绝经后铁代谢的变化对骨密度的影响
The Effect on Bone Mineral Density of Iron Metabolism Changes in Postmenopausal Women
DOI: 10.12677/ACM.2023.1361364, PDF, HTML, XML, 下载: 256  浏览: 394 
作者: 姚淑萍, 赵成玉*:青海大学附属医院,老年医学科,青海 西宁
关键词: 绝经后骨质疏松症雌激素铁稳态氧化应激铁调素Postmenopausal Osteoporosis Estrogen Iron Homeostasis Oxidative Stress Hepcidin
摘要: 骨质疏松症(OP)由于其在老年人中的高发病率和高致骨折率,长期以来一直受到广泛的关注。随着世界各国人口老龄化的到来及加剧,骨质疏松症的患病率逐年上升,绝经后妇女由于体内雌激素的减少,对破骨细胞的分化和骨吸收的抑制作用降低,加速了骨量的流失,易导致绝经后骨质疏松症。体内铁含量水平及铁代谢与骨代谢有着密切的联系,不管是体内铁增多还是铁缺乏都会影响破骨细胞和成骨细胞的分化和活性,从而促进骨质流失,但对于体内铁代谢是如何影响骨密度及骨代谢,本综述简要阐述了体内铁含量及铁代谢对骨密度及骨代谢影响的有关机制,从而为铁相关性绝经后骨质疏松症的研究、预防及治疗提供新的临床思路。
Abstract: Osteoporosis (OP) has been widely concerned for a long time because of its high incidence and frac-ture rate in the elderly. With the arrival and aggravation of the aging of the world’s population, the prevalence of osteoporosis is increasing year by year. Because of the reduction of estrogen in post-menopausal women, the inhibition of osteoclast differentiation and bone resorption is reduced, which accelerates the loss of bone mass and easily leads to postmenopausal osteoporosis. The level of iron content and iron metabolism in the body are closely related to bone metabolism. Both iron increase and iron deficiency in the body will affect the differentiation and activity of osteoclasts and osteoblasts, thus promoting bone loss. However, how iron metabolism in the body affects bone den-sity and bone metabolism is briefly described in this review, It provides a new clinical idea for the research, prevention and treatment of iron related postmenopausal osteoporosis.
文章引用:姚淑萍, 赵成玉. 绝经后铁代谢的变化对骨密度的影响[J]. 临床医学进展, 2023, 13(6): 9743-9750. https://doi.org/10.12677/ACM.2023.1361364

1. 引言

骨质疏松症是一种由多种因素引起的全身代谢性骨病,其特征为骨微观结构破坏所致的骨量下降,是脆性骨折发生的独立危险因素。在原发性骨质疏松中,绝经后体内雌激素水平的下降是绝经后妇女骨质流失加速的主要危险因素,可诱发及加速绝经后骨质疏松症的发生。近年来的研究发现,绝经后骨质疏松症的发生除了与体内雌激素的减少有关外,还与体内铁含量及铁代谢异常有关,不管是体内铁超载还是铁缺乏,均会导致骨代谢异常,加速骨质流失,易导致骨质疏松症的发生,特别是绝经后体内铁的积累,造成体内铁超载,铁超载在绝经后骨质疏松症中的影响已引起了广泛关注,但铁代谢变化对骨代谢的影响和骨质疏松症发生的机制目前尚未明确。本文将其做简要的阐述。

2. 雌激素对骨代谢的影响机制

雌激素是女性体内重要的激素,具有促进女性生殖器官发育,维持女性第二特征,维持骨代谢平衡等作用,女性绝经期卵巢功能下降使雌激素生成减少,同期卵泡刺激素生成相应升高,两种激素共同作用增加了骨吸收,加速了骨质流失,这是绝经后骨质疏松症发生的重要原因 [1] 。在绝经初期,雌激素含量的快速下降导致骨重塑增加,其中成骨细胞活性和破骨细胞活性均增加 [2] 。随着绝经年限的延长,这个过程不再平衡,骨吸收超过骨形成,加速了骨质疏松症的发展 [3] [4] [5] 。雌激素对骨代谢影响的主要机制为:雌激素缺乏导致雌激素诱导的核因子kappa-β配体(Receptor Activator of Nuclear Kappa-β Ligand, RANKL)拮抗剂–骨蛋白(Osteoprotegerin, OPG)的表达减少,使破骨细胞通过RANKL/OPG途径增殖和活化 [6] [7] ,增加了对骨质的破坏和吸收,使骨量减少,骨密度降低。雌激素受体(Estrogen Receptor, ER)在两种骨细胞中高度表达,起着保护骨骼的作用 [8] 。ER可与核因子κB (Nuclear Factor-kappa β, NF-κβ)结合,抑制NF-κβ信号通路的活性和破骨细胞分化 [9] [10] ,从而抑制了破骨细胞诱导的骨质吸收。此外,雌激素的缺乏会改变雌激素靶基因的表达,雌激素缺乏导致白介素(Interleukin, IL)-7增加,促进了T细胞的活化,T细胞诱导促炎因子,如IL-1、IL-6和肿瘤坏死因子α,导致破骨细胞活化 [10] [11] 。在雌激素缺乏期间,骨吸收生化指标增加了90%,而骨形成指标仅增加了45% [12] 。骨吸收与骨形成平衡失调,骨质流失大于生成,导致骨质疏松,增加骨骼脆性和骨折的风险 [12] 。因此,雌激素减少不仅与女性绝经后骨质疏松症的发生关系密切,而且很大程度上增加了骨质疏松症患者发生骨折的风险。

3. 雌激素与铁代谢的关系

体内雌激素水平对铁代谢有一定的影响,研究发现,雌激素特别是雌二醇可通过减少铁调素合成和维持转铁蛋白的完整性来影响体内铁稳态 [13] 。雌激素浓度升高与铁需求和释放到体循环中的铁量呈正相关,并且与铁调素浓度呈负相关,但雌激素对铁代谢影响的确切机制目前仍未明确 [14] 。禄林等的动物模型实验发现,随着去势小鼠体内雌激素水平的下降,其体内铁吸收也相应减少,循环铁量减少,而肝脏储铁增加,这种变化可能与雌激素下降影响了铁代谢通道蛋白表达变化有关 [15] 。费等在对雌激素和铁积累与骨代谢异常的研究中发现,雌激素可能影响着铁对骨吸收的吸收水平,在雌激素水平正常时,单纯的铁蓄积对绝经后骨质疏松的影响较小,当雌激素缺乏时,铁蓄积能显著增强破骨细胞的作用,使骨量下降,其可能与雌激素与铁的拮抗作用影响了破骨细胞的活性有关 [16] 。综上,雌激素与铁代谢之间存在联系,雌激素可能通过影响铁代谢进而对骨代谢产生影响,两者共同作用加速了骨质疏松症的发展。

4. 绝经后体内铁代谢变化

绝经后的女性体内除雌激素外,铁代谢也发生着一定的变化,研究表明,女性每年经经期排出的铁约36 mg [17] 。女性绝经后经期失铁停止,使女性绝经前后铁含量变化较大,在更年期过渡期间,尽管雌激素减少了90%,但铁水平在同期会发生相反的变化。例如,血清铁蛋白水平从绝经前到绝经后增加了两到三倍 [18] 。据估计,妇女45岁到60岁之间,体内铁储存量可由4.8 mg/kg增加到12 mg/kg [19] ,证明了绝经后女性容易出现铁积累。纽约大学的一项研究显示,与绝经前相比,绝经后女性的平均血清铁蛋白浓度增加了2倍以上 [20] 。有研究将绝经后股骨颈骨折行髋关节置换的绝经后女性(年龄均 > 50岁)按每10岁年龄段分组,共5组,测定了受试者股骨头骨铁含量和血清铁蛋白,结果发现骨铁和血清铁蛋白随年龄增加而升高,其铁超负荷率达到64.1% [21] 。金等研究发现,人体内血清铁蛋白与骨量丢失呈正相关,且体内铁储存可能存在性别上的差异,绝经后女性更容易发生轻度铁超负荷,相比中年男性,绝经后女性体内铁储存对骨质的影响更加突出 [22] 。因此,除了雌激素减少外,绝经期相关的铁积累也可能是影响绝经后女性健康的危险因素 [23] 。

5. 铁对成骨细胞及破骨细胞代谢的影响

铁是人体内重要的微量元素,研究发现铁含量及铁代谢影响着骨代谢,其主要通过影响成骨细胞及破骨细胞的活性对骨代谢产生影响。多铁与少铁均与骨量减少有关,这表明平衡的骨稳态需要适宜的铁水平。越来越多的证据表明,铁超载和铁缺乏都会影响破骨细胞和成骨细胞的分化和活性,从而促进骨质流失、使骨密度减少,加速了骨质疏松症的发展。由于破骨细胞与成骨细胞的生理机制不同,体内铁对两种细胞的影响机制也有所差异。

铁在破骨细胞中的影响:破骨细胞是由RANKL的受体激活剂的诱导形式融合单核巨噬细胞系或骨髓间充质干细胞融合而成的大型多核细胞,铁离子可以通过产生活性氧(Reactive Oxygen Species, ROS)来促进破骨细胞分化和骨吸收 [24] 。在体外研究发现应用铁螯合剂可抑制破骨细胞的形成 [25] ,减缓骨质的丢失。铁减少对破骨细胞也产生影响,一项对破骨细胞分化过程的研究发现,在细胞实验中发现在正常缺铁情况下,铁饥饿反应(转铁蛋白受体1增加,铁蛋白减少)后的RANKL刺激证实了铁减少对骨质的影响,在RANKL刺激下,骨髓来源的巨噬细胞中的丙二醛和前列腺素内过氧化物合酶2基因表达增加,使培养基中的谷胱甘肽和铁水平降低,线粒体中观察到铁积累 [26] ,细胞易发生铁死亡。

铁在成骨细胞中的影响:成骨细胞在骨质的合成、分泌和矿化中起主导作用 [27] 。研究表明,铁对间充质干细胞的成骨分化有抑制作用,过量的铁以浓度依赖性方式抑制成骨细胞活性。相比之下,低铁浓度对成骨细胞产生不同影响:轻度低铁促进成骨细胞活性,但严重的低铁抑制成骨细胞活性 [28] 。去铁胺能降低了成骨细胞生成和碱性磷酸酶的表达,同时降低了细胞内铁离子的浓度 [29] ,该途径涉及细胞内外铁离子的交换以及细胞中铁离子的代谢。成骨细胞在分化过程中可以通过该途径维持细胞内铁稳态。小鼠铁超负荷与致密骨源细胞中铁蛋白增加和RUNX相关转录因子2 (Runt-related transcription factor 2, RUNX2)水平降低有关 [30] 。二价金属离子转运体1 (Divalent metal transporter 1, DMT1)是人体内铁离子的主要调控物质,研究发现,DMT1可影响成骨细胞凋亡和自噬,DMT1在骨质疏松症中增加并诱发铁超负荷,铁超负荷可诱导氧化应激并增加ROS,ROS可诱导细胞凋亡和自噬 [31] 。DMT1可通过此途径影响成骨细胞自噬和凋亡,从而影响骨质疏松症的病理过程。综上,铁对成骨细胞及破骨细胞的影响会抑制骨形成,促进骨吸收,导致骨质流失。

6. 铁稳态系统对骨代谢的影响

铁稳态环境对维持体内多种组织及器官的正常生理活动至关重要,铁稳态的系统性调控依赖于铁调素与铁转运蛋白之间的相互作用。转铁蛋白是一种对Fe3+具有高亲和力结合位点的糖蛋白,两者结合维持血浆中铁的可溶性形式,并通过转铁蛋白受体将其输送到细胞中,从而减少血浆中有毒自由基的生成 [32] 。铁从十二指肠肠细胞和巨噬细胞释放到循环中,衰老的红细胞中铁经肝脏,脾脏和骨髓中的巨噬细胞回收,参与体内铁循环 [33] 。铁调素与铁转运蛋白结合后,减少了巨噬细胞和肠道吸收细胞的铁输出,减少了血清铁水平,使血浆中的铁处于稳态状态 [34] 。铁通过上述途径维持着铁含量及铁代谢的稳态。

铁代谢的细胞调控是通过铁调节蛋白和铁响应元件的作用以转录后的方式进行的 [32] 。对小鼠长期给予葡聚糖铁会导致不同器官的组织铁超负荷和骨质疏松症 [32] 。铁超负荷模型中观察到骨质流失与ROS产量升高有关,而抑制ROS形成可在一定程度上预防骨质流失 [35] 。同时高铁应激会诱发斑马鱼幼虫和成虫的快速骨质疏松症 [36] 。对血色病动物模型(即铁调素缺乏的小鼠和铁调素缺乏的斑马鱼)进行的研究也支持铁过载对骨骼健康的有害影响 [37] [38] [39] [40] [41] 。

乳铁蛋白是一种内源性铁结合糖蛋白,乳铁蛋白可促进成骨细胞的分化,同时减少成骨细胞50%~70%的凋亡,也可刺激软骨母细胞的增殖 [42] 。研究发现乳铁蛋白可抑制单核细胞的破骨细胞分化,降低RANKL的表达,并通过降低RANKL/OPG比值降低了破骨细胞对骨质的破坏和吸收 [43] [44] ,铁螯合剂去铁胺可抑制破骨细胞分化,使破骨细胞形成减弱并抑制破骨细胞特异性基因表达 [45] [46] 。以上研究均进一步证实了铁稳态环境及铁代谢对骨代谢的影响。

7. 铁超载通过氧化应激机制促进骨吸收

铁超载可通过产生活性氧对骨代谢产生影响,其可能的机制包括以下几方面:铁过载可以通过Fenton和Haber-Weiss反应产生ROS来诱导骨质疏松症 [47] [48] ,铁超负荷介导ROS产生,ROS阻断了磷脂酰肌醇3-激酶(Phosphatidyl inositol 3-kinase, PI3K)/蛋白激酶B (protein kinase B, AKT)和酪氨酸蛋白激酶(Janus Kinasa, JAK)/信号传导与转录激活因子3 (Signal transducer and activator of transcription, STAT3)信号通路,激活了p38/丝裂原活化蛋白激酶(Mitogen activated Protein Kinasa, MAPK),并在成骨MC3T3-E1细胞中诱导G1停滞和自噬,抑制成骨细胞生成 [49] ,ROS可与过氧化物酶体增殖物激活受体γ共激活因子(Peroxisome proliferator-activated receptor γ coactivator, PGC)-1β结合以增加线粒体的数量并激活破骨细胞分化。铁调素可限制破骨细胞对铁的使用,下调了ROS和PGC-1β,减少线粒体诱导的破骨细胞的骨吸收功能,从而显著改善了骨量。Zhang等观察到小鼠骨质流失的趋势在过度表达铁调素基因的卵巢切除小鼠中被抑制 [50] 。Tian等利用动物模型实验证明了铁超负荷诱导体外成骨细胞的凋亡及坏死,部分通过受体相互作用蛋白1 (Receptor-interacting protein 1, RIPK1)/受体相互作用蛋白3 (Receptor-interacting protein 3, RIPK3)/混合系数区域样蛋白(Mixed lineage kinase domain-like protein, MLKL)途径介导。此外,还发现ROS通过涉及RIPK1/RIPK3的正反馈回路介导铁过载诱导的成骨细胞的凋亡与坏死 [51] 。王啸等观察到铁蓄积可使氧化应激水平升高,通过激活NF-KB通路,使破骨细胞分化能力增强,促进骨吸收,进而导致骨重建失衡,骨量丢失 [52] 。铁蓄积可能骨通过刺激NF-KB信号通路使破骨细胞分化能力增强,骨吸收增加 [53] 。

8. 铁调素对代谢的影响机制

铁调素是由肝细胞合成的一种肽类激素,是铁代谢和体内铁稳态的主要调节剂。在血液中铁调素与靶细胞,巨噬细胞和肠细胞中的铁转运蛋白结合,从而促进铁转运蛋白的内化和降解,抑制铁从肠细胞膜与巨噬细胞中释放出来,导致从食物中吸收的铁减少,使巨噬细胞中储存的铁增加 [54] 。铁调素的表达受铁含量、炎症(如IL-6)和红细胞生成的调节。在成熟的成骨细胞中,铁通过抑制骨形态发生蛋白2和Wnt信号通路来抑制成骨细胞骨重塑 [55] [56] 。铁调素是铁的负性调节剂,铁调素可通过降低骨组织中的铁水平,延缓由铁超载所导致骨质疏松的发展,此外,还发现铁调速还可与PGC-1β结合,减少ROS的产生和线粒体的数量,从而抑制破骨细胞分化和骨吸收 [25] [57] ,抑制了骨质吸收及骨密度的降低,延缓了骨质疏松症的发生、发展。随着铁调素的降低,骨密度呈明显下降趋势。铁调素的过表达可能对绝经后骨质疏松症有保护作用。在铁调素较高的绝经后女性人群中,骨质量也升高,铁调素水平与骨矿物质密度之间存在正相关关系 [51] 。铁调素敲除后的小鼠存在慢性铁蓄积和显著骨质流失 [37] 。相反,补充铁调素和减少铁蛋白可防止这些小鼠股骨骨质流失 [58] 。在动物模型中,铁调素的过表达显著保护了由去卵巢大鼠引起的骨量丢失和骨密度下降。这表明铁调素过表达可以预防由雌激素缺乏引起的骨质疏松症,可为绝经后骨质疏松症的临床治疗提供新的靶点。

9. 结论

综上所述,人体内铁含量及铁代谢通过多种途径影响体内骨代谢,体内铁缺乏及铁超载均会诱发及加速骨质疏松的发展,特别是绝经后妇女体内,由于雌激素的减少及经期铁丢失的减少,更易发生体内铁积累,铁负荷的增加可通过上述一系列途径,诱发及加速骨质流失,使骨密度减少,诱发及加速了绝经后骨质疏松症的发生。

NOTES

*通讯作者。

参考文献

[1] Riggs, B.L., Khosla, S. and Melton III, L.J. (2002) Sex Steroids and the Construction and Conservation of the Adult Skeleton. Endocrine Reviews, 23, 279-302.
https://doi.org/10.1210/edrv.23.3.0465
[2] Drever, A. (2009) Bone Health and Osteoporosis. Practice Nursing, 38, 13-22.
[3] Riggs, B.L. (2000) The Mechanisms of Estrogen Regula-tion of Bone Resorption. Journal of Clinical Investigation, 106, 1203-1204.
https://doi.org/10.1172/JCI11468
[4] Syed, F. and Khosla, S. (2005) Mechanisms of Sex Steroid Effects on Bone. Biochemical and Biophysical Research Communications, 328, 688-696.
https://doi.org/10.1016/j.bbrc.2004.11.097
[5] Frenkel, B., Hong, A., Baniwal, S.K., et al. (2010) Regulation of Adult Bone Turnover by Sex Steroids. Journal of Cellular Physiology, 224, 305-310.
https://doi.org/10.1002/jcp.22159
[6] Hofbauer, L.C. and Schoppet, M. (2004) Clinical Implications of the Osteo-protegerin/RANKL/RANK System for Bone and Vascular Diseases. JAMA, 292, 490-495.
https://doi.org/10.1001/jama.292.4.490
[7] Zhao, J., Huang, M., Zhang, X., et al. (2019) MiR-146a Deletion Pro-tects From Bone Loss in OVX Mice by Suppressing RANKL/OPG and M-CSF in Bone Microenvironment. Journal of Bone and Mineral Research, 34, 2149-2161.
https://doi.org/10.1002/jbmr.3832
[8] Cheng, C.-H., Chen, L.-R. and Chen, K.-H. (2022) Osteoporosis due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. International Journal of Molecular Sciences, 23, Article No. 1376.
https://doi.org/10.3390/ijms23031376
[9] Shi, C., Luo, X., Wang, J. and Long, D. (2015) Incorporation of β-Sitosterol into the Membrane Prevents Tumor Necrosis Factor-α-Induced Nuclear Factor-κB Activation and Gonadotropin-Releasing Hormone Decline. Steroids, 96, 1-6.
https://doi.org/10.1016/j.steroids.2014.12.014
[10] Weitzmann, M.N. and Pacifici, R. (2006) Estrogen Deficiency and Bone Loss: An Inflammatory Tale. Journal of Clinical Investigation, 116, 1186-1194.
https://doi.org/10.1172/JCI28550
[11] McLean, R.R. (2009) Proinflammatory Cytokines and Osteoporosis. Cur-rent Osteoporosis Reports, 7, 134-139.
https://doi.org/10.1007/s11914-009-0023-2
[12] Chow, J., Tobias, J.H. and Colston, K.W. (1992) Estrogen Main-tains Trabecular Bone Volume in Rats Not Only by Suppression of Bone Resorption but Also by Stimulation of Bone Formation. Journal of Clinical Investigation, 89, 74-78.
https://doi.org/10.1172/JCI115588
[13] Bajbouj, K., Shafarin, J., Abdalla, M.Y., et al. (2017) Estrogen-Induced Disruption of Intracellular Iron Metabolism Leads to Oxidative Stress, Membrane Damage, and Cell Cycle Arrest in MCF-7 Cells. Tumor Biology, 39, Article ID: 1010428317726184.
https://doi.org/10.1177/1010428317726184
[14] Badenhorst, C.E., Forsyth, A.K. and Govus, A.D. (2022) A Contemporary Understanding of Iron Metabolism in Active Premenopausal Females. Frontiers in Sports and Active Liv-ing, 4, Article 903937.
https://doi.org/10.3389/fspor.2022.903937
[15] 禄林, 高超, 王啸, 等. 雌激素减少对大鼠铁代谢的影响[J]. 中国骨质疏松杂志, 2014, 20(2): 115-119, 124.
[16] 费蓓蓓. 雌激素对“铁蓄积导致骨代谢异常”的影响及作用机制的研究[D]: [博士学位论文]. 苏州: 苏州大学, 2017.
[17] Liu, L.-L., Liu, G.-W., Liu, H., Zhao, K. and Xu, Y.-J. (2021) Iron Accumulation Deteriorated Bone Loss in Estrogen-Deficient Rats. Journal of Orthopaedic Surgery and Re-search, 16, Article No. 525.
https://doi.org/10.1186/s13018-021-02663-4
[18] Jian, J., Pelle, E. and Huang, X. (2009) Iron and Menopause: Does Increased Iron Affect the Health of Postmenopausal Women? Antioxidants & Redox Signaling, 11, 2939-2943.
https://doi.org/10.1089/ars.2009.2576
[19] Zacharski, L.R., Ornstein, D.L., Woloshin, S. and Schwartz, L.M. (2000) Association of Age, Sex, and Race with Body Iron Stores in Adults: Analysis of NHANES III Data. American Heart Journal, 140, 98-104.
https://doi.org/10.1067/mhj.2000.106646
[20] Kato, I., Dnistrian, A., Schwartz, M., et al. (2000) Risk of Iron Overload among Middle-Aged Women. International Journal for Vitamin and Nutrition Research, 70, 119-125.
https://doi.org/10.1024/0300-9831.70.3.119
[21] 张伟, 王兵, 张林林, 等. 绝经后股骨颈骨折股骨头骨铁含量、血清铁蛋白与骨密度相关性研究[J]. 中华骨科杂志, 2014, 34(1): 39-47.
[22] Kim, B.-J., Ahn, S.H., Bae, S.J., et al. (2012) Iron Overload Accelerates Bone Loss in Healthy Postmenopausal Women and Middle-Aged Men: A 3-Year Ret-rospective Longitudinal Study. Journal of Bone and Mineral Research, 27, 2279-2290.
https://doi.org/10.1002/jbmr.1692
[23] Huang, X., Xu, Y. and Partridge, N.C. (2013) Dancing with Sex Hormones, Could Iron Contribute to the Gender Difference in Osteoporosis? Bone, 55, 458-460.
https://doi.org/10.1016/j.bone.2013.03.008
[24] Jia, P., Xu, Y.J., Zhang, Z.L., et al. (2012) Ferric Ion Could Facil-itate Osteoclast Differentiation and Bone Resorption through the Production of Reactive Oxygen Species Journal of Or-thopaedic Research, 30, 1843-1852.
https://doi.org/10.1002/jor.22133
[25] Ishii, K.-A., Fumoto, T., Iwai, K., et al. (2009) Coordination of PGC-1β and Iron Uptake in Mitochondrial Biogenesis and Osteoclast Activation. Nature Medicine, 15, 259-266.
https://doi.org/10.1038/nm.1910
[26] Ni, S., Yuan, Y., Qian, Z., et al. (2021) Hypoxia Inhibits RANKL-Induced Ferritinophagy and Protects Osteoclasts from Ferroptosis. Free Radical Biology and Medicine, 169, 271-282.
https://doi.org/10.1016/j.freeradbiomed.2021.04.027
[27] Florencio-Silva, R., Sasso, G.R., Sasso-Cerri, E., et al. (2015) Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed Research Interna-tional, 2015, Article ID: 421746.
https://doi.org/10.1155/2015/421746
[28] Zhao, G.-Y., Zhao, L.-P., He, Y.-F., et al. (2012) A Comparison of the Biological Activities of Human Osteoblast hFOB1.19 between Iron Excess and Iron Deficiency. Biological Trace Ele-ment Research, 150, 487-495.
https://doi.org/10.1007/s12011-012-9511-9
[29] Edwards III, D.F., Miller, C.J., Quintana-Martinez, A., et al. (2021) Differential Iron Requirements for Osteoblast and Adipocyte Differentiation. JBMR Plus, 5, e10529.
https://doi.org/10.1002/jbm4.10529
[30] Balogh, E., Tolnai, E., Nagy, B., et al. (2016) Iron Overload Inhibits Os-teogenic Commitment and Differentiation of Mesenchymal Stem Cells via the Induction of Ferritin. Biochimica et Bio-physica Acta (BBA)-Molecular Basis of Disease, 1862, 1640-1649.
https://doi.org/10.1016/j.bbadis.2016.06.003
[31] Liu, F., Zhang, W.-L., Meng, H.-Z., Cai, Z.-Y. and Yang, M.-W. (2017) Regulation of DMT1 on Autophagy and Apoptosis in Osteoblast. International Journal of Medical Sciences, 14, 275-283.
https://doi.org/10.7150/ijms.17860
[32] Hentze, M.W., Muckenthaler, M.U., Galy, B. and Camaschella, C. (2010) Two to Tango: Regulation of Mammalian Iron Metabolism. Cell, 142, 24-38.
https://doi.org/10.1016/j.cell.2010.06.028
[33] Vogt, A.-C.S., Arsiwala, T., Mohsen, M., et al. (2021) On Iron Metabolism and Its Regulation. International Journal of Molecular Sciences, 22, Article No. 4591.
https://doi.org/10.3390/ijms22094591
[34] Kowdley, K.V., Gochanour, E.M., Sundaram, V., Shah, R.A. and Handa, P. (2021) Hepcidin Signaling in Health and Disease: Ironing Out the Details. Hepatology Communications, 5, 723-735.
https://doi.org/10.1002/hep4.1717
[35] Tsay, J., Yang, Z., Ross, F.P., et al. (2010) Bone Loss Caused by Iron Overload in a Murine Model: Importance of Oxidative Stress. Blood, 116, 2582-2589.
https://doi.org/10.1182/blood-2009-12-260083
[36] Zhang, W., Xu, J., Qiu, J., et al. (2018) Novel and Rapid Os-teoporosis Model Established in Zebrafish Using High Iron Stress. Biochemical and Biophysical Research Communica-tions, 496, 654-660.
https://doi.org/10.1016/j.bbrc.2017.12.172
[37] Shen, G.S., Yang, Q., Jian, J.L., et al. (2014) Hepcidin1 Knockout Mice Display Defects in Bone Microarchitecture and Changes of Bone Formation Markers. Calcified Tissue Internation-al, 94, 632-639.
https://doi.org/10.1007/s00223-014-9845-8
[38] Sun, L., Guo, W., Yin, C., et al. (2014) Hepcidin Deficiency Un-dermines Bone Load-Bearing Capacity through Inducing Iron Overload. Gene, 543, 161-165.
https://doi.org/10.1016/j.gene.2014.02.023
[39] Guggenbuhl, P., Fergelot, P., Doyard, M., et al. (2011) Bone Sta-tus in a Mouse Model of Genetic Hemochromatosis. Osteoporosis International, 22, 2313-2319.
https://doi.org/10.1007/s00198-010-1456-2
[40] Doyard, M., Chappard, D., Leroyer, P., et al. (2016) Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss. PLOS ONE, 11, e0148292.
https://doi.org/10.1371/journal.pone.0148292
[41] Jiang, Y., Yan, Y., Wang, X., Zhu, G. and Xu, Y.-J. (2016) Hepcidin Inhibition on the Effect of Osteogenesis in Zebrafish. Biochemical and Biophysical Research Communications, 476, 1-6.
https://doi.org/10.1016/j.bbrc.2016.05.118
[42] 王冰, 徐又佳, 钱忠明. 铁与骨代谢研究的新进展[J]. 中国骨质疏松杂志, 2007, 13(10): 743-745.
[43] Cornish, J., Callon, K.E., Naot, D., et al. (2004) Lactoferrin Is a Po-tent Regulator of Bone Cell Activity and Increases Bone Formation in Vivo. Endocrinology, 145, 4366-4374.
https://doi.org/10.1210/en.2003-1307
[44] Hou, J.-M., Xue, Y. and Lin, Q.-M. (2012) Bovine Lactoferrin Im-proves Bone Mass and Microstructure in Ovariectomized Rats via OPG/RANKL/RANK Pathway. Acta Pharmacologica Sinica, 33, 1277-1284.
https://doi.org/10.1038/aps.2012.83
[45] Kang, H., Yan, Y., Jia, P., et al. (2016) Desferrioxamine Reduces Ultra-high-Molecular-Weight Polyethylene-Induced Osteolysis by Restraining Inflammatory Osteoclastogenesis via Heme Oxygenase-1. Cell Death & Disease, 7, e2435.
https://doi.org/10.1038/cddis.2016.339
[46] Guo, J.-P., Pan, J.-X., Xiong, L., et al. (2015) Iron Chelation Inhibits Osteoclastic Differentiation in Vitro and in Tg2576 Mouse Model of Alzheimer’s Disease. PLOS ONE, 10, e0139395.
https://doi.org/10.1371/journal.pone.0139395
[47] Yu, H., Yang, C., Jian, L., et al. (2019) Sulfasalazine-Induced Ferroptosis in Breast Cancer Cells Is Reduced by the Inhibitory Effect of Estrogen Receptor on the Transferrin Receptor. Oncology Reports, 42, 826-838.
https://doi.org/10.3892/or.2019.7189
[48] Kajarabille, N. and Latunde-Dada, G.O. (2019) Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. International Journal of Molecular Sciences, 20, Article No. 4968.
https://doi.org/10.3390/ijms20194968
[49] Cen, W.-J., Feng, Y., Li, S.-S., et al. (2018) Iron Overload Induces G1 Phase Arrest and Autophagy in Murine Preosteoblast Cells. Journal of Cellular Physiology, 233, 6779-6789.
https://doi.org/10.1002/jcp.26405
[50] Zhang, H., Wang, A., Shen, G., et al. (2021) Hepcidin-Induced Reduction in Iron Content and PGC-1β Expression Negatively Regulates Osteoclast Differentiation to Play a Protective Role in Post-menopausal Osteoporosis. Aging, 13, 11296-11314.
https://doi.org/10.18632/aging.202817
[51] Tian, Q., Qin, B., Gu, Y., et al. (2020) ROS-Mediated Necroptosis Is Involved in Iron Overload-Induced Osteoblastic Cell Death. Oxida-tive Medicine and Cellular Longevity, 2020, Article ID: 1295382.
https://doi.org/10.1155/2020/1295382
[52] 王啸, 林华, 徐又佳. NF-κB通路在骨质疏松伴铁蓄积中的潜在作用[J]. 中华内分泌代谢杂志, 2015, 31(2): 192-194.
[53] 程千. 铁蓄积对骨代谢的影响及相关机制的基础和临床研究[D]: [博士学位论文]. 苏州: 苏州大学, 2017: 1-114.
[54] 彭斯伟, 宋敏, 范凯, 等. 铁代谢与骨质疏松症的相关因素研究现状[J]. 中国骨质疏松杂志, 2021, 27(12): 1868-1872.
[55] Yang, Q., Jian, J., Abramson, S.B. and Huang, X. (2011) Inhibitory Effects of Iron on Bone Morphogenetic Protein 2-Induced Osteoblastogenesis. Journal of Bone and Mineral Research, 26, 1188-1196.
https://doi.org/10.1002/jbmr.337
[56] Rauner, M., Baschant, U., Roetto, A., et al. (2019) Transferrin Receptor 2 Controls Bone Mass and Pathological Bone Formation via BMP and Wnt Signaling. Nature Metabolism, 1, 111-124.
https://doi.org/10.1038/s42255-018-0005-8
[57] Huh, J.-E., Shin, J.H., Jang, E.S., et al. (2016) Sirtuin 3 (SIRT3) Maintains Bone Homeostasis by Regulating AMPK-PGC-1β Axis in Mice. Scientific Reports, 6, Article No. 22511.
https://doi.org/10.1038/srep22511
[58] Zhang, J., Zheng, L., Wang, Z., et al. (2019) Lowering Iron Level Protects against Bone Loss in Focally Irradiated and Contralateral Femurs through Distinct Mechanisms. Bone, 120, 50-60.
https://doi.org/10.1016/j.bone.2018.10.005