主动脉夹层原发破口位置与ABO血型的相关性分析
Analysis of the Correlation between the Location of Primary Rupture of Aortic Dissection and ABO Blood Group
DOI: 10.12677/ACM.2023.1361337, PDF, HTML, XML, 下载: 185  浏览: 245 
作者: 陈永昆, 张石龙, 张顺利, 廖陆枭:海南医学院第二附属医院心外科,海南 海口;王小啟*:云南省阜外心血管病医院心外科,云南 昆明
关键词: 主动脉夹层ABO血型原发破口Aortic Dissection ABO Blood Group Primary Rupture
摘要: 目的:研究ABO血型对主动脉夹层(aortic dissection, AD)原发破口的位置影响,为AD的预防及发病机制的研究提供新的思考。方法:采用回顾性队列研究方法,收集2019年4月至2022年10月在海南医学院第二附属医院就诊AD患者,根据纳入排除标准收集O型血组83例、非O型血组92例。采用多因素logistics回归分析分析纳入研究的因素对AD原发破口位置的影响。结果:多因素logistics回归分型显示,BMI OR = 1.103 (1.109~1.194, p = 0.016)与AD原发破口位于升主动脉显著相关;O型血OR = 0.259 (95% CI 0.116~0.577, p = 0.001)、吸烟史OR = 2.878 (1.360~6.090, p = 0.006)与AD原发破口位于主动脉弓显著相关。结论:非O型血是AD原发破口位于主动脉弓的独立危险因素,而O型血是AD原发破口位于其他位置的独立危险因素,因而我们认为ABO血型通过影响AD原发破口位置,参与AD的发生发展。
Abstract: Objective: The study of the influence of ABO blood group on the position of primary rupture of aortic dissection (AD) provides new thinking for the prevention and pathogenesis of AD. Methods: A ret-rospective cohort study was conducted to collect AD patients admitted to the Second Affiliated Hos-pital of Hainan Medical University from April 2019 to October 2022. According to the inclusion and exclusion criteria, 83 cases in the O group and 92 cases in the non-0 group were collected. Mul-ti-factor logistics regression analysis was used to analyze the influence of the factors included in the study on the location of the primary AD rupture. Results: Multi-factor logistics regression classifica-tion showed that BMI OR = 1.103 (1.109~1.194, p = 0.016) was significantly correlated with the lo-cation of primary AD rupture in the ascending aorta. Blood type O OR = 0.259 (95% CI 0.116~0.577, p = 0.001), smoking history OR = 2.878 (1.36~6.090, p = 0.006) were significantly correlated with the location of primary AD rupture in aortic arch. Conclusions: Non-O blood group is an independent risk factor for primary AD rupture located in the aortic arch, while O blood group is an independent risk factor for primary AD rupture located in other locations. Therefore, we believe that ABO blood group is involved in the occurrence and development of AD by affecting the location of primary AD rupture.
文章引用:陈永昆, 张石龙, 张顺利, 廖陆枭, 王小啟. 主动脉夹层原发破口位置与ABO血型的相关性分析[J]. 临床医学进展, 2023, 13(6): 9551-9560. https://doi.org/10.12677/ACM.2023.1361337

1. 引言

两百多年前研究人员发现人类第一个血型系统,即ABO血型系统。随着研究的进展,人们发现ABO血型系统的临床意义不仅仅是输血、器官移植或是造血细胞移植,还与许多疾病发病相关。研究显示血型为A的人患胃癌的风险比其他血型更高,并且血型为A的人患幽门螺杆菌感染的几率也更高 [1] [2] 。研究发现,一些心血管疾病在不同ABO血型表现出不同的发病风险。早在上世纪70年代,研究人员发现了非O型血患者发生心肌梗死风险高于O型血人群 [3] 。近年来的Meta分析进一步证实,A型血和非O型血发生心肌梗死风险高于O型血群 [4] 。在ABO血型与冠状动脉疾病(CAD)的Meta分析研究中证实,A型血和非O型血不但是MI的危险因素,也是CAD的危险因素 [5] 。不同ABO血型出凝血功能存在一定差异,O型血的人血浆血管假血友病因子(VWF)水平更低,非O型血发生深静脉血栓风险比O型血更高 [6] [7] 。ABO血型不但在癌症、血栓性疾病以及在心血管疾病中表现出不同发病风险,而且在高血压、血脂也表现出不同的患病风险。研究发现在献血人群中B型容易患高血压 [8] ,而在A型和B型血中,低密度脂蛋白、总胆固醇和甘油三酯较高,而高密度脂蛋白较低 [8] [9] 。主动脉夹层(AD)是一种少见但致命的心血管疾病,研究发现高血压、吸烟、被动吸烟以及高血脂是AD发生的危险因素 [10] [11] [12] [13] [14] 。

AD是指由于内膜破裂,血液进入血管壁导致主动脉壁撕裂形成真腔和假腔的主动脉疾病 [15] 。诊断AD是AD临床治疗的前提,计算机断层扫描(CT)、磁共振成像(MRI)、经食管超声心动图(TOE)等影像学检查具有可靠的临床诊断价值,能够有效诊断或是排除AD [16] 。CT是一种广泛普及、常用的临床检查手段,能够用于对AD检查,其灵敏度大于95% [15] 。MRI是AD的主要诊断技术之一,其诊断的特异性和灵敏性均为98% [17] 。为了尽可能预测AD结果,有学者提出以Stanford分型为基础根据原发破口位置以及分支血管缺血情况进一步拓展分型 [18] [19] 。研究显示,TAAD患者的原发性入口撕裂位置显著影响患者的早期预后、短期和长期生存,而三组患者无重大脑血管事件的生存结果相似 [20] 。主动脉夹层原发破口也越来越受到关注,但是目前仍缺乏影响AD原发破口位置因素的相关报道。研究ABO血型对主动脉夹层(aortic dissection, AD)原发破口的位置影响,为AD的预防及发病机制的研究提供新的思考。

2. 资料和方法

2.1. 研究对象

选择2019年4月至2022年10月在海南医学院第二附属医院就诊,经CTA检查确诊为主动脉夹层患者。根据纳入及排除标准连续收集主动脉夹层患者175例。

2.2. 纳入排除标准

纳入标准:

① 2019年4月至2022年10月在海南医学院第二附属医院就诊年龄大于18岁,经CTA检查确诊为主动脉夹层的并报道原发破口位置的患者;

② ABO血型、年龄、性别、高血压、BMI指数、TC、TG、HDL-c、LDL-c、吸烟史、饮酒史资料完整。

排除标准:

① 未经CTA确诊的疑是AD患者或CTA检查未见原发破口的AD患者;

② 入院未记录血压测量、身高、体重,无生化检查及病历资料不完整;

③ 主动脉夹层二次入院患者。

2.3. 研究方法

1) 对队列研究

本次研究为回顾性队列研究,按照O型血分为O型血组与非O型血组,根据纳入排除标准收据O型血组83例、非0型血组92例。收集纳入研究患者的ABO血型、原发破口位置、年龄、性别、高血压、BMI指数、TC、TG、HDL-c、LDL-c、吸烟史、饮酒史等数据。本次研究的主要结局是O型血与AD原发破口位置的关系;次要结局是其他纳入研究的因素与AD原发破口位置的关系。

2) 定义、检测方法

高血压定义为入院记录确记载“高血压”或是本次入院为诊断为高血压,住院高血压诊断标准为:非同日3次测量收缩压 ≥ 140 mmHg和/或舒张压 ≥ 90 mmHg;吸烟定义为入院记录中明确记载“吸烟”,并且吸烟超过5年,戒烟不超过2年;饮酒定义为入院记录中明确记载“饮酒”,并且饮酒超过1年,戒酒不超过1年。升主动脉定义为主动脉根部至头臂干动脉;主动脉弓定义为头臂干动脉至左锁骨下动脉;其他位置定义为除升主动脉和主动脉弓以外的主动脉。ABO血型检测采用西班牙Diana全自动血型分析系统进行检测,微柱凝胶检测卡为西班牙Diana公司专用卡,反定型用红细胞为上海血液医药生物有限责任公司生产。

3) 统计分析方法

采用SPSS23.0进行统计分析;计量资料结果用平均值±标准差表示,差异性检验符合正态分布资料采用t检验,不符正态分布采用Wilcoxon rank-sum检验;计数资料用百分比表示,组间率的差异比较采用χ2检验;O型血、年龄、性别、BMI、TC、TG、HDL-c、LDL-c、吸烟史、饮酒史、高血压等因素对AD原发破口位置的影响采用二元logistic回归分析,单因素回归分析有意义纳入多因素回归模型分析,p < 0.05认为差异具有统计学意义。

3. 结果

3.1. 基线资料分析

通过对比O型血组与非O型血组基线资料发现,O型血组患者吸烟(38.55%)、饮酒患(10.84%)比例低于非O型血组患者,p < 0.05,差异不具有统计学意义;O型血组患者男性占比77.11%、高血压占比89.16%,非O型血组男性占比83%、高血压占比80.43%,p > 0.05,差异不具有统计学意;O型血组与非O型血组的年龄(57.73 ± 12.56岁vs. 56.97 ± 12.4岁)、BMI (24.93 ± 0.46 vs. 25.22 ± 0.44 kg/m2)、TC (4.41 ± 0.83 vs. 4.67 ± 1.09 mmol/L)、HDL-c (1.25 ± 0.34 vs. 1.31 ± 0.30 mmol/L)、LDL-c (2.64 ± 0.68 vs. 2.70 ± 0.87 mmol/L)、TG (1.15 ± 0.49 vs. 1.42 ± 1.23 mmol/L)等因素的均值差异,p > 0.05,均不具有统计学意义(表1)。

Table 1. Comparison of baseline data between blood type O and non-O

表1. O型血与非O型血基线资料比较

*p < 0.05。

3.2. AD不同位置原发破口与ABO血型的差异分析

O型血组与非O型血组相比,AD不同位置原发破口存在差异。O型血组AD原发破口位于升主动脉占比63.86%,非O型血组占比53.26%,p > 0.05,差异不具有统计学意义;AD原发破口位于主动脉弓O型血组(12.05%)显著低于非O型血组(36.97),p < 0.01,差异具有统计学意义;O型血组与非O型血组相比AD原发破口位于其他位置占比24.10%,低于非O型血组9.78%,p < 0.05,差异具有统计学意义(表2)。

3.3. 影响AD原发破口位置的因素Logistics回归分析

1) AD原发破口位置位于升主动脉的影响因素回归分析

Table 2. Comparison of the location of primary rupture of aortic dissection in type O and non-O blood

表2. O型血与非O型血主动脉夹层原发破口位置比较

*p < 0.05,**p < 0.01。

通过单因素logistics回归分析发现,AD原发破口位于升主动脉O型血OR = 1.550 (95% CI 0.845~2.844, p = 0.157)。单因素logistics回归分析还发现BMI、TG、吸烟史等因素对AD原发破口位于升主动脉有影响。将单因素回归分析有意义的BMI、吸烟史、TG纳入多因素分析,调整后可发现吸烟史OR = 0.538 (95% CI 0.238~1.020, p = 0.057)、B型血OR = 0.551 (95% CI 0.263~1.153, p = 0.113)、TG OR = 0.714 (0.433~1.176, p = 0.186)、BMI OR = 1.103 (1.109~1.194, p = 0.016)。经多因素调整回归分析可发现BMI是AD原发破口位于升主动脉的危险因素(表3)。

Table 3. Logistics regression analysis of influencing factors of primary aortic dissection rupture in ascending aorta

表3. 主动脉夹层原发破口位于升主动脉的影响因素logistics回归分析

*p < 0.05,**p < 0.01;单因素回归分析p < 0.05,纳入多因素回归分析。

2) AD原发破口位置位于主动脉弓的影响因素回归分析

对纳入研究的因素进行单因素回归分析发现,吸烟史(OR = 3.255, 95% CI 1.577~6.719, p = 0.001)、O型血(OR = 3.913, 95% CI 1.858~8.241, p < 0.001)等因素对AD原发破口位于主动脉弓有影响(表4。将单因素回归分析有意义的因素,多因素回归模型O型血OR = 0.259 (95% CI 0.116~0.577, p = 0.001)、吸烟史OR = 2.878 (1.360~6.090, p = 0.006) (表5)。吸烟史是AD原发破口位于主动脉弓的危险因素,O型血是保护因素。

Table 4. Univariate logistics regression analysis of factors influencing the location of primary AD rupture in aortic arch

表4. AD原发破口位于主动脉弓的影响因素单因素logistics回归分析

**p < 0.01。

Table 5. Multi-factor logistics regression analysis of factors influencing the location of primary AD rupture in aortic arch

表5. AD原发破口位于主动脉弓的影响因素多因素logistics回归分析

**p < 0.01;单因素回归分析p < 0.05,纳入多因素回归分析。

3) AD原发破口位置位于其他位置的影响因素回归分析

单因素logistic回归分析显示,O型血是AD原发破口位于其他位置的危险因素。其他纳入研究的因素,男性、BMI、年龄、吸烟史、饮酒史、高血压、TC、HDL-c、LDL-c、TG均对AD原发破口位于其他位置无影响(表6)。

Table 6. Logistics regression analysis of factors affecting the location of AD primary rupture in other locations

表6. AD原发破口位于其他位置的影响因素logistics回归分析

*p < 0.05。

3.4. 讨论

我们研究首次发现ABO血型对主动脉夹层原发破口的影响。主动脉内膜撕裂被认为是AD发生起始的关键机制之一 [21] [22] ,在第一部分研究中发现男性、BMI、吸烟、TG等因素对AD的分型TAAD、TBAD的发病影响不同。由于TAAD、TBAD分型是根据主动脉解剖位置进划分 [23] ,因而推测不因素对主动脉不同的解剖位置影响不同。因此,我们进一步探讨不同因素对AD原发破口位置的影响。ABO血型是人类遗传的一个具体表现,研究发现O型血发生冠状动脉疾病(coronary artery disease, CAD)风险低于非O型血 [5] 、非O型血与心肌梗死风险增加相关 [4] 。在CAD患者中,发生心肌梗死与ABO基因位点相关联。这种关联表现为糖转移酶缺乏,即编码ABO血型O表型,被认为可以预防心肌梗死 [24] 。ABO基因位点被认为是具有多效性的基因位点之一,能够影响血液循坏中的大量糖蛋白 [25] [26] [27] ,包括内皮源性蛋白,如血管性血友病因子(vWF)、细胞间粘附分子-1 (sICAM-1)和血栓调节蛋白(sTM)等 [28] [29] [30] 。有研究显示,非O型血与炎症和内皮激活相关 [31] 。

主动脉是由内膜、中膜和外膜组成的管腔结构。在年轻健康人中,内膜基本上是由一层内皮细胞组成,它的机械作用几乎可以忽略不记 [32] 。随着年龄增长,由于出现胶原纤维沉积的非动脉粥样硬化性内膜增厚,内膜的机械作用才变得有意义 [33] 。内膜损伤和中膜结构减弱是AD发病的关键病理改变,血管平滑肌(vSMC)死亡是AD发病的重要诱发因素 [34] 。目前认为AD的发生起始关键机制有两种,内膜撕裂和血管壁内撕裂 [21] [22] 。本次研究发现ABO血型影响AD原发破口位置分布,O血型发生AD的原发破口位于其他位置的风险高于非O型血,而O型血发生AD的原发破口位于主动脉弓风险低于非O型血。因此我们可以认为,ABO血型通过影响AD原发破口位置而影响AD的发生。ABO血型对AD原发破口影响的机制和ABO血型对AD原发破口在主动脉不同位置的影响机制有待进一步研究。

吸烟是众多不良生活习惯之一,也是许多疾病的危险因素 [35] [36] [37] [38] 。在日本人群中研究发现,吸烟会导致主动脉疾病死亡风险增加,而戒烟则可以降低主动脉疾病死亡风险 [39] 。然而在一些流行病调查中发现,吸烟流行趋势与TAA或AD死亡率趋势无关 [40] 。内膜损伤和中膜结构减弱是AD发病的关键病理改变,血管平滑肌(vSMC)死亡是AD发病的重要诱发因素 [34] 。研究发现,在TAA和AD吸烟患者中血管壁弹性减退与T和B细胞诱导的弹性蛋白特异性的自体反应有关 [41] 。吸烟对AD的影响,仍需更多实验数据和临床数据的证实。此研究发现,AD原发破口位于主动脉弓吸烟比不吸烟跟容易出现,而原发破位于升主动脉以及其他位置无差异。此次研究发现吸烟对不同位置的AD原发破口不同,为研究吸烟与AD提供一些新的思考。

研究发现许多疾病与BMI存有相关性,高BMI会导致冠心病的发病风险增加 [42] 。在日本,体重过轻与出血性中风和IHD死亡率显著相关,肥胖会导致心血管疾病总死亡率和个别心血管疾病死亡率的增加 [43] 。BMI不仅增加疾病的发病风险,也会影响某些手术的疗效。如BMI是急性主动脉弓置换手术术后急性肾损伤(AKI)的独立危险因素,BMI ≥ 24 kg/m2术后发生AKI的风险2.35倍(OR = 3.35, 95% CI 1.15~9.74) [44] 。肥胖患者(BMI ≥ 30 kg/m2)与没有肥胖的患者相比,接受A型急性主动脉夹层手术的患者手术死亡率更高,出现低心排血量综合征、肺部并发症以及其他术后并发症的风险更高 [45] 。BMI对AD手术效果影响已有许多报道,但BMI对AD的发病影响仍缺乏相关报道。此次研究发现,BMI与AD原发破口位置有关,BMI升高AD原发破口更容易出现在升主动动脉。这一发现能够为进步研究BMI与AD关系提供新的思考。

ABO血型对主动脉夹层原发破口位于升主动脉无显著性影响;吸烟、非O型血是AD原发破口位于主动脉弓的独立危险因素;O型血是AD原发破口位于其他位置的独立危险因素。目前认为AD的发生起始关键机制有两种,内膜撕裂和血管壁内撕裂 [21] [22] 。因而我们认为ABO血型通过影响AD原发破口位置,参与AD的发生发展。

4. 结论

非O型血是AD原发破口位于主动脉弓的独立危险因素,而O型血是AD原发破口位于其他位置的独立危险因素,因而我们认为ABO血型通过影响AD原发破口位置,参与AD的发生发展。

NOTES

*通讯作者。

参考文献

[1] Wang, Z., Liu, L., Ji, J., et al. (2012) ABO Blood Group System and Gastric Cancer: A Case-Control Study and Me-ta-Analysis. International Journal of Molecular Sciences, 13, 13308-13321.
https://doi.org/10.3390/ijms131013308
[2] Ewald, D.R. and Sumner, S.C. (2016) Blood Type Biochemistry and Human Disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8, 517-535.
https://doi.org/10.1002/wsbm.1355
[3] Maurer, B., Hickey, N. and Mulcahy, R. (1969) ABO and Rh Blood Groups in Patients with Coronary Heart Disease. Irish Journal of Medical Science, 2, 105-108.
https://doi.org/10.1007/BF02958917
[4] Wu, O., Bayoumi, N., Vickers, M.A., et al. (2008) ABO (H) Blood Groups and Vascular Disease: A Systematic Review and Meta-Analysis. Journal of Thrombosis and Haemostasis, 6, 62-69.
https://doi.org/10.1111/j.1538-7836.2007.02818.x
[5] Chen, Z., Yang, S.H., Xu, H., et al. (2016) ABO Blood Group System and the Coronary Artery Disease: An Updated Systematic Review and Meta-Analysis. Scientific Reports, 6, Article No. 23250.
https://doi.org/10.1038/srep23250
[6] Ward, S.E., O’sullivan, J.M. and O’donnell, J.S. (2020) The Relationship between ABO Blood Group, von Willebrand Factor, and Primary Hemostasis. Blood, 136, 2864-2874.
https://doi.org/10.1182/blood.2020005843
[7] Dentali, F., Sironi, A.P., Ageno, W., et al. (2012) Non-O Blood Type Is the Commonest Genetic Risk Factor for VTE: Results from a Meta-Analysis of the Literature. Seminars in Thrombosis and Hemostasis, 38, 535-548.
https://doi.org/10.1055/s-0032-1315758
[8] Chandra, T. and Gupta, A. (2012) Association and Distribution of Hypertension, Obesity and ABO Blood Groups in Blood Donors. Iranian Journal of Pediatric Hematology and Oncol-ogy, 2, 140-145.
[9] El-Sayed, M.I.K. and Amin, H.K. (2015) ABO Blood Groups in Correlation with Hyperlipidemia, Diabetes Mellitus Type II, and Essential Hypertension. Asian Journal of Pharmaceutical and Clinical Research, 8, 236-243.
[10] Hibino, M., Otaki, Y., Kobeissi, E., et al. (2022) Blood Pressure, Hypertension, and the Risk of Aortic Dissection Incidence and Mortality: Results from the J-SCH Study, the UK Biobank Study, and a Meta-Analysis of Co-hort Studies. Circulation, 145, 633-644.
https://doi.org/10.1161/CIRCULATIONAHA.121.056546
[11] Li, J.Z., Eagle, K.A. and Vaishnava, P. (2013) Hypertensive and Acute Aortic Syndromes. Cardiology Clinics, 31, 493-501.
https://doi.org/10.1016/j.ccl.2013.07.011
[12] Dong, N., Piao, H., Li, B., et al. (2019) Poor Management of Hy-pertension Is an Important Precipitating Factor for the Development of Acute Aortic Dissection. American Journal of Hypertension, 21, 804-812.
https://doi.org/10.1111/jch.13556
[13] Landenhed, M., Engstrom, G., Gottsater, A., et al. (2015) Risk Profiles for Aortic Dissection and Ruptured or Surgically Treated Aneurysms: A Prospective Cohort Study. Journal of the American Heart Association, 4, e001513.
https://doi.org/10.1161/JAHA.114.001513
[14] Elsayed, R.S., Cohen, R.G., Fleischman, F. and Bowdish, M.E. (2017) Acute Type A Aortic Dissection. Cardiology Clinics, 35, 331-345.
https://doi.org/10.1016/j.ccl.2017.03.004
[15] Erbel, R., Aboyans, V., Boileau, C., et al. (2014) 2014 ESC Guide-lines on the Diagnosis and Treatment of Aortic Diseases: Document Covering Acute and Chronic Aortic Diseases of the Thoracic and Abdominal Aorta of the Adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). European Heart Journal, 35, 2873-2926.
https://doi.org/10.1093/eurheartj/ehu281
[16] Shiga, T., Wajima, Z.I., Apfel, C.C., et al. (2006) Diagnostic Accu-racy of Transesophageal Echocardiography, Helical Computed Tomography, and Magnetic Resonance Imaging for Sus-pected Thoracic Aortic Dissection. Archives of Internal Medicine, 166, 1350-1356.
https://doi.org/10.1001/archinte.166.13.1350
[17] Nienaber, C.A., Von Kodolitsch, Y., Nicolas, V., et al. (1993) The Diagnosis of Thoracic Aortic Dissection by Noninvasive Imaging Procedures. The New England Journal of Medi-cine, 328, 1-9.
https://doi.org/10.1056/NEJM199301073280101
[18] Sievers, H.H., Rylski, B., Czerny, M., et al. (2020) Aortic Dissection Reconsidered: Type, Entry Site, Malperfusion Classification Adding Clarity and Enabling Outcome Prediction. Interactive CardioVascular and Thoracic Surgery, 30, 451-457.
https://doi.org/10.1093/icvts/ivz281
[19] Czerny, M. and Rylski, B. (2021) Acute Type A Aortic Dissection Reconsidered: It’s All about the Location of the Primary Entry Tear and the Presence or Absence of Malperfusion. European Heart Journal, 43, 53-55.
https://doi.org/10.1093/eurheartj/ehab664
[20] Merkle, J., Sabashnikov, A., Deppe, A.C., et al. (2019) Impact of Different Aortic Entry Tear Sites on Early Outcomes and Long-Term Survival in Patients with Stanford A Acute Aortic Dissection. The Thoracic and Cardiovascular Surgeon, 67, 363-371.
https://doi.org/10.1055/s-0038-1649511
[21] Nienaber, C.A., Clough, R.E., Sakalihasan, N., et al. (2016) Aortic Dissection. Nature Reviews Disease Primers, 2, Article No. 16053.
https://doi.org/10.1038/nrdp.2016.53
[22] O’gara, P.T. and DeSanctis, R.W. (1995) Acute Aortic Dissection and Its Variants. Toward a Common Diagnostic and Therapeutic Approach. Circulation, 92, 1376-1378.
https://doi.org/10.1161/01.CIR.92.6.1376
[23] Sherk, W.M., Khaja, M.S. and Williams, D.M. (2021) Anatomy, Pathology, and Classification of Aortic Dissection. Techniques in Vascular and Interventional Radiology, 24, Article ID: 100746.
https://doi.org/10.1016/j.tvir.2021.100746
[24] Reilly, M.P., Li, M., He, J., et al. (2011) Identification of ADAMTS7 as a Novel Locus for Coronary Atherosclerosis and Association of ABO with Myocardial Infarction in the Presence of Coronary Atherosclerosis: Two Genome-Wide Association Studies. The Lancet, 377, 383-392.
https://doi.org/10.1016/S0140-6736(10)61996-4
[25] Suhre, K., Arnold, M., Bhagwat, A.M., et al. (2017) Con-necting Genetic Risk to Disease End Points through the Human Blood Plasma Proteome. Nature Communications, 8, Article No. 14357.
https://doi.org/10.1038/ncomms15345
[26] Sun, W., Kechris, K., Jacobson, S., et al. (2016) Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD. PLOS Genetics, 12, e1006011.
https://doi.org/10.1371/journal.pgen.1006011
[27] Emilsson, V., Ilkov, M., Lamb, J.R, et al. (2018) Co-Regulatory Networks of Human Serum Proteins Link Genetics to Disease. Science, 361, 769-773.
https://doi.org/10.1126/science.aaq1327
[28] Morelli, V.M., De Visser, M.C.H., Van Tilburg, N.H., et al. (2007) ABO Blood Group Genotypes, Plasma von Willebrand Factor Levels and Loading of von Willebrand Factor with A and B Antigens. Thrombosis and Haemostasis, 97, 534-541.
https://doi.org/10.1160/TH06-09-0549
[29] Kiechl, S., Paré, G., Barbalic, M., et al. (2011) Association of Variation at the ABO Locus with Circulating Levels of Soluble Inter-cellular Adhesion Molecule-1, Soluble P-Selectin, and Soluble E-Selectin: A Meta-Analysis. Circulation: Cardiovascular Genetics, 4, 681-686.
https://doi.org/10.1161/CIRCGENETICS.111.960682
[30] Barbalic, M., Dupuis, J., Dehghan, A., et al. (2010) Large-Scale Genomic Studies Reveal Central Role of ABO in sP-Selectin and sICAM-1 Lev-els. Human Molecular Genetics, 19, 1863-1872.
https://doi.org/10.1093/hmg/ddq061
[31] Collet, A., Zawadzki, C., Jeanpierre, E., et al. (2022) ABO Blood Groups in Systemic Sclerosis: Distribution and Association with This Disease’s Characteristics. Journal of Clinical Medicine, 12, Article 148.
https://doi.org/10.3390/jcm12010148
[32] Holzapfel, G.A., Gasser, T.C. and Ogden, R.W. (2000) A New Consti-tutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. In: Cowin, S.C. and Humphrey, J.D., Eds., Cardiovascular Soft Tissue Mechanics, Springer, Dordrecht, 1-48.
https://doi.org/10.1007/0-306-48389-0_1
[33] Canham, P.B., Finlay, H.M., Dixon, J.G., Boughner, D.R. and Chen, A. (1989) Measurements from Light and Polarised Light Microscopy of Human Coronary Arteries Fixed at Distending Pressure. Cardiovascular Research, 23, 973-982.
https://doi.org/10.1093/cvr/23.11.973
[34] Wu, D., Shen, Y.H., Russell, L., Coselli, J.S. and LeMaire, S.A. (2013) Molecular Mechanisms of Thoracic Aortic Dissection. Journal of Surgical Research, 184, 907-924.
https://doi.org/10.1016/j.jss.2013.06.007
[35] Frey, P. and Waters, D.D. (2011) Tobacco Smoke and Cardiovascular Risk: A Call for Continued Efforts to Reduce Exposure. Current Opinion in Cardi-ology, 26, 424-428.
https://doi.org/10.1097/HCO.0b013e328349683d
[36] Lugg, S.T., Scott, A., Parekh, D., Nai-du, B. and Thickett, D.R. (2022) Cigarette Smoke Exposure and Alveolar Macrophages: Mechanisms for Lung Disease. Thorax, 77, 94-101.
https://doi.org/10.1136/thoraxjnl-2020-216296
[37] Badran, M. and Laher, I. (2020) Water-pipe (Shisha, Hookah) Smoking, Oxidative Stress and Hidden Disease Potential. Redox Biology, 34, Article ID: 101455.
https://doi.org/10.1016/j.redox.2020.101455
[38] Ambrose, J.A. and Barua, R.S. (2004) The Pathophysiology of Cigarette Smoking and Cardiovascular Disease: An Update. Journal of the American College of Cardiology, 43, 1731-1737.
https://doi.org/10.1016/j.jacc.2003.12.047
[39] Yang, Y., Yamagishi, K., Kihara, T., et al. (2022) Smoking Cessation and Mortality from Aortic Dissection and Aneurysm: Findings from the Japan Collaborative Cohort (JACC) Study. Journal of Atherosclerosis and Thrombosis, 30, 348-363.
https://doi.org/10.5551/jat.63258
[40] Sidloff, D., Choke, E., Stather, P., et al. (2014) Mortality from Thoracic Aortic Diseases and Associations with Cardiovascular Risk Factors. Circulation, 130, 2287-2294.
https://doi.org/10.1161/CIRCULATIONAHA.114.010890
[41] Gu, B.H., Choi, J.C., Shen, Y.H., et al. (2019) Elastin-Specific Autoimmunity in Smokers with Thoracic Aortic Aneurysm and Dissection Is Independent of Chronic Obstructive Pulmonary Disease. Journal of the American Heart Association, 8, e011671.
https://doi.org/10.1161/JAHA.118.011671
[42] Cui, R.I.H., Toyoshima, H., Date, C., et al. (2005) Body Mass In-dex and Mortality from Cardiovascular Disease among Japanese Men and Women: The JACC Study. Stroke, 36, 1377-1382.
https://doi.org/10.1161/01.STR.0000169925.57251.4e
[43] Funada, S., Shimazu, T., Kakizaki, M., et al. (2008) Body Mass Index and Cardiovascular Disease Mortality in Japan: The Ohsaki Study. Preventive Medicine, 47, 66-70.
https://doi.org/10.1016/j.ypmed.2008.03.010
[44] Liu, T., Fu, Y., Liu, J., et al. (2021) Body Mass Index Is an In-dependent Predictor of Acute Kidney Injury after Urgent Aortic Arch Surgery for Acute DeBakey Type I Aortic Dissec-tion. Journal of Cardiothoracic Surgery, 16, Article No. 145.
https://doi.org/10.1186/s13019-021-01533-8
[45] Lio, A., Bovio, E., Nicolo, F., et al. (2019) Influence of Body Mass Index on Outcomes of Patients Undergoing Surgery for Acute Aortic Dissection: A Propensity-Matched Analysis. Texas Heart Institute Journal, 46, 7-13.
https://doi.org/10.14503/THIJ-17-6365