代谢综合征各组分与前列腺癌的相关性
Correlation of the Components of the Metabolic Syndrome and Prostate Cancer
DOI: 10.12677/ACM.2023.1361385, PDF, HTML, XML, 下载: 164  浏览: 325 
作者: 李晓涵*, 王 健#:昆明医科大学第六附属医院,云南 玉溪
关键词: 代谢综合征前列腺癌高血糖肥胖脂代谢紊乱Metabolic Syndrome Prostate Cancer High Blood Glucose Obesity Lipid Metabolism Disorder
摘要: 目的:对代谢综合征中各组分与前列腺癌的相关性及作用影响机制进行综述。方法:作者通过查阅中外关于代谢综合征及其中各组分与前列腺癌的相关性及影响机制相关文献,总结各代谢综合征组分与前列腺癌的相关性、各组分间的相互关联及共同作用机制、用单独组分能否解释代谢综合征与前列腺癌的关系等进行综述。结果:对于各代谢综合征组分与前列腺癌的发生、发展相关性的研究仍有争议,但其中大部分研究都认为各组分与前列腺癌呈正相关性;各组分之间相互关联且作用机制相互重叠,共同对前列腺癌发生及发展产生影响。结论:代谢综合征是多种代谢紊乱同时并存的疾病,对各组分的单独研究可能为我们探索其中更加准确的机制提供帮助,但也可能导致研究结果更加混乱、复杂,尽管将它们汇总后,其中的相互作用关系难以明晰,对整体结果也很难评估和解释,可能也无法对代谢综合征整体与前列腺癌发生发展造成的影响做出合适的预测及判断,其中的机制仍需继续的探索和研究。
Abstract: Objective: To review the correlation and impact mechanism of various components in metabolic syndrome with prostate cancer. Methods: The author reviewed the literature on the correlation and impact mechanism of metabolic syndrome and its components with prostate cancer at home and abroad, summarized the correlation between various components of metabolic syndrome and prostate cancer, the interrelation and joint action mechanisms between components, and whether individual components can explain the relationship between metabolic syndrome and prostate cancer. Results: The correlation of various components of metabolic syndrome with the occurrence and development of prostate cancer remains controversial, but most of these studies believe that each component is positively correlated with prostate cancer; the components are interrelated and have overlapping action mechanisms, which together have an impact on the occurrence and devel-opment of prostate cancer. Conclusion: Metabolic syndrome is a disease with multiple metabolic disorders coexisting simultaneously. Studying each component separately may help us explore more accurate mechanisms, but it may also lead to more chaotic and complex research results. Even when such results are summarized, it is difficult to clarify the interrelation among them, and evalu-ate and explain the overall results, and may also be impossible to make appropriate predictions and judgments on the overall impact of metabolic syndrome on the occurrence and development of prostate cancer. Therefore, the mechanisms involved still need to be further explored and investi-gated.
文章引用:李晓涵, 王健. 代谢综合征各组分与前列腺癌的相关性[J]. 临床医学进展, 2023, 13(6): 9903-9912. https://doi.org/10.12677/ACM.2023.1361385

1. 引言

代谢综合征(Metabolic Syndrome, MS)是由多种相互关联、严重危害机体健康的代谢紊乱构成的临床症候群,主要是由肥胖、高血糖、血脂紊乱及高血压构成。对于肥胖、高血压、血脂紊乱和糖尿病同时存在对心血管疾病的影响,早在1960年就有学者观察过。随后,这种由多种代谢危险因素聚集而成的疾病越来越多地被发现,于是在1998年由世界卫生组织(WHO)专家组将这种症候群被正式命名为代谢综合征MS,并提出定义和诊断标准。然而关于MS的诊断标准,除WHO提出的诊断标准外,因存在种族、饮食、生活习惯等的巨大差异,没有一个适用于所有种群且公认的标准,多国也依据自身情况进行了修改。2004年中华医学会糖尿病学分会 [1] 也依据中国人群情况提出了MS诊断标准,即:① 超重和(或)肥胖(体质量指数 ≥ 25 kg/m2);② 糖耐量异常和(或)已确诊糖尿病并治疗者;③ 高血压和(或)已确诊高血压并治疗者;④ 血脂紊乱(高甘油三酯血症及低高密度脂蛋白胆固醇血症)。符合四个组分中的3项或全部者即可诊断为MS。

随着高脂肪、高糖、高蛋白、高热量的饮食结构改变,及人口老龄化等,MS也成为我国中老年人群常见疾病。一项关于中国老年人MS患病率的综合研究称,中国老年人MS合并患病率为23.9%,老年男性在性别分组后合并为21.6%,老年女性为26.1%,而美国60岁以上人群MS患病率超过40% [2] 。众所周知,MS与心血管疾病风险增加有关,同时也发现MS与多种泌尿系疾病密切相关:MS被认为是良性前列腺增生性疾病的风险预测因子,会增加前列腺增生患病率及需手术治疗风险;并且MS还被发现与肾结石、膀胱过度活动症、下尿路症状、男性性腺功能减退、勃起功能障碍和不育症有关 [3] [4] ;随着研究的深入,MS与包括前列腺癌、肠癌、乳腺癌、胰腺癌和原发性肝癌在内的多种恶性肿瘤相关的证据越来越多,这些疾病的发生、发展和疗效都会受到MS的影响 [5] 。回顾多项研究对MS与前列腺癌的关系仍有争论,但目前较广泛认可MS是影响前列腺癌(PCa)发生发展的重要的危险因素之一。Laukkanen等称MS病史与高前列腺癌患病概率相关,是未合并MS患者的1.9倍(95%置信区间,1.1~3.5) [6] ,Jan的研究证明MS总的16个检查方面中有13个是侵袭性前列腺癌的危险因素,有7个是致命性前列腺癌的危险因素,认为MS与侵袭性和致死性前列腺癌有关 [7] 。回顾既往研究,Zhang在研究后表明MS会导致患者前列腺切除术风险增加,使晚期前列腺癌风险增加1.5倍,并且认为MS的存在是淋巴结受累的独立预测因子 [8] 。Bhindi的研究也证实MS与高级别前列腺癌的几率增加相关,且发现MS可能增加了前列腺癌根治术后需要补救治疗的风险 [9] ,一篇Meta分析回顾和总结了24项研究后称,MS和前列腺癌发病率之间存在正相关,且MS患者前列腺癌术后Gleason评分、病理分期、盆腔淋巴结转移风险及手术切缘阳性发生率均更高 [10] 。以上多项研究发现MS不仅与前列腺癌的发病风险有关,也对前列腺癌的病理进展、手术风险、术后复发及预后等产生影响。并且在这些研究中还发现,MS中各组分与前列腺癌的发生发展均有关系,MS组分的数量和前列腺癌的风险以及癌症分级之间存在生物梯度 [11] ,Bhindi的另一项研究也发现随着MS组分数量的增加,前列腺癌的诊断率也增加,合并3个及以上的代谢综合征组分者,诊断为前列腺癌的优势比为1.54 [11] [12] 。通过既往的研究发现MS不仅与前列腺癌相关,其中各组分也在前列腺癌的发生发展中产生影响,仅以有无MS进行研究容易掩盖各单独组分对前列腺癌的影响及忽视各组分间的相互作用,通过研究其中各单独组分与前列腺癌的关联与机制,或许能帮助我们进一步探究MS与前列腺癌的关系。本文就代谢综合征与前列腺癌的相关性及影响机制进行如下综述。

2. 肥胖与前列腺癌

1) 肥胖的定义:肥胖是MS代谢紊乱的组成部分之一,与MS关系最密切的是腹型肥胖,即内脏和(或)腹腔脂肪增多而非总体脂或皮下脂肪增加。我国2004版诊断标准以体质量指数BMI ≥ 25 kg/m2作为诊断肥胖的标准,2005版国际糖尿病联盟(IDF)制定的MS全球统一标准中把腰腹围作为诊断肥胖症的核心。有研究认为MS患病率与腰围或腰臀比增加的关系比与体质指数(BMI)增加的关系更为密切 [1] 。

2) 肥胖与前列腺癌的关系:回顾各前瞻性队列研究的证据并不一致,有研究认为它与降低总体前列腺癌患病风险有关,但是会增加晚期前列腺癌的几率 [13] 。但多篇大型Meta分析纳入众多研究并进行统计分析后表明,肥胖和前列腺癌之间有很强的正相关性,与增加高级别和晚期前列腺癌风险有关 [14] [15] [16] 。肥胖还与前列腺根治性切除术后和外照射放疗后生化复发的风险增加有关,且以每5 Kg/m2的BMI增长,复发风险有10%的增加 [17] 。肥胖也与雄激素剥夺治疗后并发症发生率增加以及前列腺癌特异性死亡率增加有关 [16] 。但是也有不少的研究认为肥胖和腰围对前列腺癌的发生无显著关联 [18] 。

3) 肥胖影响前列腺癌的机制:目前关于肥胖和前列腺癌发病风险及增加高级别、晚期前列腺癌风险之间的潜在联系机制尚不清楚。总结目前研究,主要考虑以下机制:① 胰岛素抵抗、高胰岛素血症与胰岛素样生长因子:肥胖常与糖代谢紊乱互相关联,腹型肥胖的患者较非肥胖个体更容易引起胰岛素抵抗,导致更高的血胰岛素水平,增加了胰岛素样生长因子的分泌,通过p21 Ras/MAPK通路和IP-3激酶/AKT通路促进细胞有丝分裂增加癌细胞增殖。② 性激素及性腺轴:肥胖患者大量脂肪堆积,导致雄激素过多的转化为雌激素;性腺轴紊乱、睾酮降低;胰岛素样生长因子抑制性激素结合蛋白产生使PSA下降,可能延误前列腺癌早期诊断,有研究以此来解释肥胖可降低低级别前列腺癌的患病风险,及出现高级别和晚期前列腺癌增多的现象 [19] 。③ 脂肪因子:脂肪细胞能分泌多种脂肪细胞因子,脂肪因子对前列腺癌细胞能产生如调节细胞分化、凋亡、增殖和血管生成等多种生物学效应,在促进前列腺癌的进展中起作用;脂联素水平与前列腺癌呈负相关,肥胖人群中脂联素水平显著降低,抑制了脂联素的抗炎抗增殖作用 [20] [21] 。④ 慢性炎症:MS会引起机体的慢性炎症状态,增加体内促炎症因子、肿瘤坏死因子、白细胞介素6、白介素8水平,形成促瘤微环境。大量证据表明,IL-6在从激素依赖性到去势抵抗性前列腺癌的转变中起主要作用,且与侵袭性前列腺癌表型相关 [22] 。一项实验在体外将前列腺癌细胞用IL-6分化并移植入小鼠体内观察到,IL-6刺激细胞释放的TGF-β通过SMAD2激活p38MAPK,促使前列腺癌进一步发展为雄激素非依赖性前列腺癌,从而对前列腺癌内分泌治疗产生耐药性 [23] 。⑤ 氧化应激、瘦素、血管内皮生长因子的高循环水平增加前列腺癌风险和侵袭性。⑥ 肥大的肿瘤周围脂肪细胞也可能通过肿瘤细胞的化学吸引促进PCa的局部扩散 [24] 。

3. 高血糖与前列腺癌

1) 高血糖的定义:高血糖是代谢综合征的组分之一,2004版中华医学会糖尿病分会制定的代谢综合征诊断标准中,将高血糖定义为空腹血糖 ≥ 6.1 mmol/L和/或餐后2 h血糖 ≥ 7.8 mmol/L,或已诊断为糖尿病并治疗者。可将MS分为没有糖尿病但可有胰岛素抵抗及(或)糖调节受损的MS和伴糖尿病的MS,两者的区别在于胰岛B细胞分泌胰岛素还能否代偿机体的胰岛素抵抗,亦可将2型糖尿病视为MS的后果 [1] 。

2) 高血糖与前列腺癌的关系:糖尿病被公认为多种疾病的高危因素,糖尿病可诱发和显著增加多种肿瘤的发病风险和死亡率,如胰腺癌、乳腺癌、肝癌、结直肠癌、胃癌、泌尿生殖系统肿瘤等 [25] 。而关于糖尿病是否是前列腺癌的高危因素,却出现了不同的争议:1) 欧美等西方国家普遍研究糖尿病会降低前列腺癌的发病风险,欧美多项前瞻性研究和相关Meta分析研究结果大多提出,与非糖尿病患者相比糖尿病患者前列腺癌的发病率和死亡率更低。美国临床内分泌医师学会2013年还提出的共识认为糖尿病是前列腺癌的保护因素 [26] 。2) 而有多篇Meta分析认为糖尿病是亚洲人罹患前列腺癌的高风险因素,会增加前列腺癌的发病率及死亡率 [27] [28] 。Tseng认为糖尿病不论病程长短均会增加患前列腺癌风险,特别是在40~64岁人群中,糖尿病患者罹患前列腺癌的风险是非糖尿病患者的5.83倍 [29] 。

3) 高血糖影响前列腺癌的机制:1) 促进作用:① 高血糖除了对前列腺肿瘤细胞的直接营养作用外,还可诱导前列腺癌细胞miR-301a的高表达,通过更多的miR-301a增强对p21和Smad4表达的抑制作用,进而促进前列腺癌细胞的增殖 [30] ;② 高血糖或2型糖尿病导致的胰岛素抵抗、高胰岛素血症与胰岛素样生长因子产生;③ 睾酮降低、雌雄性激素失调、性腺轴紊乱;④ 高糖环境刺激慢性炎症及炎症因子释放;④ 氧化应激、DNA损伤;⑤ 促进相关基因通路表达,等方式和作用促进前列腺癌发生发展。2) 抑制作用:① 胰岛细胞失代偿后,胰岛素样生长因子降低,减缓前列腺癌细胞增殖发展。② 抗糖尿病药物的使用:二甲双胍具有抗高血糖、抗高胰岛素血症和抗氧化活性,还被发现能降低多种癌症的患病风险 [31] [32] ,通过促进细胞凋亡、抑制细胞周期、抑制上皮间质转化、抑制细胞干性、抑制胰岛素样生长因子、抑制M2巨噬细胞募集、抑制雄激素信号通路、激活腺苷酸活化蛋白激酶(AMPK)、抗氧化应激等途径介导抑制前列腺癌细胞生长、侵袭、转移以及耐药,降低前列腺癌风险 [33] [34] 。

对于糖尿病与前列腺癌在欧美和亚洲发病风险的差异,有研究认为是人种差异及糖尿病、前列腺癌的诊疗方式不同所造成的;在糖尿病早期,胰岛功能代偿胰岛素抵抗,导致高胰岛素血症,导致胰岛素样生长因子大量生成,激活相关信号通路促进了前列腺癌进展,当胰岛细胞失代偿后,胰岛素样生长因子降低,延缓前列腺肿瘤发生发展 [35] 。使用降糖药物会降低前列腺癌风险的研究也越来越多的被报道,作为一线抗糖尿病药物,二甲双胍具有抗高血糖、抗高胰岛素血症和抗氧化活性及抑制胰岛素样生长因子生产,还被发现可降低糖尿病患者发生前列腺增生和前列腺癌的风险 [36] 。为了验证二甲双胍对前列腺癌的作用,土耳其的一项研究在前列腺癌早期组织中观察到病理学和生物化学损伤,同样在糖尿病动物中被观察到且有所增加,而给予二甲双胍后逆转了这些损伤 [37] 。而欧美地区糖尿病患者常更早被诊断且开始相关降糖药物治疗,早期降低了高血糖的营养、刺激等作用并使胰岛素样生长因子生成减少,延缓了肿瘤发生发展并降低了血清PSA水平 [27] [38] 。

4. 血脂紊乱与前列腺癌

1) 血脂紊乱的定义:2004版我国MS诊断标准中定义血脂紊乱的标准为:高甘油三酯血脂(TG ≥ 1.70 mmol/L)及(或)低高密度脂蛋白胆固醇血症(HDL-C < 0.9 mmol/L (男)、HDL-C < 1.0 mmol/L (女))。

2) 血脂紊乱与PCa的关系:在与前列腺癌相关性的研究中,国外有研究认为前列腺癌发病与甘油三酯水平呈正相关,与胆固醇(TC)和高密度脂蛋白胆固醇(HDL-C)水平呈负相关,TG、TC和HDL-C水平是影响前列腺癌发生率的独立危险因素,血清甘油三酯水平升高还与前列腺癌的侵袭风险增加及前列腺癌复发风险增加相关 [39] [40] 。国内的多项研究也得出相近的结论 [41] 。高密度脂蛋白已经被广泛认为是心血管疾病的保护因素,其降低不仅增加心血管疾病风险,并且与某些肿瘤风险增加有关 [42] 。有关于HDL与泌尿系肿瘤方面的研究称,HDL-C与前列腺癌风险呈负相关(HR = 0.79, 95% CI = 0.68~0.92)、高密度脂蛋白水平高的男性总体和晚期前列腺癌的风险降低 [43] 。但也有多中心的研究称甘油三酯、胆固醇、高密度脂蛋白胆固醇与前列腺癌风险无相关性 [13] [44] 。

3) 高甘油三脂影响前列腺癌的机制:研究认为高甘油三酯导致肿瘤风险增加,是因为① 甘油三酯水平升高会促进氧化应激反应的发生及活性氧簇的产生,导致细胞DNA损伤,从而促进肿瘤风险升高 [41] [45] [46] 。② 还可导致体内血糖升高,刺激胰腺,促进胰岛素分泌增加,高胰岛素血症导致受损前列腺中胰岛素、IGF1、AKT信号的激活增加,促进细胞有丝分裂,加速细胞增生,导致肿瘤过度增殖,导致前列腺癌的发生 [47] 。③ 高甘油三酯代谢后产生过量的脂肪酸,前列腺癌患者因缺乏对低密度脂蛋白受体的调节,使摄取的脂肪酸增多,导致癌细胞生长因子(前列腺素E2)合成增多 [48] 。

4) 高密度脂蛋白胆固醇影响前列腺癌的机制:高密度脂蛋白胆固醇有助于将组织中的胆固醇转运到肝细胞代谢,降低细胞中的胆固醇,且调节细胞膜中的胆固醇含量来影响信号通路对癌症的发生起保护作用 [49] 。在一项动物实验中,接受HDL模拟物的小鼠,肿瘤细胞的生存和增殖力及肿瘤负荷均降低,有抑制肿瘤发展的作用,还表明结合和去除促炎性脂质是HDL模拟物抑制肿瘤发展的潜在机制 [50] 。也有大量实验研究表明,HDL-C除了能通过调节胆固醇发挥作用外,血浆HDL-C中的主要载脂蛋白(apoA)、各种蛋白质和磷脂,可能通过多种机制防止肿瘤发展 [51] 。HDL-C还具有抗氧化、抗糖化、抗炎、诱导一氧化氮和免疫调节等作用,并在抑制低密度脂蛋白氧化级联中发挥作用 [52] 。

5) 高胆固醇与前列腺癌:虽然在MS诊断标准的血脂紊乱中没有提及高胆固醇血症,但在一些研究中,也发现高胆固醇血症在前列腺癌的发生发展中起重要作用。胆固醇是构成细胞膜的重要组成成分,占质膜脂类的20%以上,参与细胞信号转导及细胞周期及分化。一项纳入我国3102名前列腺癌患者的回顾性队列研究称,总胆固醇、低密度脂蛋白升高与罹患前列腺癌风险增加相关 [53] 。日本公卫中心的一项对33,368例男性的研究进行统计后表示,总胆固醇水平与晚期前列腺癌风险之间存在强烈的正相关性 [54] 。高胆固醇血症与包括乳腺癌、前列腺癌和结肠癌等肿瘤通过多种机制相关联 [55] 。对其中机制的研究有:① 在肿瘤细胞中发现胆固醇含量更高,胆固醇合成中间体在癌基因膜锚定、核苷酸合成和线粒体电子传递中起重要作用,胆固醇的增多影响了细胞膜多种信号通路及转导,促进前列腺癌细胞增殖 [37] 。② 胆固醇在前列腺癌中作为雄激素、细胞增殖介质和炎症的前体起重要作用 [56] 。胆固醇为雄激素合成的前体物质,胆固醇水平升高导致雄激素合成增多,且影响雄激素结合受体,为肿瘤细胞提供增殖所需要的雄激素,导致肿瘤进展 [57] 。③ 降脂类药物如他汀类、贝特类等均有研究发现起通过不同基因、细胞信号通路等多重作用抑制胆固醇的合成及发挥抑制肿瘤作用。

5. 高血压与前列腺癌

1) 高血压的定义与前列腺癌:2004版我国MS诊断标准中对于高血压的定义为:收缩压/舒张压 ≥ 140/90 mmHg。

2) 高血压与前列腺癌:2004版我国MS诊断标准中对于高血压的定义为:收缩压/舒张压 ≥ 140/90 mmHg。关于高血压是否是前列腺癌的潜在危险因素,目前相关研究相对较少,结果也没有统一,甚至出现结果相互矛盾:1) 高血压与前列腺癌正相关:① 台湾的一项研究回顾了80,299名患者,发现高血压患者前列腺癌的风险显著增加,长期使用抗高血压药物的患者相对于未使用降压药物的患者罹患前列腺癌的风险无明显差异 [58] 。② 在MS的几个组分中,高血压与前列腺癌风险相关性最高,高血压与总前列腺癌死亡率正相关 [59] 。③ 高血压患者前列腺癌的患病风险较血压正常者增加35%,合并高血压的前列腺癌患者比无高血压的前列腺癌患者总体死亡率升高49%。在接受治疗的前列腺癌患者中,舒张压高的患者总体死亡风险增加3倍 [60] 。④ 一篇荟萃分析共纳入了21项已发表的研究发现,在基于地理区域的亚组分析中,亚洲组发现高血压与前列腺癌的相关性比欧美地区组更明显,经过统计分析表明,患有高血压的个体患前列腺癌的风险显著升高15% [61] 。⑤ 高血压也与根治性前列腺切除术后生化复发的风险增加相关 [62] 。2) 高血压与前列腺癌无相关性:欧洲癌症与营养前瞻性研究(EPIC)和荟萃分析均未观察到高血压和前列腺癌风险之间的任何联系 [63] 。3) 高血压与前列腺癌负相关:一项瑞典的研究称收缩压或舒张压水平与前列腺癌发病风险显著降低15%~20%相关,但血压与致命前列腺癌风险无显著相关性 [64] 。

3) 高血压影响前列腺癌的机制:高血压和前列腺癌风险之间相关的确切机制尚不清楚。有人提出:① 高血压可通过增强交感神经系统的活性,导致雄激素介导的刺激前列腺癌细胞生长作用增加 [65] 。② 在对高血压动物模型的研究中,高血压可导致异常血管平滑肌细胞增殖,刺激肿瘤新生血管形成 [66] 。③ 血压升高可能下调IGF结合蛋白-1 (IGF BP-1),这可能通过增加IGF结合蛋白的活性增加前列腺癌的风险 [67] 。④ 血管紧张素过度分泌将导致高血压,同时血管紧张素在肿瘤组织中有促有丝分裂作用增加肿瘤营养血管的生成。⑤ 前列腺癌组织中血管紧张素1受体的表达高于正常前列腺组织,使用肾素–血管紧张素系统(RAS)抑制剂的个体与前列腺癌风险降低相关 [68] 。

6. 总结

综上,通过分析MS各组分与前列腺癌的关系后发现,各组分与前列腺癌的相关性研究几乎都有许多争议,甚至互相矛盾。但都可以发现其中各组分在一定程度上都与前列腺癌的发生发展有所关联,各组分常伴随出现,通过对单独组分的研究,发现它们的作用机制主要集中在了胰岛素抵抗和高胰岛素水平、胰岛素样生长因子、氧化应激损伤、慢性炎症、细胞信号通路、基因表达等方面,它们之间通过相互关联和重叠的机制对前列腺癌产生影响,其中以胰岛素抵抗及胰岛素样生长因子为主要共同机制。在对各组分的研究中,Zhang [8] 称随着代谢综合征成分数量的累积,高危前列腺癌的风险增加,De Nunzio研究后发现仅在合并3个及以上的代谢综合征组分时,随组分数量增加,前列腺癌发病风险增加 [69] 。这些研究也提示出MS的各组分是互相关联、共同对前列腺癌产生影响。MS是多种代谢紊乱同时并存的疾病,对各组分的单独研究可能为我们探索其中更加准确的作用机制提供帮助,但也可能导致研究结果更加混乱、复杂,尽管将它们汇总后,其中的相互作用关系难以明晰,对整体结果也很难评估和解释,可能也无法对MS整体与前列腺癌发生发展造成的影响做出合适的预测及判断。其中的机制仍需继续的探索。通过对以上各组分的讨论,也提示出通过尽早对MS中各组分进行预防及干预治疗,或许能使MS患者在降低前列腺癌风险上获益,对临床指导患者避免和减少前列腺癌高危因素、预防前列腺癌的发生发展有重要意义。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 中华医学会糖尿病学分会代谢综合征研究协作组. 中华医学会糖尿病学分会关于代谢综合征的建议[J]. 中华糖尿病杂志, 2004, 12(3): 156-161.
[2] 李燕萍, 周裕婧, 朱士胜, 赵晓龙. 中国老年人代谢综合征患病率META分析[J]. 现代预防医学, 2022, 49(5): 913-917.
[3] Ineichen, G.B. and Burkhard, F.C. (2021) Metabolic Syndrome and Male Lower Urinary Tract Symptoms. Panminerva Medica, 64, 329-336.
[4] Medina, J.S. and Rodríguez, J.C. (2016) A Review of the Pathophysiological Factors Involved in Urological Disease Associated with Metabolic Syndrome. Actas Urológicas Españolas (English Edition), 40, 279-287.
https://doi.org/10.1016/j.acuroe.2016.03.010
[5] Bitzur, R., Brenner, R., Maor, E., Antebi, M., Ziv-Baran, T., Segev, S., Sidi, Y. and Kivity, S. (2016) Metabolic Syndrome, Obesity, and the Risk of Cancer Development. European Journal of Internal Medicine, 34, 89-93.
https://doi.org/10.1016/j.ejim.2016.08.019
[6] Laukkanen, J.A., et al. (2004) Metabolic Syndrome and the Risk of Prostate Cancer in Finnish Men: A Population-Based Study. Cancer Epidemiology, Biomarkers & Prevention, 13, 1646-1650.
https://doi.org/10.1158/1055-9965.1646.13.10
[7] Hammarsten, J. and Peeker, R. (2011) Urological Aspects of the Metabolic Syndrome. Nature Reviews Urology, 8, 483-494.
https://doi.org/10.1038/nrurol.2011.112
[8] Zhang, G.-M., Zhu, Y., Dong, D.-H., Han, C.-T., Gu, C.-Y., Gu, W.-J., et al. (2015) The Association between Metabolic Syn-drome and Advanced Prostate Cancer in Chinese Patients Receiving Radical Prostatectomy. Asian Journal of Andrology, 17, 839-844.
https://doi.org/10.4103/1008-682X.148138
[9] Bhindi, B., et al. (2016) Influence of Metabolic Syn-drome on Prostate Cancer Stage, Grade, and Overall Recurrence Risk in Men Undergoing Radical Prostatectomy. Urol-ogy, 93, 77-85.
https://doi.org/10.1016/j.urology.2016.01.041
[10] Gacci, M., Russo, G.I., De Nunzio, C., Sebas-tianelli, A., Salvi, M., Vignozzi, L., et al. (2017) Meta-Analysis of Metabolic Syndrome and Prostate Cancer. Prostate Cancer and Prostatic Diseases, 20, 146-155.
https://doi.org/10.1038/pcan.2017.1
[11] Damiano, R., Cicione, A. and Cantiello, F. (2015) Re: Dissecting the As-sociation between Metabolic Syndrome and Prostate Cancer Risk: Analysis of a Large Clinical Cohort. European Urolo-gy, 67, 972-973.
https://doi.org/10.1016/j.eururo.2014.12.062
[12] Bhindi, B., Locke, J., et al. (2015) Dissecting the Association between Metabolic Syndrome and Prostate Cancer Risk: Analysis of a Large Clinical Cohort. European Urology, 67, 64-70.
https://doi.org/10.1016/j.eururo.2014.01.040
[13] Monroy-Iglesias, M.J., Russell, B., Crawley, D., Allen, N.E., Travis, R.C., et al. (2021) Metabolic Syndrome Biomarkers and Prostate Cancer Risk in the UK Biobank. Interna-tional Journal of Cancer, 148, 825-834.
https://doi.org/10.1002/ijc.33255
[14] Olivas, A. and Price, R.S. (2020) Obesity, Inflammation, and Advanced Prostate Cancer. Nutrition and Cancer, 73, 2232-2248.
https://doi.org/10.1080/01635581.2020.1856889
[15] Golabek, T., Bukowczan, J., Chłosta, P., et al. (2014) Obe-sity and Prostate Cancer Incidence and Mortality: A Systematic Review of Prospective Cohort Studies. Urologia Interna-tionalis, 92, 7-14.
https://doi.org/10.1159/000351325
[16] Allott, E.H., Masko, E.M. and Freedland, S.J. (2013) Obesity and Prostate Cancer: Weighing the Evidence. European Urology, 63, 800-809.
https://doi.org/10.1016/j.eururo.2012.11.013
[17] Rivera-Izquierdo, M., de Rojas, J.P., et al. (2022) Obesity and Biochemical Recurrence in Clinically Localised Prostate Cancer: A Systematic Review and Meta-Analysis of 86,490 Pa-tients. Prostate Cancer and Prostatic Diseases, 25, 411-421.
https://doi.org/10.1038/s41391-021-00481-7
[18] Stevens, V.L., Jacobs, E.J., Maliniak, M.L., Patel, A.V. and Gapstur, S.M. (2017) No Association of Waist Circumference and Prostate Cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiology, Biomarkers & Prevention, 26, 1812-1814.
https://doi.org/10.1158/1055-9965.EPI-17-0802
[19] Demarzo, A.M., Nelson, W.G., Isaacs, W.B. and Epstein, J.I. (2003) Pathological and Molecular Aspects of Prostate Cancer. The Lancet, 361, 955-964.
https://doi.org/10.1016/S0140-6736(03)12779-1
[20] Tumminia, A., Vinciguerra, F., Parisi, M., Graziano, M., Sciacca, L., Baratta, R. and Frittitta, L. (2019) Adipose Tissue, Obesity and Adiponectin: Role in Endocrine Cancer Risk. International Journal of Molecular Sciences, 20, Article No. 2863.
https://doi.org/10.3390/ijms20122863
[21] Mistry, T., Digby, J.E., Desai, K.M. and Randeva, H.S. (2007) Obesity and Prostate Cancer: A Role for Adipokines. European Urology, 52, 46-53.
https://doi.org/10.1016/j.eururo.2007.03.054
[22] Nguyen, D.P., Li, J. and Tewari, A.K. (2014) Inflammation and Prostate Cancer: The Role of Interleukin 6 (IL-6). BJU International, 113, 986-992.
https://doi.org/10.1111/bju.12452
[23] Natani, S., Sruthi, K.K., Asha, S.M., Khilar, P., et al. (2022) Activation of TGF-β—SMAD2 Signaling by IL-6 Drives Neuroendocrine Differentiation of Prostate Cancer through p38MAPK. Cellular Signalling, 91, Article ID: 110240.
https://doi.org/10.1016/j.cellsig.2021.110240
[24] Bandini M., Gandaglia, G. and Briganti, A. (2017) Obesity and Prostate Cancer. Current Opinion in Urology, 27, 415-421.
https://doi.org/10.1097/MOU.0000000000000424
[25] Noto, H., Tsujimoto, T. and Noda, M. (2012) Significantly Increased Risk of Cancer in Diabetes Mellitus Patients: A Meta-Analysis of Epidemiological Evidence in Asians and Non-Asians. Journal of Diabetes Investigation, 3, 24-33.
https://doi.org/10.1111/j.2040-1124.2011.00183.x
[26] Handelsman, Y., Leroith, D., Bloomgarden, Z.T., Da-gogo-Jack, S., Einhorn, D., Garber, A.J., et al. (2013) Diabetes and Cancer—An AACE/ACE Consensus Statement. Endocrine Practice, 19, 675-693.
https://doi.org/10.4158/EP13248.CS
[27] Chen, Y., Wu, F., Saito, E., Lin, Y.S., Song, M., et al. (2017) Associa-tion between Type 2 Diabetes and Risk of Cancer Mortality: A Pooled Analysis of over 771,000 Individuals in the Asia Cohort Consortium. Diabetologia, 60, 1022-1032.
https://doi.org/10.1007/s00125-017-4229-z
[28] Long, X.-J., Lin, S., Sun, Y.-N. and Zheng, Z.-F. (2012) Diabetes Mellitus and Prostate Cancer Risk in Asian Countries: A Meta-Analysis. Asian Pacific Journal of Cancer Prevention: APJCP, 13, 4097-4100.
https://doi.org/10.7314/APJCP.2012.13.8.4097
[29] Tseng, C. (2022) Pioglitazone and Prostate Cancer Risk in Taiwanese Male Patients with Type 2 Diabetes: A Retrospective Cohort Study. The World Journal of Men’s Health, 41, 119-128.
https://doi.org/10.5534/wjmh.210157
[30] Li, X.J., Li, J., Cai, Y., Peng, S.B., Wang, J., Xiao, Z.M., Wang, Y., Tao, Y.R., Li, J., Leng, Q., Wu, D.L., Yang, S.D., Ji, Z.L., Han, Y.F., Li, L.R., Gao, X., Zeng, C.X. and Wen, X.Q. (2018) Hyperglycaemia-Induced miR-301a Promotes Cell Proliferation by Repressing p21 and Smad4 in Prostate Cancer. Cancer Letters, 418, 211-220.
https://doi.org/10.1016/j.canlet.2018.01.031
[31] Hankinson, S.J., Fam, M. and Patel, N.N. (2017) A Review for Clinicians: Prostate Cancer and the Antineoplastic Properties of Metformin. Urologic Oncology: Seminars and Original Investigations, 35, 21-29.
https://doi.org/10.1016/j.urolonc.2016.10.009
[32] Vancura, A., Bu, P.L., Bhagwat, M., Zeng, J. and Vancurova, I. (2018) Metformin as an Anticancer Agent. Trends in Pharmacological Sciences, 39, 867-878.
https://doi.org/10.1016/j.tips.2018.07.006
[33] Tseng, C.-H. (2014) Metformin Significantly Reduces Incident Prostate Cancer Risk in Taiwanese Men with Type 2 Diabetes Mellitus. European Journal of Cancer, 50, 2831-2837.
https://doi.org/10.1016/j.ejca.2014.08.007
[34] Wang, Y., Liu, G.L., Tong, D.L., Parmar, H., Hasenmayer, D., Yuan, W.Q., Zhang, D.Z. and Jiang, J. (2015) Metformin Represses Androgen-Dependent and Androgen-Independent Prostate Cancers by Targeting Androgen Receptor. The Prostate, 75, 1187-1196.
https://doi.org/10.1002/pros.23000
[35] Grossmann, M. and Wittert, G. (2012) Androgens, Diabetes and Prostate Cancer. Endocrine-Related Cancer, 19, F47-F62.
https://doi.org/10.1530/ERC-12-0067
[36] Kuo, Y.-J., Sung, F.-C., Hsieh, P.-F., Chang, H.-P., Wu, K.-L. and Wu, H.-C. (2019) Metformin Reduces Prostate Cancer Risk among Men with Benign Prostatic Hyperplasia: A Nationwide Population-Based Cohort Study. Cancer Medicine, 8, 2514-2523.
https://doi.org/10.1002/cam4.2025
[37] Škara, L., et al. (2021) Prostate Cancer—Focus on Cholesterol. Cancers, 13, Article No. 4696.
https://doi.org/10.3390/cancers13184696
[38] Renehan, A.G., Zwahlen, M., Minder, C., et al. (2004) Insulin-Like Growth Factor (IGF)-I, IGF Binding Protein-3, and Cancer Risk: Systematic Review and Meta-Regression Analysis. The Lancet (London, England), 363, 1346-1353.
https://doi.org/10.1016/S0140-6736(04)16044-3
[39] Arthur, R., Møller, H., Garmo, H., Holmberg, L., Stattin, P., Malmstrom, H., et al. (2016) Association between Baseline Serum Glucose, Triglycerides and Total Cholesterol, and Prostate Cancer Risk Categories. Cancer Medicine, 5, 1307-1318.
https://doi.org/10.1002/cam4.665
[40] Katzke, V.A., Sookthai, D., Johnson, T., Kühn, T. and Kaaks, R. (2017) Blood Lipids and Lipoproteins in Relation to Incidence and Mortality Risks for CVD and Cancer in the Prospective EPIC—Heidelberg Cohort. BMC Medicine, 15, Article No. 218.
https://doi.org/10.1186/s12916-017-0976-4
[41] 陈杰翔, 安宏元, 李利. 前列腺癌患者血脂水平及临床意义[J]. 中国老年学杂志, 2021, 41(18): 3950-3952.
[42] Revilla, G., et al. (2020) LDL, HDL and Endocrine-Related Cancer: From Pathogenic Mechanisms to Therapies. Seminars in Cancer Biology, 73, 134-157.
https://doi.org/10.1016/j.semcancer.2020.11.012
[43] Van Hemelrijck, M., Walldius, G., Jungner, I., Hammar, N., Garmo, H., et al. (2011) Low Levels of Apolipoprotein A-I and HDL Are Associated with Risk of Prostate Cancer in the Swedish AMORIS Study. Cancer Causes & Control, 22, 1011-1019.
https://doi.org/10.1007/s10552-011-9774-z
[44] Liu, Y.P., Zhang, Y.X., Li, P.F., Cheng, C., Zhao, Y.S., Li, D.P. and Du, C. (2015) Cholesterol Levels in Blood and the Risk of Prostate Cancer: A Meta-Analysis of 14 Prospective Studies. Cancer Epidemiology, Biomarkers & Prevention, 24, 1086-1093.
https://doi.org/10.1158/1055-9965.EPI-14-1329
[45] O’neill, S. and O’driscoll, L. (2015) Metabolic Syndrome: A Closer Look at the Growing Epidemic and Its Associated Pathologies. Obesity Reviews: An Official Journal of the Inter-national Association for the Study of Obesity, 16, 1-12.
https://doi.org/10.1111/obr.12229
[46] 金头峰, 全贞玉. 结直肠癌患者血脂、白细胞和维生素E水平分析[J]. 中国慢性病预防与控制, 2010, 18(4): 399-400.
[47] Wang, H., Yan, W., Sun, Y.H., et al. (2022) High-Fat Di-et-Induced Hyperinsulinemia Promotes the Development of Prostate Adenocarcinoma in Prostate Specific Pten-/- Mice. Carcinogenesis, 43, 504-516.
https://doi.org/10.1093/carcin/bgac013
[48] Chamie, K., Oberfoell, S., Kwan, L., et al. (2013) Body Mass Index and Prostate Cancer Severity: Do Obese Men Harbor More Aggressive Disease on Prostate Biopsy? Urology, 81, 949-955.
https://doi.org/10.1016/j.urology.2013.01.021
[49] Zamanian-Daryoush, M. and Didonato, J.A. (2015) Apolipo-protein A-I and Cancer. Frontiers in Pharmacology, 6, Article No. 265.
https://doi.org/10.3389/fphar.2015.00265
[50] Su, F., Grijalva, V., Navab, K., et al. (2012) HDL Mimetics Inhibit Tumor Development in both Induced and Spontaneous Mouse Models of Colon Cancer. Molecular Cancer Therapeutics, 11, 1311-1319.
https://doi.org/10.1158/1535-7163.MCT-11-0905
[51] Soran, H., Hama, S., Yadav, R. and Durrington, P.N. (2012) HDL Functionality. Current Opinion in Lipidology, 23, 353-366.
https://doi.org/10.1097/MOL.0b013e328355ca25
[52] Eckardstein A., Hersberger, M. and Rohrer, L. (2005) Cur-rent Understanding of the Metabolism and Biological Actions of HDL. Current Opinion in Clinical Nutrition and Meta-bolic Care, 8, 147-152.
https://doi.org/10.1097/00075197-200503000-00007
[53] Zhao, R.Z., Cheng, G., Wang, B., Qin, C., Liu, Y., Pan, Y.S., et al. (2017) BMI and Serum Lipid Parameters Predict Increasing Risk and Aggressive Prostate Cancer in Chinese People. Oncotarget, 8, 66051-66060.
https://doi.org/10.18632/oncotarget.19790
[54] Iso, H., Ikeda, A., Inoue, M., Sato, S. and Tsugane, S. (2009) Se-rum Cholesterol Levels in Relation to the Incidence of Cancer: The JPHC Study Cohorts. International Journal of Can-cer, 125, 2679-2686.
https://doi.org/10.1002/ijc.24668
[55] Wu, Q., Ishikawa, T., Sirianni, R., Tang, H., et al. (2013) 27-Hydroxycholesterol Promotes Cell-Autonomous, ER-Positive Breast Cancer Growth. Cell Reports, 5, 637-645.
https://doi.org/10.1016/j.celrep.2013.10.006
[56] Pelton, K., et al. (2012) Cholesterol and Prostate Cancer. Current Opinion in Pharmacology, 12, 751-759.
https://doi.org/10.1016/j.coph.2012.07.006
[57] Saxena, N., Beraldi, E., Fazli, L., et al. (2021) Androgen Receptor (AR) Antagonism Triggers Acute Succinate-Mediated Adaptive Responses to Reactivate AR Signaling. EMBO Molecu-lar Medicine, 13, e13427.
https://doi.org/10.15252/emmm.202013427
[58] Pai, P.-Y., Hsieh, V.C.-R., Wang, C.-B., et al. (2015) Long Term Antihypertensive Drug Use and Prostate Cancer Risk: A 9-Year Population-Based Cohort Analysis. International Jour-nal of Cardiology, 193, 1-7.
https://doi.org/10.1016/j.ijcard.2015.05.042
[59] Beebe-Dimmer, J.L., Dunn, R.L., Sarma, A.V., Montie, J.E. and Cooney, K.A. (2007) Features of the Metabolic Syndrome and Prostate Cancer in African-American Men. Cancer, 109, 875-881.
https://doi.org/10.1002/cncr.22461
[60] Stikbakke, E., Schirmer, H., Knutsen, T., Støyten, M., Wilsgaard, T., et al. (2021) Systolic and Diastolic Blood Pressure, Prostate Cancer Risk, Treatment, and Survival. The PROCA-Life Study. Cancer Medicine, 11, 1005-1015.
https://doi.org/10.1002/cam4.4523
[61] Liang, Z., Xie, B., Li, J.F., Wang, X., Wang, S., Meng, S., et al. (2016) Hypertension and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Scientific Reports, 6, Article No. 31358.
https://doi.org/10.1038/srep31358
[62] Tuohimaa, P., Tenkanen, L., Syvälä, H., Lumme, S., Hakulinen, T., Dillner, J. and Hakama, M. (2007) Interaction of Factors Related to the Metabolic Syndrome and Vitamin D on Risk of Prostate Cancer. Cancer Epidemiology, Biomarkers & Prevention, 16, 302-307.
https://doi.org/10.1158/1055-9965.EPI-06-0777
[63] Christakoudi, S., Kakourou, A., Markozannes, G., Tzoulaki, I., Weiderpass, E., Brennan, P., et al. (2020) Blood Pressure and Risk of Cancer in the European Prospective Investiga-tion into Cancer and Nutrition. International Journal of Cancer, 146, 2680-2693.
https://doi.org/10.1002/ijc.32576
[64] Stocks, T., Hergens, M.-P., Englund, A., Ye, W.M. and Stattin, P. (2010) Blood Pressure, Body Size and Prostate Cancer Risk in the Swedish Construction Workers Cohort. International Journal of Cancer, 127, 1660-1668.
https://doi.org/10.1002/ijc.25171
[65] Wallner, L.P., Morgenstern, H., Mcgree, M.E., et al. (2011) The Effects of Metabolic Conditions on Prostate Cancer Incidence over 15 Years of Follow-Up: Results from the Olmsted County Study. BJU International, 107, 929-935.
https://doi.org/10.1111/j.1464-410X.2010.09703.x
[66] Hadrava, V., Tremblay, J. and Hamet, P. (1989) Abnor-malities in Growth Characteristics of Aortic Smooth Muscle Cells in Spontaneously Hypertensive Rats. Hypertension (Dallas, Tex.: 1979), 13, 589-597.
https://doi.org/10.1161/01.HYP.13.6.589
[67] Martin, R.M., Vatten, L., Gunnell, D. and Romundstad, P. (2010) Blood Pressure and Risk of Prostate Cancer: Cohort Norway (CONOR). Cancer Causes & Control: CCC, 21, 463-472.
https://doi.org/10.1007/s10552-009-9477-x
[68] Uemura, H., Hoshino, K. and Kubota, Y. (2011) Engagement of Renin-Angiotensin System in Prostate Cancer. Current Cancer Drug Targets, 11, 442-450.
https://doi.org/10.2174/156800911795538101
[69] De Nunzio, C., Aronson, W., Freedland, S.J., Giovannucci, E. and Parsons, J.K. (2012) The Correlation between Metabolic Syndrome and Prostatic Diseases. European Urology, 61, 560-570.
https://doi.org/10.1016/j.eururo.2011.11.013