肺癌脑转移的放射治疗
Radiotherapy for Brain Metastases from Lung Cancer
DOI: 10.12677/ACM.2023.1381770, PDF, HTML, XML, 下载: 158  浏览: 260 
作者: 李媛媛, 赵 红*:延安大学附属医院肿瘤科,陕西 延安
关键词: 肺癌脑转移放射治疗Lung Cancer Brain Metastasis Radiation Therapy
摘要: 肺癌是脑转移瘤(brain metastases, BM)最常见的原发肿瘤,大约40%的肺癌患者将在整个病程中发展为脑转移,肺癌患者在诊断为脑转移后存活率显著下降。历史上,全脑放射治疗(WBRT)是脑转移瘤的标准治疗方法,最近,立体定向放射外科(SRS)已经成为1~4个转移性脑病变患者的标准方法。本文就小细胞肺癌(small cell lung cancer, SCLC)和非小细胞肺癌(non-small cell lung cancer, NSCLC)的脑转移的放射治疗进行综述。
Abstract: Lung cancer is the most common primary tumor for brain metastases (BM), and approximately 40% of lung cancer patients will develop brain metastases throughout the course of their disease, with a significant decrease in survival after diagnosis of brain metastases in lung cancer patients. Histori-cally, whole brain radiation therapy (WBRT) was the standard of care for brain metastases, and more recently, stereotactic radiosurgery (SRS) has become the standard of care for patients with 1~4 metastatic brain lesions. This article reviews the radiotherapy for brain metastases in small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC).
文章引用:李媛媛, 赵红. 肺癌脑转移的放射治疗[J]. 临床医学进展, 2023, 13(8): 12623-12628. https://doi.org/10.12677/ACM.2023.1381770

1. 前言

肺癌一直是全球癌症死亡的主要原因之一,目前每年导致超过160万人死亡。肺癌是脑转移瘤最常见的原发肿瘤,大约40%的肺癌患者将在整个病程中发展为脑转移 [1] 。在过去几年中,由于先进成像技术的改进和肺癌患者的生存期显著延长,脑转移瘤诊断显著增加 [2] 。研究表明,肺癌患者在诊断为脑转移瘤后存活率显著下降,各研究组的中位OS为7.0个月 [3] 。

脑转移瘤的治疗方案包括手术切除、全脑放射治疗(whole brain radiation therapy, WBRT)、立体定向放射治疗(stereotactic radiosurgery, SRS)或联合治疗。由于化疗药物穿过血脑屏障的固有困难,RT在直接靶向大脑方面起着关键作用 [4] 。20世纪50年代以来,WBRT成为脑转移瘤患者最广泛使用的治疗,因为它缓解症状、广泛应用和易于实施 [5] 。最近,SRS已经成为1~4个转移性脑病变患者的标准方法 [6] 。对于脑转移范围有限的患者,指南中推荐SRS,因为它不会影响患者的生存,也不会明显增加神经认知方面的毒性。WBRT仍然是大多数脑转移瘤的重要治疗方式,它可以减轻症状,显著改善颅内控制,并减少因神经系统导致的死亡。然而,大多数患者在WBRT后有认知退化。研究表明,在接受WBRT或SRS治疗后2~4周,脑转移瘤的BBB通透性增加 [6] 。

海马神经再生区的辐射剂量与认知毒性有关。为了保护认知,在WBRT期间使用调强放射治疗的海马回避(HA)。一项III期试验比较了HA-WBRT加美金刚胺或WBRT加美金刚胺治疗的成年脑转移患者的认知功能衰竭的时间。结果表明,与WBRT相比,HA-WBRT认知功能衰竭的风险显著降低,可以更好地保护认知功能和患者报告的症状,且区域复发较少。应被视为计划接受WBRT治疗HA区域无转移的脑转移瘤且表现良好的患者的标准护理。然而对于预期生存期为4个月的患者,在WBRT期间可以放弃HA [7] 。

2. 小细胞肺癌

脑转移瘤最常见的原发部位是肺癌,其中最常见的病理类型是SCLC。SCLC是最具侵袭性的肺癌亚型,占所有肺癌的10%~15%。10%至20%的SCLC患者在诊断时至少有一处脑转移,颅内疾病的发病率在2年内上升至50%以上,并与生存率下降相关 [8] 。

1) 全脑放疗WBRT (30 Gy/10次)一直是治疗SCLC脑转移的标准局部疗法,治疗时间约为2周,50%~80%的患者对治疗有积极反应。WBRT能够减轻神经系统症状、降低神经系统死亡率和减少颅内衰竭 [9] 。对于原发肿瘤未知的患者或者有大的单发性脑转移瘤导致大规模效应的患者,应倾向于手术后再进行WBRT治疗,可延长脑转移患者的生存期 [10] 。一项多中心研究表明,与单独的WBRT比较,WBRT联合局灶性放射增强治疗的颅内无进展生存期(Progression Free Survival, PFS)和总生存期(Overall Survival, OS)更长,可能是SCLC脑转移患者的首选策略 [11] 。一项全面评估SCLC患者脑转移瘤治疗中剂量递增策略的回顾性研究表明,与单独使用WBRT相比,WBRT加立体定向放射治疗的放射加强或同时综合加强治疗SCLC脑转移,患者OS获益显著 [12] 。

WBRT的毒性很明显,包括疲劳、脱发、恶心和认知能力下降。一项前瞻性研究发现WBRT后全脑体积减少和认知功能下降,特别是语言记忆下降之间的显著联系 [13] 。值得注意的是,挽救性WBRT治疗后的存活率在统计学上明显比挽救性SRS治疗后差,并且挽救性WBRT后白质脑病的累积发病率较高。

2) 立体定向放射治疗SRS已逐渐取代全脑放疗WBRT,单独治疗SCLC脑转移是可行的。目前技术的进步使得SRS治疗复杂情况下的脑转移如直接靠近危及器官的脑转移、一次治疗多个脑转移部位、多次治疗脑转移复发或新转移的再照射成为可能。与WBRT相比,SRS提供了相同的总生存获益和局部控制,同时在认知和功能水平上毒性更小。SRS的适应证从1~4个脑转移发展到10个(脑转移累积体积小于30 ml) [14] 。近年来FIRE-SCLC对710例接受一线SRS治疗的SCLC脑转移患者进行分析,并与一线WBRT队列的结果进行比较。结果表明,WBRT改善中枢神经系统进展时间(TTCP),但是并不能转化为生存率的提高。而SRS与好的OS和较差TTCP相关。此外,分析发现,2~4个病变的患者和5~10个病变的患者在SRS后的总生存率或TTCP没有显著差异 [15] 。一项较长期的随访研究也进一步支持了5至10处脑转移患者单独进行SRS不比2至4处脑转移差。由于应用了高度集中的照射,与SRS加WBRT相比,SRS单独治疗没有对潜在的新发肿瘤产生预防作用 [16] 。

SRS在控制局部疾病方面非常有效,可以作为SCLC脑转移病变的主要治疗,但大多数患者发展为远处脑部病变,需要额外的挽救性SRS。对于粟粒性转移性脑病患者或软脑膜病患者,应该分次放疗 [8] 。一项回顾性研究显示,新诊断脑转移瘤 ≤ 2处且表现良好的患者可能需要考虑将前期SRS作为其脑转移瘤的一线治疗。在前期单独使用SRS治疗新诊断的SCLC脑转移时,神经系统死亡的比率很低。然而,由于在对免疫检查点抑制有反应的SCLC脑转移患者群体中看到了持久的反应时间,应考虑在这个患者群体中进行SRS [17] 。

然而,随着肿瘤学的进步和避免全脑放疗,转移性脑癌患者的预期寿命延长,脑远处复发的挽救性SRS和局部复发的再照射率不断增加,20%至40%的患者在初次SRS治疗后需要挽救治疗。一项回顾性研究针对既往无WBRT的局部或远处脑复发患者的脑转移重复SRS治疗,分析SRS治疗期间的神经症状和急性毒性。研究发现,复发的脑转移患者重复SRS的耐受性良好,未出现3~4级不良反应,重复SRS不会增加急性神经毒性 [14] 。

3) 预防性颅脑照射(prophylactic cranial irradiation, PCI)鉴于SCLC发生脑转移的风险非常高,PCI可以延长生存期,是SCLC早期多模式治疗的一部分。PCI目的是降低脑转移瘤发病率,提高生存率和生活质量(QoL),可有效降低局限期SCLC患者的BM并改善其生存结果 [18] ,被认为是局限期SCLC患者的标准治疗方法,在广泛期中仍有争议。PCI可显著降低脑转移瘤,并在较小程度上提高OS,但是会引起副作用,比如长期神经认知下降 [19] 。现代放射治疗技术,如调强放射治疗或体积调制弧治疗,允许以标准放射剂量治疗整个大脑,同时保持海马的低剂量。一项III期试验提供了第一个临床证据,证实了PCI期间海马体的适形回避更好地保护了神经认知功能,同时观察到SCLC患者的生活质量、颅内复发和OS治疗组之间没有差异。这种方法应该被认为是计划接受PCI的SCLC患者的标准治疗方法 [20] 。目前认为25 Gy/10是SCLC患者PCI的标准剂量,研究发现较大剂量并没有改善颅脑控制,反而导致了较大的慢性神经毒性 [1] 。

PCI的一个可怕副作用是神经认知能力下降,用海马回避PCI (HA-PCI)使海马的辐射剂量尽可能减少(例如,从25 Gy减少到<10 Gy),以减少神经认知副作用,特别是在学习和记忆方面。与常规PCI相比,HA-PCI减少了海马萎缩,但是在神经认知的益处仍有争议 [21] 。一项多中心试验(SAKK 15/12)结果表明局限期SCLC的早期HA-PCI是可行的 [22] 。然而,进行了一项比较接受HA-PCI或不进行HA的PCI的SCLC患者神经功能的随机3期试验(NCT01780675)。试验证实HA-PCI是安全的,但是没有发现认知能力下降的改善,并没有给患者带来有益的效果 [23] 。在一项日本的Ⅲ期试验中,与观察组相比,PCI并没有使广泛期的SCLC患者的OS延长 [24] 。

3. 非小细胞肺癌

NSCLC约占所有肺癌的85%,并且脑转移发病率高。脑转移在诊断时的发病率为10%~20%,在病程中的发病率约为25%。脑转移是导致NSCLC患者预后不良的主要原因。

最近一项针对III期NSCLC的个体患者数据(IPD)荟萃分析显示,PCI可降低脑转移瘤发病率,延长PFS和无脑转移生存期。然而,没有观察到具有统计学意义的OS改善,因此PCI目前没有被用于常规护理 [25] 。在III期NSCLC中,与不进行PCI相比,PCI导致质量调整寿命年增加,并且具有成本效益。 [26] 。一项三期试验(NRG Oncology/RTOG 0214)表明在治疗后没有疾病进展的III期LA-NSCLC患者中,PCI降低了5年和10年的脑转移发生率,改善了5年和10年的DFS,但没有改善OS [27] 。一项荟萃分析表明,与非PCI相比,PCI可显著降低NSCLC脑转移发生率,改善患者的DFS,降低鳞状细胞癌的脑转移发生率 [28] 。目前不建议将PCI作为标准治疗,因为没有证据表明局部晚期NSCLC患者的生存益处 [29] 。在NVALT-11/DLCRG-02 III期试验中表明PCI减少了症状性脑转移,且不影响OS,然而低度不良事件增加 [30] ,未观察到PCI对健康相关生命质量有统计学意义或临床相关的影响 [31] 。

与未选择的患者相比,具有EGFR或ALK等致癌基因突变的NSCLC患者更容易发生脑转移,终生脑转移瘤发生率分别在48%~50%和35%~50%之间。EGFRm的NSCLC代表了一个独特的人群,与一般NSCLC人群相比,具有显著不同的人口统计学、生物学特征、治疗方法和预后。因此,将一般NSCLC数据外推至EGFRm的NSCLC是不可靠的。一项试验使用一线酪氨酸激酶抑制剂联合或不联合放疗治疗EGFR突变NSCLC同时性寡转移,结果发现与单独的一线TKI治疗相比,增加放疗的前期局部治疗具有良好的耐受性,并改善了PFS和OS。这证明额外的局部治疗仍然有效,即使是靶向治疗也不能替代有限转移性EGFRm的局部治疗 [32] 。一项随机II项研究评估PCI在表皮生长因子受体突变(EGFRm)、无性淋巴瘤激酶重排(ALKr)或癌胚抗原(CEA)水平升高的NSCLC患者中的研究,研究表明,与标准护理相比,PCI加标准护理治疗脑转移降低了脑转移发生率并显著延长了OS和PFS。在无法获得第三代靶向药物的患者中可以考虑使用 [3] 。

然而,对于无驱动基因突变的多发脑转移的NSCLC患者,脑放疗(BR)仍然是标准治疗选择,尤其是WBRT和RS,前者随着脑转移数量的增加而被使用。验证脑放疗和阿帕替尼同时用于驱动突变阴性的SCLC伴脑转移瘤的患者的临床疗效和安全性的II期随机试验(NCT03801200)正在招募中 [33] 。

重组人内皮抑素联合放疗可以通过改善肿瘤血管正常化、氧气输送和增加免疫细胞浸润来增强对放射治疗的敏感性。一项研究表明Rh-内皮抑素联合放疗导致更长的PFS (mPFS 8.1个月VS 4.9个月,p = 0.0428)和颅内无进展生存期(11.6个月VS 6.4个月),以及更好的局部控制率。重组人内皮抑素联合放疗能够逆转放疗后CD4+和CD8+细胞数量的下降,对免疫状态有益。此外,Rh-内皮抑素治疗可以改善生活质量,尤其是总体健康状况 [34] 。

QUARTZ使用地塞米松和支持性治疗联合或不联合全脑放疗治疗不适合切除或立体定向放疗的NSCLC脑转移瘤患者,表明对于年轻患者,WBRT可能提供生存优势,但对于所有其他组,省略WBRT不会显著影响QALY或总生存期 [35] 。优化的WBRT,在正确的时间给予适当的患者,可以带来更个性化的策略 [36] 。

4. 小结与展望

放射治疗对于肺癌脑转移瘤可获益,能够降低脑转移发生率,减轻颅内症状,改善颅内控制。对于不同个数的脑转移病灶、原发病灶类型以及分型,以及不同的驱动基因,均有相应放疗方案。我们需要更进一步探索可以从不同放疗方法中的获益人群,探索放疗剂量方案以及联合治疗方案,改善神经认知能力,提高生存获益,对肺癌脑转移瘤实现精准化治疗。

NOTES

*通讯作者。

参考文献

[1] Wolfson, A.H., Bae, K., Komaki, R., et al. (2011) Primary Analysis of a Phase II Randomized Trial Radiation Therapy Oncology Group (RTOG) 0212: Impact of Different Total Doses and Schedules of Prophylactic Cranial Irradiation on Chronic Neurotoxicity and Quality of Life for Patients with Limited-Disease Small-Cell Lung Cancer. International Journal of Radiation Oncology, Biology, Physics, 81, 77-84.
https://doi.org/10.1016/j.ijrobp.2010.05.013
[2] Cacho-Díaz, B., Spínola-Maroño, H., González-Aguilar, A., et al. (2018) Factors Associated with Long-Term Survival in Central Nervous System Metastases. Journal of Neuro-Oncology, 140, 159-164.
https://doi.org/10.1007/s11060-018-2946-x
[3] Arrieta, O., Maldonado, F., Turcott, J.G., et al. (2021) Prophylac-tic Cranial Irradiation Reduces Brain Metastases and Improves Overall Survival in High-Risk Metastatic Non-Small Cell Lung Cancer Patients: A Randomized Phase 2 Study (PRoT-BM Trial). International Journal of Radiation Oncology, Biology, Physics, 110, 1442-1450.
https://doi.org/10.1016/j.ijrobp.2021.02.044
[4] Leskinen, S., Shah, H.A., Yaffe, B., et al. (2023) Hippocampal Avoidance in Whole Brain Radiotherapy and Prophylactic Cranial Irradiation: A Systematic Review and Meta-Analysis. Journal of Neuro-Oncology, 163, 515-527.
https://doi.org/10.1007/s11060-023-04384-6
[5] Brown, P.D., Ahluwalia, M.S., Khan, O.H., et al. (2018) Whole-Brain Radiotherapy for Brain Metastases: Evolution or Revolution? Journal of Clinical Oncology, 36, 483-491.
https://doi.org/10.1200/JCO.2017.75.9589
[6] Lee, J. and Ahn, M.J. (2021) Brain Metastases in Patients with Oncogenic-Driven Non-Small Cell Lung Cancer: Pros and Cons for Early Radiotherapy. Cancer Treatment Reviews, 100, Article ID: 102291.
https://doi.org/10.1016/j.ctrv.2021.102291
[7] Brown, P.D., Gondi, V., Pugh, S., et al. (2020) Hippocampal Avoidance during Whole-Brain Radiotherapy plus Memantine for Patients with Brain Metastases: Phase III Trial NRG Oncology CC001. Journal of Clinical Oncology, 38, 1019-1029.
https://doi.org/10.1200/JCO.19.02767
[8] Faramand, A., Niranjan, A., Kano, H., et al. (2019) Primary or Salvage Stereotactic Radiosurgery for Brain Metastatic Small Cell Lung Cancer. Journal of Neuro-Oncology, 144, 217-225.
https://doi.org/10.1007/s11060-019-03224-w
[9] Weiner, J.P. (2020) Neurocognitive Outcomes for Patients with Brain Metastasis in the Modern Era: Benefit of Treatment with Hippocampal Avoidance Whole-Brain Radiotherapy plus Memantine. Journal of Clinical Oncology, 38, 1003-1005.
https://doi.org/10.1200/JCO.19.03359
[10] Bernhardt, D., Adeberg, S., Bozorgmehr, F., et al. (2018) Outcome and Prognostic Factors in Single Brain Metastases from Small-Cell Lung Cancer. Strahlentherapie und Onkologie, 194, 98-106.
https://doi.org/10.1007/s00066-017-1228-4
[11] Ni, M., Jiang, A., Liu, W., et al. (2020) Whole Brain Radiation Therapy plus Focal Boost May Be a Suitable Strategy for Brain Metastases in SCLC Patients: A Multi-Center Study. Ra-diation Oncology, 15, Article No. 70.
https://doi.org/10.1186/s13014-020-01509-3
[12] Sun, H., Xu, L., Wang, Y., et al. (2018) Additional Radiation Boost to Whole Brain Radiation Therapy May Improve the Survival of Patients with Brain Metastases in Small Cell Lung Cancer. Radiation Oncology, 13, Article No. 250.
https://doi.org/10.1186/s13014-018-1198-4
[13] Gui, C., Chintalapati, N., Hales, R.K., et al. (2019) A Prospective Evaluation of Whole Brain Volume Loss and Neurocognitive Decline Following Hippocampal-Sparing Prophylactic Cra-nial Irradiation for Limited-Stage Small-Cell Lung Cancer. Journal of Neuro-Oncology, 144, 351-358.
https://doi.org/10.1007/s11060-019-03235-7
[14] Kuntz, L., Le Fèvre, C., Jarnet, D., et al. (2023) Acute Toxicities and Cumulative Dose to the Brain of Repeated Sessions of Stereotactic Radiotherapy (SRT) for Brain Metastases: A Retrospective Study of 184 Patients. Radiation Oncology, 18, Article No. 7.
https://doi.org/10.1186/s13014-022-02194-0
[15] Rusthoven, C.G., Yamamoto, M., Bernhardt, D., et al. (2020) Evaluation of First-Line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study. JAMA Oncology, 6, 1028-1037.
https://doi.org/10.1001/jamaoncol.2020.1245
[16] Yamamoto, M., Serizawa, T., Higuchi, Y., et al. (2017) A Mul-ti-Institutional Prospective Observational Study of Stereotactic Radiosurgery for Patients with Multiple Brain Metastases (JLGK0901 Study Update): Irradiation-Related Complications and Long-Term Maintenance of Mini-Mental State Exam-ination Scores. International Journal of Radiation Oncology, Biology, Physics, 99, 31-40.
https://doi.org/10.1016/j.ijrobp.2017.04.037
[17] Miccio, J.A., Barsky, A., Gao, S., et al. (2020) Multi-Institutional Retrospective Review of Stereotactic Radiosurgery for Brain Metastasis in Patients with Small Cell Lung Cancer without Prior Brain-Directed Radiotherapy. Journal of Radiosurgery & SBRT, 7, 19-27.
[18] Fan, X., Yang, L., Qin, W., et al. (2023) Prophylactic Cranial Irradiation-Related Lymphopenia Affects Survival in Patients with Limited-Stage Small Cell Lung Cancer. Heliyon, 9, e16483.
https://doi.org/10.1016/j.heliyon.2023.e16483
[19] Crockett, C., Belderbos, J., Levy, A., et al. (2021) Prophylactic Cranial Irradiation (PCI), Hippocampal Avoidance (HA) Whole Brain Radiotherapy (WBRT) and Stereotactic Radiosurgery (SRS) in Small Cell Lung Cancer (SCLC): Where Do We Stand? Lung Cancer, 162, 96-105.
https://doi.org/10.1016/j.lungcan.2021.10.016
[20] Rodríguez de Dios, N., Couñago, F., Mur-cia-Mejía, M., et al. (2021) Randomized Phase III Trial of Prophylactic Cranial Irradiation with or without Hippocampal Avoidance for Small-Cell Lung Cancer (PREMER): A GICOR-GOECP-SEOR Study. Journal of Clinical Oncology, 39, 3118-3127.
https://doi.org/10.1200/JCO.21.00639
[21] De Ruiter, M.B., Groot, P.F.C., Deprez, S., et al. (2023) Hippocampal Avoidance Prophylactic Cranial Irradiation (HA-PCI) for Small Cell Lung Cancer Reduces Hippocampal Atrophy Compared to Conventional PCI. Neuro-Oncology, 25, 167-176.
https://doi.org/10.1093/neuonc/noac148
[22] Vees, H., Caparrotti, F., Eboulet, E.I., et al. (2020) Impact of Early Prophylactic Cranial Irradiation with Hippocampal Avoidance on Neurocognitive Function in Patients with Limited Dis-ease Small Cell Lung Cancer. A Multicenter Phase 2 Trial (SAKK 15/12). International Journal of Radiation Oncology, Biology, Physics, 107, 279-287.
https://doi.org/10.1016/j.ijrobp.2020.02.029
[23] Belderbos, J.S.A., De Ruysscher, D.K.M., De Jaeger, K., et al. (2021) Phase 3 Randomized Trial of Prophylactic Cranial Irradiation with or without Hippocampus Avoidance in SCLC (NCT01780675). Journal of Thoracic Oncology, 16, 840-849.
https://doi.org/10.1016/j.jtho.2020.12.024
[24] Takahashi, T., Yamanaka, T., Seto, T., et al. (2017) Prophylactic Cranial Irradiation versus Observation in Patients with Extensive-Disease Small-Cell Lung Cancer: A Multicentre, Ran-domised, Open-Label, Phase 3 Trial. The Lancet Oncology, 18, 663-671.
https://doi.org/10.1016/S1470-2045(17)30230-9
[25] Witlox, W.J.A., Ramaekers, B.L.T., Lacas, B., et al. (2021) Individual Patient Data Meta-Analysis of Prophylactic Cranial Irradiation in Locally Advanced Non-Small Cell Lung Cancer. Radiotherapy and Oncology, 158, 40-47.
https://doi.org/10.1016/j.radonc.2021.02.002
[26] Witlox, W.J.A., Ramaekers, B.L.T., Lacas, B., et al. (2022) Cost-Effectiveness of Prophylactic Cranial Irradiation in Stage III Non-Small Cell Lung Cancer. Radiotherapy and On-cology, 170, 95-101.
https://doi.org/10.1016/j.radonc.2022.02.036
[27] Sun, A., Hu, C., Wong, S.J., et al. (2019) Prophylactic Cranial Irradiation vs Observation in Patients with Locally Advanced Non-Small Cell Lung Cancer: A Long-Term Update of the NRG Oncology/RTOG 0214 Phase 3 Randomized Clinical Trial. JAMA Oncology, 5, 847-855.
https://doi.org/10.1001/jamaoncol.2018.7220
[28] Li, M., Wang, T., Wen, P., et al. (2021) Treatment and Toxic Effects of Prophylactic Cranial Irradiation in Stage II-III Non-Small Cell Lung Cancer: A Meta-Analysis. Asia-Pacific Journal of Clinical Oncology, 17, e18-e26.
https://doi.org/10.1111/ajco.13359
[29] Gore, E.M., Bae, K., Wong, S.J., et al. (2011) Phase III Comparison of Prophylactic Cranial Irradiation versus Observation in Patients with Locally Advanced Non-Small-Cell Lung Cancer: Primary Analysis of Radiation Therapy Oncology Group Study RTOG 0214. Journal of Clinical Oncology, 29, 272-278.
https://doi.org/10.1200/JCO.2010.29.1609
[30] De Ruysscher, D., Dingemans, A.C., Praag, J., et al. (2018) Prophylactic Cranial Irradiation versus Observation in Radically Treated Stage III Non-Small-Cell Lung Cancer: A Ran-domized Phase III NVALT-11/DLCRG-02 Study. Journal of Clinical Oncology, 36, 2366-2377.
https://doi.org/10.1200/JCO.2017.77.5817
[31] Witlox, W.J.A., Ramaekers, B.L.T., Joore, M.A., et al. (2020) Health-Related Quality of Life after Prophylactic Cranial Irradiation for Stage III Non-Small Cell Lung Cancer Patients: Results from the NVALT-11/DLCRG-02 Phase III Study. Radiotherapy and Oncology, 144, 65-71.
https://doi.org/10.1016/j.radonc.2019.10.016
[32] Wang, X.S., Bai, Y.F., Verma, V., et al. (2023) Randomized Trial of First-Line Tyrosine Kinase Inhibitor with or without Radiotherapy for Synchronous Oligometastatic EGFR-Mutated Non-Small Cell Lung Cancer. Journal of the National Cancer Institute, 115, 742-748.
https://doi.org/10.1093/jnci/djad084
[33] Ma, J., Pi, G., Bi, J., et al. (2021) Concurrent Apatinib and Brain Radio-therapy in Patients with Brain Metastases from Driver Mutation-Negative Non-Small-Cell Lung Cancer: Study Protocol for an Open-Label Randomized Controlled Trial. Clinical Lung Cancer, 22, e211-e214.
https://doi.org/10.1016/j.cllc.2020.10.007
[34] Chen, L., Tong, F., Peng, L., et al. (2022) Efficacy and Safety of Recombinant Human Endostatin Combined with Whole-Brain Radiation Therapy in Patients with Brain Metastases from Non-Small Cell Lung Cancer. Radiotherapy and Oncology, 174, 44-51.
https://doi.org/10.1016/j.radonc.2022.06.022
[35] Mulvenna, P., Nankivell, M., Barton, R., et al. (2016) Dexame-thasone and Supportive Care with or without Whole Brain Radiotherapy in Treating Patients with Non-Small Cell Lung Cancer with Brain Metastases Unsuitable for Resection or Stereotactic Radiotherapy (QUARTZ): Results from a Phase 3, Non-Inferiority, Randomised Trial. The Lancet, 388, 2004-2014.
https://doi.org/10.1016/S0140-6736(16)30825-X
[36] Pechoux, C.L., Dhermain, F. and Besse, B. (2016) Whole Brain Radiotherapy in Patients with NSCLC and Brain Metastases. The Lancet, 388, 1960-1962.
https://doi.org/10.1016/S0140-6736(16)31391-5