骨折术后手术部位感染的诊断及其治疗进展
A Review of the Diagnosis and Treatment Progress of Surgical Site Infection after Fracture Surgery
DOI: 10.12677/ACM.2023.1381716, PDF, HTML, XML, 下载: 228  浏览: 418 
作者: 付星祥:南昌大学附属上饶医院,创伤急救中心,江西 上饶;刘振玉*:南昌大学第一附属医院东湖院区,急诊科,江西 南昌
关键词: 骨折术后感染早期诊断早期治疗After Fracture Surgery Infection Early Diagnosis Early Treatment
摘要: 近年来,随着社会经济的快速发展,外伤所致的开放性、多发性、复杂性骨折病例越来越多,而手术是其主要治疗手段,加之医疗技术的进步和各种新型内固定材料的不断涌现,骨折后接受内固定术的患者日益增多,术后手术部位感染(surgical site infection, SSI)的发生率越来越高。骨折术后感染是常见且严重的并发症,特别是对于开放性的骨折,因皮肤或黏膜破裂、缺损,导致正常的皮肤生理屏障作用消失,骨折断端外露污染,骨折部位软组织挫裂,血管床遭到破坏,周围组织愈合能力及抵抗感染能力减弱,同时术者对于损伤的判断,清创的彻底与否及固定方式的选择等等,都是其易发感染的潜在危险因素。一旦发生术后SSI,轻者导致伤口延迟愈合,重者可形成骨髓炎,甚至需要截肢,尤其对于有植入物的病例,往往导致灾难性后果,不仅会给患者带来肉体的痛苦和经济损失。因此,骨折术后并发感染的早期诊断和预后的判断成为创伤医学及骨科领域一个热点问题。现就四肢骨折术后感染早期诊断中的应用及诊断价值综述如下。
Abstract: In recent years, with the rapid development of society and economy, there have been more and more cases of open, multiple, and complex fractures caused by trauma, and surgery is the main treatment method. In addition, with the advancement of medical technology and the continuous emergence of various new internal fixation materials, the number of patients who undergo internal fixation surgery after fractures is increasing, and the incidence of surgical site infection (SSI) after surgery is increasing. Infection after fracture surgery is a common and serious complication, espe-cially for open fractures, where the normal skin physiological barrier function disappears due to skin or mucosal rupture or defect, the exposed end of the fracture is contaminated, the soft tissue at the fracture site is ruptured, the vascular bed is damaged, the healing ability and resistance to in-fection of the surrounding tissue are weakened. At the same time, the operator’s judgment of injury, thorough debridement, and selection of fixation methods are also important. They are all potential risk factors for their susceptibility to infection. In the event of postoperative SSI, the minor may lead to delayed wound healing, and the severe may lead to Osteomyelitis and even amputation. Espe-cially for cases with implants, it often leads to disastrous consequences, which will not only bring physical pain and economic losses to patients. Therefore, the early diagnosis and prognosis of post-operative infection after fracture surgery have become a hot topic in the fields of trauma medicine and orthopedics. The application and diagnostic value of early diagnosis of postoperative infection in limb fractures are summarized as follows.
文章引用:付星祥, 刘振玉. 骨折术后手术部位感染的诊断及其治疗进展[J]. 临床医学进展, 2023, 13(8): 12247-12255. https://doi.org/10.12677/ACM.2023.1381716

1. 前言

手术部位感染(surgical site infection, SSI)是骨折术后常见且严重并发症之一。在美国医院骨科术后SSI平均发生率高达1.07%,这将带给患者极大的痛苦并加重患者经济负担 [1] 。目前,对骨折术后SSI的研究越来越多,但术后感染仍未得到很好的解决。导致术后SSI的因素有很多,如自身状况、手术操作、内植物的材料以及监测手段等等。然而,许多因素仍缺乏充足的临床研究及科研支持。相关研究指出,院内感染中SSI所占比例高达16%,居院内感染第三位 [2] 。美国NHSN也将SSI作为重点性和目标性监测。2002年,WHO对资助14个国家的55家医院进行院内感染现况调查,结果显示医院SSI的发生率约为8.7%。

四肢骨折是一种常见的外伤性疾病,往往需要手术治疗。SSI是四肢骨折的常见并发症之一,不仅影响手术效果和患者的生活质量,还可能威胁患者的生命安全。因此,早期诊断和及时治疗是必须重视的临床工作。目前,临床诊断中较为困难的问题是对术后感染早期的诊断。本文从骨折术后SSI的流行病学、分类、发生发展机制及目前诊疗状况等进行相关述评。

2. 四肢骨折术后感染的流行病学、危害及常见细菌感染

2.1. 四肢骨折术后SSI的流行病学

骨折术后SSI的发生率由许多因素共同决定,免疫状态、病原菌的毒性、受伤部位、骨折类型、软组织破坏程度等都是影响或导致术后SSI的重要原因。同时,不同的治疗策略和不同的检测指标也可对其造成较大影响,发生率从1%~30%不等,平均约为5%。由研究表明 [3] [4] [5] [6] ,闭合性骨折术后SSI的发生率约2%,开放性骨折术后SSI的发生率为1%~55%不等。总的来说,开放性骨折、软组织损伤和伤口污染严重、伴有神经血管损伤的患者出现术后SSI的风险更高。

2.2. SSI的危害及常见细菌感染

骨折术后SSI是一种严重并发症,常见细菌感染是导致感染的主要原因之一。一旦出现感染,会对患者的术后恢复和治疗产生很大影响。感染可能会导致切口愈合不良、伤口裂开、骨折不稳定、水肿和化脓性红肿等症状,延长住院时间和治疗时间,甚至增加死亡率。因此,可以说四肢骨折术后感染是一种非常严重的疾病。目前,常见的细菌感染有葡萄球菌、链球菌、肠道杆菌等。符雯婷 [7] 等人对256例下肢骨折术后患者创口分泌物进行培养,其中有26例发生术后感染,感染率为10.16%。革兰阳性菌属中,表皮葡萄球菌对阿莫西林和氨苄西林耐药性为100%;肠球菌属对链霉素耐药性为100%;金黄色葡萄球菌对利福平耐药性为90%。革兰氏阴性菌属中,大肠埃希菌对头孢唑林耐药性为100%;铜绿假单胞菌对头孢他啶耐药性为87.50%;鲍氏不动杆菌对亚胺培南耐药性为100%。张磊等人 [8] 在65例切口感染患者创口分泌物中共检出病原菌68株,分离菌株以金黄色葡萄球菌和大肠埃希菌为主。

3. 四肢骨折术后SSI的定义及分类-

目前国内外并没有骨折术后感染的标准定义,一般文献借用美国疾病控制预防中心关于SSI的指南的定义 [9] [10] ,依据感染部位深度分为表面切口感染、深部切口感染和器官/腔隙感染。骨折术后SSI有3种感染途径:① 创伤性:开放性骨折时病原菌直接感染;② 相邻病灶扩散:皮肤或者软组织等临近感染灶蔓延所致;③ 血源性传播:病原菌从体内其他感染灶经过血液循环到达骨组织,当病原菌毒力较大或宿主抵抗力低下时可发生术后SSI。在上世纪80年代有研究者根据骨折内固定植入物后时间,将骨折内固定术后SSI分为3种类型 [11] :① 早期感染:出现在术后2周内,多数为金黄色葡萄球菌等毒力性较强的致病菌引起,处于初期阶段 [12] 。② 迟发性感染:发生在术后2~10周,这个阶段的感染复杂,故此治疗方案的选择非常重要,患者可表现出早期或晚期感染的症状,可表现为血肿、发热等早期症状,也可表现为病灶与皮肤相通形成窦道的慢性感染症状,其与早期感染最重要的区别是这个阶段的致病菌多为毒力性较低的病原菌 [11] 。迟发性感染恰处于骨痂形成期,治疗棘手且效果不尽如人意。研究指出 [13] ,在大鼠骨折断端植入表皮葡萄球菌,术后第8周时感染率可达到83%~100%。③ 慢性感染:发生在术后10周以上,一般临床症状不重且不典型,缺乏全身感染的表现,可伴有疼痛、局部的红肿和窦道形成。慢性感染往往要进行多次彻底的清创及伤口冲洗,且往往治疗效果不佳,在治疗过程中可能存在大量坏死骨组织被清理,最终导致骨不连或骨缺损 [11] [14] ,由此对患者造成极大痛苦并造成更大的经济负担。早期、迟发性及慢性感染的分类有利于SSI病情的判断及治疗方法的选择,因此临床应用十分广泛。

4. SSI临床表现、诊断方法及治疗

4.1. SSI的临床表现

骨折术后SSI的诊断,往往可以通过患者的病史、临床表现、查体、影像学资料、化验结果、病原微生物鉴定以及组织病理学结果明确。术后SSI诊断的“金标准”是组织活检的病理学检查。骨折术后SSI患者的临床表现与感染出现的时间差异很大,早期主要表现为红、肿、热、痛等典型的炎性症状,切口延迟愈合或不愈合,血肿形成等。迟发性和慢性感染表现差异较大,没有典型的急性炎症反应的症状,可仅表现为局部疼痛、窦道、内固定松动、断裂等不稳定表现等情况 [15] [16] [17] 。

4.2. SSI的诊断方法

① 实验室检查:主要通过肝素结合蛋白(Heparin binding protein, HBP)、红细胞沉降率(erythrocyte sedimentation rate, ESR)、降钙素原(procalcitonin, PCT)、白细胞(white blood cell, WBC)计数及分类及C-反应蛋白(C-reaction protein, CRP)等炎性指标来判断。不同的检测指标在感染早期中升高程度不同,但慢性感染或迟发性感染种,白细胞及中性粒细胞敏感性和特异性不够 [11] ,ESR和CRP值有变化仅仅约为65% [18] 。PCT值高于50ng/ml时高度怀疑感染存在的可能性,一度被认为是诊断及预测早期感染的重要指标,但其不足是PCT值阴性并不能完全除外SSI,也不能区分感染的部位 [19] [20] 。HBP是一种5 kDa的小分子蛋白质,主要由白细胞分泌,其在机体免疫和炎症反应中发挥着重要作用。HBP可以增强嗜中性粒细胞的活性,促进炎症介质的释放和炎症细胞的浸润。同时,HBP可以增强内皮细胞的通透性,使炎症细胞更容易穿越血管壁进入组织。因此,HBP作为一种炎症标志物在临床上也常被用于炎症性疾病的诊断。将HBP和其他炎症标志物结合使用,可以更好地判断患者的感染情况和炎症程度,帮助医生合理地制定治疗计划。

② 微生物学检查:微生物学检查由于留取标本的方式方法差异,其微生物培养阳性率差别很大。开放性骨折在清创或行内固定术时培养阳性的病原菌与最终引起感染的病原菌没有明显的关联性 [21] [22] ,对于标本病原菌的培养时间目前没有统一规定且其存在较大争议,但大多数学者认为1~2周是比较合理的时间段 [23] [24] 。骨折内固定术后SSI的患者取出内固定后应当进行常规培养,声波溶解法可以使内固定上的细菌脱落,使细菌溶解出进行培养,声波溶解法已经被证实可以增加培养的阳性率,特别是在未使用抗生素的患者中 [25] [26] [27] 。有研究认为培养结果阴性时聚合酶链式反应技术(polymerase chain reaction, PCR)可以提高其诊断的敏感性,但其无法区别病原菌是否存活,且假阳性率很高,临床实际应用率及临床使用价值不高,临床工作中也较少使用 [28] [29] 。

③ 连续的影像学检查:是观察骨折内固定术后解剖结构、判断骨折愈合、骨折断端对位对线和评价骨量的主要手段之一 [11] [30] 。对骨组织更精确的评估需要依赖CT扫描,CT可以显示骨折类型、新骨是否形成、死骨及感染的相关证据,如骨膜反应、窦道形成及软组织内的脓肿形成等信。

④ 组织病理学检查:是诊断术后SSI的金标准,行病灶清除术时应对标本进行组织病理学检查。感染病灶在组织中分布不均匀,故一般应至少取 3 处不同区域的组织送检。组织病理学检查可以鉴别急性或慢性感染,死骨形成,伴随肉芽组织和纤维组织增生等特征,其典型表现为:组织内淋巴细胞、浆细胞等不同类型炎性细胞浸润 [14] [31] 。

4.3. SSI的治疗

SSI的治疗难度很大,不能一概而论,目前国内外也没有标准化治疗流程,因此根据患者个体化差异制定个体化治疗方案是目前的主流思想。控制感染、修复软组织、稳定骨折、预防慢性骨髓炎和肢体功能重建是SSI的治疗原则。全身或局部应用抗生素、伤口彻底清创、冲洗、负压封闭引流(vacuum sealing drainage, VSD)的使用及最终关于内固定的处理等是目前治疗的常用手段。

4.3.1. 抗生素的使用

① 全身抗生素使用:病原菌的情况和药敏试验结果是对于骨组织感染选择抗生素的重要依据。清创术后,静脉使用抗生素可以快速抑制感染部位的细菌,2周后根据感染情况改用口服可达到较高的生物利用度 [32] [33] [34] 。持续用药直到取出内固定后6周或保留内固定12周,是预防复发性感染的重要措施 [11] [35] 。当内固定保留时则使用对细菌生物膜有效的抗生素,有研究发现利福平可以抑制葡萄球菌,喹诺酮类抗生素对革兰阴性菌有效,联合使用抗生素能有效防止病原菌很快对利福平产生耐药性 [36] [37] [38] [39] 。对于葡萄球菌感染,喹诺酮类抗生素与利福平联合使用效果较好,如左氧氟沙星等 [36] 。保留内固定容易发生细菌对上述生物膜活性的抗生素产生耐药性,此时治疗难度极大,抗菌药物治疗几乎无效,此时不得不取出内固定装置。

② 局部抗生素使用:近年来越来越多的临床医生关注骨折内固定术后SSI的局部抗菌药物使用,它可以通过不同的载体实现对其实现治疗和控制。全身性抗菌药物的应用往往难以在局部达到有效的血药浓度,生物利用度明显降低,长期使用容易产生耐药性,过多死骨的清除容易形成骨不连或者骨缺损,不利于骨组织愈合。抗生素的局部使用可以有效提高血药浓度,在抑制细菌生长,封闭死腔,填补缺损,防止瘢痕长入的过程中起来决定性作用,同时可以降低全身抗生素的应用而加重细菌耐药性 [40] [41] 。有研究表明庆大霉素、妥布霉素、万古霉素和头孢菌素是目前常见的抗生素载体 [42] 。在临床上,可吸收载体和非可吸收载体是目前应用较为广泛的抗生素载体,聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)骨水泥,既可稳定骨折,还可以充当骨缺损填充材料,是目前最为常见的非可吸收性抗生素载体,但不能自行降解是其重要的缺点,需要二次手术取出。细菌黏附风险在抗生素降解后极大的增加,容易产生细菌耐药性 [31] [43] [44] 。纯度高、生物利用度高、与抗生素结合力强、不需要二次手术取出的可吸收载体虽然有携带多种类抗生素的有点,也有其缺点,如:是浆液袋的形成,伤口延迟愈合或愈合困难,长期分泌浆液。当然也有其他可降解的材料,如有生物活性玻璃、磷酸钙和胶原植入物等,但其安全性和有效性又缺乏大量的临床试验数据验证 [45] [46] 。目前为止,并没有足够的证据表明局部抗生素的使用对全身治疗有效,也同样没有研究表明可吸收抗生素载体效果优于非可吸收抗生素载体,尽管这样,局部抗生素的使用似乎在开放性骨折中感染的治疗中,效果更为显著 [47] [48] 。

4.3.2. 骨折内固定术后SSI不同阶段的治疗方法选择

① SSI的早期治疗:细菌在术中、术前都难以杜绝,任何时期皆可定植在内植物材料的表面,术后很短时间内就可以初步形成不成熟的细菌生物膜,因此成为术后感染的重要场所,从而使得皮肤、软组织以及骨折端的正常生物愈合机制变得更加复杂、愈合时间更加难以预估 [49] [50] 。由于生物膜尚未完全成熟,因此早期感染通常不会出现严重的并发症,如:骨髓炎。只有在严重的开放性骨折且伤口遭受到严重污染时,才会使骨组织、髓内出现明显的炎性反应症状,此时需要彻底冲洗、彻底清创后根据分泌物培养及药敏试验选用相对敏感的抗菌药物等治疗可以取得较好的效果。由于病原菌的生长需要天然的温床,所以彻底清创过程中,应当注重残端组织、血肿的彻底清除 [51] 。内固定是固定骨折端最有利的措施,尤其是对于复杂的关节内固定,它们需要最大限度的保留,早期去除将不利于骨折端的愈合,因此一旦发现感染,在保留内固定的同时,需要连续使用抗生素12周,甚至需要使用到内固定取出后6周才能停药 [52] 。有研究表明:彻底的清创术和伤口冲洗虽然可以减少细菌的定植并能清除绝大部分未成熟的生物膜,一旦骨折完全愈合,强烈建议取出内植物以减少复发性感染的风险 [53] ,患者骨折术后3个月左右,原始骨痂质地逐渐变硬,形成成熟骨板后可行内植物取出。Berkes等学者观察研究71%左右的骨折内固定术后6周内发生感染的患者,可以通过采取彻底清创、伤口冲洗配合全身使用抗菌药物等治疗后保留内固定达到较好的愈合效果。但对于长期吸烟、饮酒,血糖控制不佳,血管功能不全的患者,在软组织损伤严重无法完全闭合伤口的情况下,病原菌难以彻底清除,感染难以控制,内固定则强烈建议取出 [11] [53] 。

② 迟发SSI的治疗:骨折内固定术后SSI的分期是连续的,他们之间没有绝对的界限,迟发感染存在于早期和慢性感染之间,可以认为是“灰色地带”,因此在选择治疗方案上显得更加棘手。因为骨折愈合后内固定需要取出,因此其治疗原则不同于关节假体相关感染,治疗目标是稳定骨折、控制感染及防止形成慢性骨髓炎 [11] 。在迟发感染的起始阶段,首选治疗方案仍然是保留内固定,而在迟发感染的中晚期阶段,保留内固定则会影响感染的治疗和控制,不利于骨与周围软组织的愈合。实际临床工作中,时常不能及时准确的作出诊断或者治疗,所以更换内固定是最佳的治疗方案。此时,骨髓炎的表现会根据细菌生物膜的逐渐成熟而越来越明显 [12] ,这也意味着需要根治性范围扩大的清创和内固定的更换。

③ 慢性SSI的治疗:术后10周表现出的炎症反应我们通常认为是慢性SSI,炎症反应、骨折愈合不稳定、延迟愈合甚至不愈合通常与增生的纤维组织包裹、溶骨性破坏有着密不可分的关系 [54] ,感染区域外的纤维组织包裹为死骨和病原菌形成了屏障。慢性SSI的病例通常需要进行广泛扩大的清创术,极大可能造成骨和软组织的缺损,往往需要多次手术,对患者的身心都造成极大的伤害,此时无论骨折是否稳定,考虑的最主要问题是彻底清创和长期有效的抗生素治疗和软组织重建。在9个月内没有完全愈合,连续X线片检查提示骨折在3个月内没有愈合迹象和进展被美国食品药品管理局(Food and Drug Administration, FDA)定义为骨不连。而感染导致的骨不连往往会被医生所忽视,患者细菌培养阴性的标本再进行PCR分析得出细菌RNA阳性率为8.7%是Gille等学者对23例骨不连患者研究的出的结论 [55] 。分子诊断技术可以鉴别细菌性感染和无菌性感染,因此对治疗方案的选择上有着十分重要的作用 [56] 。

5. 结语

骨折术后感染是常见的并发症之一,由于复杂的发病机制以及特殊的表现形式,目前治疗的手段非常有限,是骨折术后恢复的棘手问题。目前从患者机体本身、受伤部位、手术器械、手术环境等多方面因素,我们在预防和治疗过程中需要全程多学科共同协作,最大限度减少组织损伤,可以在一定程度上减少骨折内固定术后SSI的发生率。在选择治疗方案上,无菌操作和彻底清创是治疗的关键,必要时应当及时扩大清创的范围,根据培养及药敏情况及时合理的全身或局部使用抗生素,综合研判骨折的愈合程度,内固定稳定性等具体情况决定治疗方案。治疗总是晚于预防,效益也远远低于预防,因此未来对骨折内固定术后SSI的研究应当从制定科学规范的治疗、加强围手术期预防感染、提高其诊断的特异性到研制更多有抗菌功能的填充剂、医疗器械以及移植材料等不断改进。目前在研究防止内固定和死骨表明细菌生物膜的形成和进展上已经取得了一定的成果。但在骨折内固定术后改善预防感染的新方法上应该还需要更多创新,在抗感染涂层内固定和骨不连、骨缺损抗菌性填充骨替代材料等生物材料的研发上依然是未来研究的热点。最终想要彻底解决骨折内固定术后感染仍需要对其发生机制进行更加深入的研究和探索,需要多学科共同协作。

NOTES

*通讯作者。

参考文献

[1] 白博. 四肢骨折内固定术后手术部位感染的分析及临床意义研究[D]: [硕士学位论文]. 西安: 第四军医大学, 2017.
[2] 陶一明, 王志明. 《外科手术部位感染的预防指南(2017)》更新解读[J]. 中国普通外科杂志, 2017, 26(7): 821-824.
[3] Greene, L.R. (2012) Guide to the Elimination of Orthopedic Surgery Surgical Site Infections: An Execu-tive Summary of the Association for Professionals in Infection Control and Epidemiology Elimination Guide. American Journal of Infection Control, 40, 384-386.
https://doi.org/10.1016/j.ajic.2011.05.011
[4] Patzakis, M.J. and Wil-kins, J. (1989) Factors Influencing Infection Rate in Open Fracture Wounds. Clinical Orthopaedics and Related Re-search, No. 243, 36-40.
https://doi.org/10.1097/00003086-198906000-00006
[5] Thanni, L.O. and Aigoro, N.O. (2004) Surgical Site Infection Complicating Internal Fixation of Fractures: Incidence and Risk Factors. Journal of the Na-tional Medical Association, 96, 1070-1072.
[6] Al-Mulhim, F.A., Baragbah, M.A., Sadat-Ali, M., Alomran, A.S. and Azam, M.Q. (2014) Prevalence of Surgical Site Infection in Orthopedic Surgery: A 5-Year Analysis. International Sur-gery, 99, 264-268.
https://doi.org/10.9738/INTSURG-D-13-00251.1
[7] 符雯婷. 下肢骨折患者术后感染的病原学及耐药性分析[J]. 哈尔滨医药, 2023, 43(2): 86-88.
[8] 张磊, 程维, 李克勤, 曹磊, 奚海翔, 赵亮. 四肢骨折内固定术后切口感染血清TGF-β1、bFGF表达与创面愈合的关系[J]. 中华医院感染学杂志, 2023, 33(5): 743-746.
[9] Mangram, A.J., Horan, T.C., Pearson, M.L., Silver, L.C. and Jarvis, W.R. (1999) Guideline for Prevention of Surgical Site Infec-tion, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. American Journal of Infection Control, 27, 97-132.
https://doi.org/10.1016/S0196-6553(99)70088-X
[10] Horan, T.C., Gaynes, R.P., Martone, W.J., Jarvis, W.R. and Emori, T.G. (1992) CDC Definitions of Nosocomial Surgical Site Infections, 1992: A Modification of CDC Definitions of Surgical Wound Infections. Infection Control & Hospital Epi-demiology, 13, 606-608.
https://doi.org/10.2307/30148464
[11] Trampuz, A. and Zimmerli, W. (2006) Diagnosis and Treatment of Infections Associated with Fracture-Fixation Devices. Injury, 37, S59-S66.
https://doi.org/10.1016/j.injury.2006.04.010
[12] Mauffrey, C., Herbert, B., Young, H., Wilson, M.L., Hake, M. and Stahel, P.F. (2016) The Role of Biofilm on Orthopaedic Implants: The “Holy Grail” of Post-Traumatic Infection Management? European Journal of Trauma and Emergency Surgery, 42, 411-416.
https://doi.org/10.1007/s00068-016-0694-1
[13] Lovati, A.B., Romanò, C.L., Bottagisio, M., et al. (2016) Model-ing Staphylococcus epidermidis-Induced Non-Unions: Subclinical and Clinical Evidence in Rats. PLOS ONE, 11, e0147447.
https://doi.org/10.1371/journal.pone.0147447
[14] Patzakis, M.J. and Zalavras, C.G. (2005) Chronic Posttraumatic Osteomyelitis and Infected Nonunion of the Tibia: Current Management Concepts. Journal of the American Academy of Orthopaedic Surgeons, 13, 417-427.
https://doi.org/10.5435/00124635-200510000-00006
[15] Darouiche, R.O. (2004) Treatment of Infections Associ-ated with Surgical Implants. The New England Journal of Medicine, 350, 1422-1429.
https://doi.org/10.1056/NEJMra035415
[16] Marais, L.C., Ferreira, N., Aldous, C., Sartorius, B. and Le Roux, T. (2015) A Modified Staging System for Chronic Osteomyelitis. Journal of Orthopaedics, 12, 184-192.
https://doi.org/10.1016/j.jor.2015.05.017
[17] Maffulli, N., Papalia, R., Zampogna, B., Torre, G., Albo, E. and De-naro, V. (2016) The Management of Osteomyelitis in the Adult. Surgeon, 14, 345-360.
https://doi.org/10.1016/j.surge.2015.12.005
[18] Mouzopoulos, G., Kanakaris, N.K., Kontakis, G., Obakponovwe, O., Townsend, R. and Giannoudis, P.V. (2011) Management of Bone Infections in Adults: the Surgeon’s and Microbi-ologist’s Perspectives. Injury, 42, S18-S23.
https://doi.org/10.1016/S0020-1383(11)70128-0
[19] Saeed, K., Ahmad, N. and Dryden, M. (2014) The Value of Procalcitonin Measurement in Localized Skin and Skin Structure Infection, Diabetic Foot Infections, Septic Arthritis and Osteomyelitis. Expert Review of Molecular Diagnostics, 14, 47-54.
https://doi.org/10.1586/14737159.2014.864238
[20] Shen, C.J., Wu, M.S., Lin, K.H., et al. (2013) The Use of Procalcitonin in the Diagnosis of Bone and Joint Infection: A Systemic Review and Meta-Analysis. European Journal of Clinical Microbiology & Infectious Diseases, 32, 807-814.
https://doi.org/10.1007/s10096-012-1812-6
[21] Burns, T.C., Stinner, D.J., Mack, A.W., et al. (2012) Microbiol-ogy and Injury Characteristics in Severe Open Tibia Fractures from Combat. Journal of Trauma and Acute Care Surgery, 72, 1062-1067.
https://doi.org/10.1097/TA.0b013e318241f534
[22] Valenziano, C.P., Chattar-Cora, D., O’Neill, A., Hubli, E.H. and Cudjoe, E.A. (2002) Efficacy of Primary Wound Cultures in Long Bone Open Extremity Fractures: Are They of Any Value? Archives of Orthopaedic and Trauma Surgery, 122, 259-261.
https://doi.org/10.1007/s00402-001-0363-6
[23] Schwotzer, N., Wahl, P., Fracheboud, D., Gautier, E. and Chuard, C. (2014) Optimal Culture Incubation Time in Orthopedic Device-Associated Infections: A Retrospective Analysis of Prolonged 14-Day Incubation. Journal of Clinical Microbiology, 52, 61-66.
https://doi.org/10.1128/JCM.01766-13
[24] Schäfer, P., Fink, B., Sandow, D., Margull, A., Berger, I. and From-melt, L. (2008) Prolonged Bacterial Culture to Identify Late Periprosthetic Joint Infection: A Promising Strategy. Clinical Infectious Diseases, 47, 1403-1409.
https://doi.org/10.1086/592973
[25] Trampuz, A., Piper, K.E., Jacobson, M.J., et al. (2007) Sonication of Removed Hip and Knee Prostheses for Diagnosis of Infection. The New England Journal of Medicine, 357, 654-663.
https://doi.org/10.1056/NEJMoa061588
[26] Yano, M.H., Klautau, G.B., da Silva, C.B., et al. (2014) Improved Diagnosis of Infection Associated with Osteosynthesis by Use of Sonication of Fracture Fixation Implants. Journal of Clinical Microbiology, 52, 4176-4182.
https://doi.org/10.1128/JCM.02140-14
[27] Dapunt, U., Spranger, O., Gantz, S., et al. (2015) Are Atrophic Long-Bone Nonunions Associated with Low-Grade Infections? Therapeutics and Clinical Risk Management, 11, 1843-1852.
https://doi.org/10.2147/TCRM.S91532
[28] Clarke, M.T., Roberts, C.P., Lee, P.T., Gray, J., Keene, G.S. and Rushton, N. (2004) Polymerase Chain Reaction Can Detect Bacterial DNA in Aseptically Loose Total Hip Ar-throplasties. Clinical Orthopaedics and Related Research, No. 427, 132-137.
https://doi.org/10.1097/01.blo.0000136839.90734.b7
[29] Tsuru, A., Setoguchi, T., Kawabata, N., et al. (2015) Enrichment of Bacteria Samples by Centrifugation Improves the Diagnosis of Orthopaedics-Related Infections via Re-al-Time PCR Amplification of the Bacterial Methicillin-Resistance Gene. BMC Research Notes, 8, 288.
https://doi.org/10.1186/s13104-015-1180-2
[30] Wenter, V., Müller, J.P., Albert, N.L., et al. (2016) The Diagnos-tic Value of [(18)F]FDG PET for the Detection of Chronic Osteomyelitis and Implant-Associated Infection. European Journal of Nuclear Medicine and Molecular Imaging, 43, 749-761.
https://doi.org/10.1007/s00259-015-3221-4
[31] Ochsner, P.E. and Hailemariam, S. (2006) Histology of Osteo-synthesis Associated Bone Infection. Injury, 37, S49-S58.
https://doi.org/10.1016/j.injury.2006.04.009
[32] Spellberg, B. and Lipsky, B.A. (2012) Systemic Antibiotic Ther-apy for Chronic Osteomyelitis in Adults. Clinical Infectious Diseases, 54, 393-407.
https://doi.org/10.1093/cid/cir842
[33] Rod-Fleury, T., Dunkel, N., Assal, M., et al. (2011) Duration of Post-Surgical Antibiotic Therapy for Adult Chronic Osteomyelitis: A Single-Centre Experience. International Orthopae-dics, 35, 1725-1731.
https://doi.org/10.1007/s00264-011-1221-y
[34] Daver, N.G., Shelburne, S.A., Atmar, R.L., et al. (2007) Oral Step-Down Therapy Is Comparable to Intravenous Therapy for Staphylococcus aureus Osteomyelitis. Journal of Infec-tion, 54, 539-544.
https://doi.org/10.1016/j.jinf.2006.11.011
[35] Schmidt, A.H. and Swiontkowski, M.F. (2000) Pathophysiology of Infections after Internal Fixation of Fractures. Journal of the American Academy of Orthopaedic Surgeons, 8, 285-291.
https://doi.org/10.5435/00124635-200009000-00002
[36] Senneville, E., Joulie, D., Legout, L., et al. (2011) Out-come and Predictors of Treatment Failure in Total Hip/Knee Prosthetic Joint Infections Due to Staphylococcus aureus. Clinical Infectious Diseases, 53, 334-340.
https://doi.org/10.1093/cid/cir402
[37] Martel-Laferrière, V., Laflamme, P., Ghannoum, M., Fernandes, J., Di Iorio, D. and Lavergne, V. (2013) Treatment of Prosthetic Joint Infections: Validation of a Surgical Algorithm and Proposal of a Simplified Alternative. The Journal of Arthroplasty, 28, 395-400.
https://doi.org/10.1016/j.arth.2012.06.034
[38] Hsieh, P.H., Lee, M.S., Hsu, K.Y., Chang, Y.H., Shih, H.N. and Ueng, S.W. (2009) Gram-Negative Prosthetic Joint Infections: Risk Factors and Outcome of Treatment. Clinical Infec-tious Diseases, 49, 1036-1043.
https://doi.org/10.1086/605593
[39] Aboltins, C.A., Dowsey, M.M., Buising, K.L., et al. (2011) Gram-Negative Prosthetic Joint Infection Treated with Debridement, Prosthesis Retention and Antibiotic Regimens Including a Fluoro-quinolone. Clinical Microbiology and Infection, 17, 862-867.
https://doi.org/10.1111/j.1469-0691.2010.03361.x
[40] Gogia, J.S., Meehan, J.P., Di Cesare, P.E. and Jamali, A.A. (2009) Local Antibiotic Therapy in Osteomyelitis. Seminars in Plastic Surgery, 23, 100-107.
https://doi.org/10.1055/s-0029-1214162
[41] Hake, M.E., Young, H., Hak, D.J., Stahel, P.F., Hammerberg, E.M. and Mauffrey, C. (2015) Local Antibiotic Therapy Strategies in Orthopaedic Trauma: Practical Tips and Tricks and Re-view of the Literature. Injury, 46, 1447-1456.
https://doi.org/10.1016/j.injury.2015.05.008
[42] ter Boo, G.J., Grijpma, D.W., Moriarty, T.F., Richards, R.G. and Eglin, D. (2015) Antimicrobial Delivery Systems for Local Infection Prophylaxis in Orthopedic- and Trauma Surgery. Biomaterials, 52, 113-125.
https://doi.org/10.1016/j.biomaterials.2015.02.020
[43] Anagnostakos, K., Hitzler, P., Pape, D., Kohn, D. and Kelm, J. (2008) Persistence of Bacterial Growth on Antibiotic-Loaded Beads: Is It Actually a Problem? Acta Orthopaedica, 79, 302-307.
https://doi.org/10.1080/17453670710015120
[44] Schmolders, J., Hischebeth, G.T., Friedrich, M.J., et al. (2014) Evidence of MRSE on a Gentamicin and Vancomycin Impregnated Polymethyl-Methacrylate (PMMA) Bone Cement Spacer after Two-Stage Exchange Arthroplasty Due to Periprosthetic Joint Infection of the Knee. BMC Infectious Dis-eases, 14, 144.
https://doi.org/10.1186/1471-2334-14-144
[45] Ferguson, J.Y., Dudareva, M., Riley, N.D., Stubbs, D., Atkins, B.L. and McNally, M.A. (2014) The Use of a Biodegradable Antibiotic-Loaded Calcium Sulphate Carrier Containing Tobramycin for the Treatment of Chronic Osteomyelitis: A Series of 195 Cases. The Bone & Joint Journal, 96-b, 829-836.
https://doi.org/10.1302/0301-620X.96B6.32756
[46] Inzana, J.A., Schwarz, E.M., Kates, S.L. and Awad, H.A. (2016) Biomaterials Approaches to Treating Implant-Associated Osteomyelitis. Biomaterials, 81, 58-71.
https://doi.org/10.1016/j.biomaterials.2015.12.012
[47] Wasko, M.K. and Kaminski, R. (2015) Custom-Made An-tibiotic Cement Nails in Orthopaedic Trauma: Review of Outcomes, New Approaches, and Perspectives. BioMed Re-search International, 2015, Article ID: 387186.
https://doi.org/10.1155/2015/387186
[48] Anagnostakos, K. and Schröder, K. (2012) Antibiotic-Impregnated Bone Grafts in Orthopaedic and Trauma Surgery: A Systematic Review of the Literature. International Journal of Biomaterials, 2012, Article ID: 538061.
https://doi.org/10.1155/2012/538061
[49] Costerton, J.W. (2005) Biofilm Theory Can Guide the Treatment of De-vice-Related Orthopaedic Infections. Clinical Orthopaedics and Related Research, No. 437, 7-11.
https://doi.org/10.1097/00003086-200508000-00003
[50] McConoughey, S.J., Howlin, R., Granger, J.F., et al. (2014) Biofilms in Periprosthetic Orthopedic Infections. Future Microbiology, 9, 987-1007.
https://doi.org/10.2217/fmb.14.64
[51] Edwards, C., Counsell, A., Boulton, C. and Moran, C.G. (2008) Early In-fection after Hip Fracture Surgery: Risk Factors, Costs and Outcome. The Journal of Bone and Joint Surgery. British Volume, 90, 770-777.
https://doi.org/10.1302/0301-620X.90B6.20194
[52] Trebse, R., Pisot, V. and Trampuz, A. (2005) Treatment of Infected Retained Implants. The Journal of Bone and Joint Surgery. British Volume, 87, 249-256.
https://doi.org/10.1302/0301-620X.87B2.15618
[53] Rightmire, E., Zurakowski, D. and Vrahas, M. (2008) Acute Infections after Fracture Repair: Management with Hardware in Place. Clinical Orthopaedics and Related Research, 466, 466-472.
https://doi.org/10.1007/s11999-007-0053-y
[54] Arens, D., Wilke, M., Calabro, L., et al. (2015) A Rab-bit Humerus Model of Plating and Nailing Osteosynthesis with and without Staphylococcus aureus Osteomyelitis. Eu-ropean Cells & Materials, 30, 148-161.
https://doi.org/10.22203/eCM.v030a11
[55] Gille, J., Wallstabe, S., Schulz, A.P., Paech, A. and Gerlach, U. (2012) Is Non-Union of Tibial Shaft Fractures Due to Nonculturable Bacterial Pathogens? A Clinical Investigation Using PCR and Culture Techniques. Journal of Orthopaedic Surgery and Research, 7, Article No. 20.
https://doi.org/10.1186/1749-799X-7-20
[56] Panteli, M., Pountos, I., Jones, E. and Giannoudis, P.V. (2015) Bio-logical and Molecular Profile of Fracture Non-Union Tissue: Current Insights. Journal of Cellular and Molecular Medi-cine, 19, 685-713.
https://doi.org/10.1111/jcmm.12532