenterological Association. Gastroenterology, 152, 706-715.
https://doi.org/10.1053/j.gastro.2017.01.031
[38] Boucherie, Q., Rouby, F., Frankel, D., Roll, P. and Micallef, J. (2018) Proton Pump Inhibitors Prescriptions in France: Main Trends from 2006 to 2016 on French Health Insurance Database. Therapies, 73, 385-388.
https://doi.org/10.1016/j.therap.2018.03.001
[39] Vinke, P., Wesselink, E., van Orten-Luiten, W. and van Norren, K. (2020) The Use of Proton Pump Inhibitors May Increase Symptoms of Muscle Function Loss in Patients with Chronic Illnesses. International Journal of Molecular Sciences, 21, Article 323.
https://doi.org/10.3390/ijms21010323
[40] Azzolino, D., Passarelli, P.C., De Angelis, P., Piccirillo, G.B., D’Addona, A. and Cesari, M. (2019) Poor Oral Health as a Determinant of Malnutrition and Sarcopenia. Nutrients, 11, Article 2898.
https://doi.org/10.3390/nu11122898
[41] 陈颐, 潘兰兰, 陆慧芳. 口腔科门诊老年患者肌肉减少症现状与口腔健康关系的研究[J]. 中华老年口腔医学杂志, 2020, 18(5): 293-296.
https://doi.org/10.19749/j.cn.cjgd.1672-2973.2020.05.009
[42] 杨琛, 王秀华, 刘莉, 等. 老年疾病累计评分法在共病评估中的应用及研究现状[J]. 中国实用内科杂志, 2018, 38(4): 377-380.
https://doi.org/10.19538/j.nk2018040117
[43] Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., Martin, F.C., Michel, J.P., Rolland, Y., Schneider, S.M., Topinková, E., Vandewoude, M., Zamboni, M. (2010) Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing, 39, 412-423.
https://doi.org/10.1093/ageing/afq034
[44] Gong, G., Wan, W., Zhang, X., Liu, Y., Liu, X. and Yin, J. (2019) Correlation between the Charlson Comorbidity Index and Skeletal Muscle Mass/Physical Performance in Hospitalized Older People Potentially Suffering from Sarcopenia. BMC Geriatrics, 19, Article No. 367.
https://doi.org/10.1186/s12877-019-1395-5
[45] Cho, M.R., Lee, S. and Song, S.K. (2022) A Review of Sarcope-nia Pathophysiology, Diagnosis, Treatment and Future Direction. Journal of Korean Medical Science, 37, e146.
https://doi.org/10.3346/jkms.2022.37.e146