基于昼夜节律角度探讨肠道稳态对炎症性肠病的影响
Effects of Intestinal Homeostasis on Inflammatory Bowel Disease Based on Circadian Rhythm
DOI: 10.12677/ACM.2023.13102223, PDF, HTML, XML, 下载: 184  浏览: 249 
作者: 高新梅, 朱旭彤, 戴 帅:成都中医药大学临床医学院,四川 成都;周雪雷*:成都中医药大学附属医院消化科,四川 成都
关键词: 昼夜节律炎症性肠病肠道稳态肠道菌群肠道粘膜屏障肠道免疫Circadian Rhythm Inflammatory Bowel Disease Intestinal Homeostasis Intestinal Flora Intestinal Barrier Intestinal Immunity
摘要: 炎症性肠病(inflammatory bowel disease, IBD)是一组病因不明肠道慢性炎性疾病,研究普遍认为其发生、发展涉及到具有潜在遗传易感性个体微生物失调、免疫及环境因素等之间复杂的相互作用。肠道稳态是宿主肠黏膜、肠道菌群、免疫屏障、营养及代谢产物等相互作用所构成的动态平衡状态。肠道稳态的破坏对于炎症性肠病发生、发展具有重要影响。肠道稳态的维持主要取决于3个关键因素,包括肠道菌群、肠道粘膜屏障和肠道免疫系统。这些因素中的任何一个方面失衡,都可能导致炎症性肠病。昼夜节律紊乱是炎症性肠病重要驱动因素,其导致肠道菌群破坏、肠道粘膜屏障受损及免疫异常。本文将就昼夜节律紊乱对于肠道稳态及炎症性肠病的影响展开综述,旨在为IBD的防治提供新的思路。
Abstract: Inflammatory Bowel Disease (IBD) is characterized by chronic non-specific intestinal inflammation, the etiology and pathogenesis of IBD remain largely unknown. It is generally thought that its oc-currence involves the complex interaction between individuals with potential genetic susceptibility, microbial imbalance, immunity and other factors. Intestinal homeostasis is a dynamic Balance state maintained by the integration of intestinal epithelial cells, intestinal bacteria, immune defense, Nutrition and metabolism. The disruption of intestinal homeostasis has a significant impact on the occurrence and development of inflammatory bowel disease. The maintenance of intestinal homeo-stasis mainly depends on three key factors, including intestinal flora, intestinal barrier and intesti-nal immune system. An imbalance in any one of these factors may lead to inflammatory bowel dis-ease. Circadian rhythm disorder is an important driving factor of inflammatory bowel disease, which leads to intestinal flora, intestinal barrier damage and immune abnormality .This article re-views the effects of circadian rhythm disorder on intestinal Imbalance and inflammatory bowel disease to attain new foreground for the prevention and treatment of IBD.
文章引用:高新梅, 朱旭彤, 戴帅, 周雪雷. 基于昼夜节律角度探讨肠道稳态对炎症性肠病的影响[J]. 临床医学进展, 2023, 13(10): 15903-15910. https://doi.org/10.12677/ACM.2023.13102223

1. 引言

炎症性肠病是病因不明、病变累积结直肠的慢性、非特异性炎症疾病 [1] 。炎症性肠病主要包括溃疡性结肠炎(Ulcerative colitis, UC)及克罗恩病(Crohn’s disease, CD):其中UC表现为持续或反复发作的腹泻、腹痛、粘液脓血便及里急后重感,病变部位以结肠粘膜及粘膜下层为主;而CD病变范围可累积整个消化道,常见腹痛、腹泻、体重下降或伴发热、疲乏等症状 [2] 。近年来炎症性肠病发病率及患病率显著增加,临床治愈率低,已经成为国内外流行病及疑难病,长期严重影响患者生活质量,并给卫生保健系统带来严重负担,故引起重视 [3] 。据统计,从1990至2017年,炎症性肠病的全球发病率大约增加了31% [4] ,在过去普遍认为炎症性肠病在欧美等发达国家患病率较高,但随着发展中国家工业化进程,中国等亚洲国家的患病率逐年升高,据统计,中国2005~2014年间IBD的总病例数约为35万,预计2025年达150万 [5] [6] 。目前炎症性肠病发病机制不明,但随着研究不断深入,发现肠道稳态在IBD的发生及发展过程中起关键作用。肠道稳态由动态而稳定的肠道微生物群和宿主环境组成,受到环境、生活方式、饮食习惯等多种因素影响 [7] 。机体肠道稳态的维持对于免疫调节、生物信号转导及营养代谢等具有重要意义 [8] 。一旦稳态失衡,可产生与代谢、免疫、炎症、肿瘤等相关的多种病理改变。肠道稳态主要受肠道菌群、肠道粘膜屏障和肠道免疫系统调节,其中某一环节受到干扰或者破坏,就可能导致肠道稳态失衡引发疾病。

昼夜节律是指生物体组织器官的生理活动在地球自然明暗周期的影响下呈现24 h左右的周期性改变,并时刻能与外界环境保持同步,调节人体多种生理功能,如睡眠、神经行为、新陈代谢及激素分泌等。昼夜节律受生物钟调控,包括位于下丘脑视交叉上核的主时钟及该时钟协调和同步的外周时钟 [9] 。在分子水平上,生物钟的核心是转录因子Clock (Basic Helix-Loop-Helix ARNT Like 1, clock)和Bmal1 (Brain and muscle arnt-like 1, Bmal1),其通过与E-box启动子结合,激活周期基因(Period, Per)和隐花色素基因(Cryptochromes, Cry)等靶基因的转录和翻译,Per和Cry蛋白二聚化形成反馈抑制,抑制Clock和Bmal1的初始转录 [10] 。此外,Clock-Bmal1异二聚体还通过结合E-box来驱动核受体亚家族(REV-ERBs)和视黄醇相关孤儿受体(retinoid-related orphan receptors, RORs)的节律性转录从而调控Bmal1的表达 [11] 。生物钟通过转录–翻译反馈环路和信号放大机制与外界环境相适应,使机体活动产生节律性变化 [12] 。在灵长类动物的大脑和周围组织中,生物钟控制着睡眠–觉醒周期和80%的蛋白质编码基因的转录 [13] ,涉及到DNA复制、DNA修复、蛋白质泛素化、氨基糖代谢、丙酮酸代谢和氧化磷酸化等信号通路的正常转导 [14] ,从而控制着机体的代谢、炎症和氧化应激反应等,昼夜节律紊乱与代谢综合征、慢性炎症和癌症等疾病相关 [15] 。研究发现昼夜节律紊乱会破坏肠道微生物群节律振荡,使肠道菌群失调、易位及肠道微生物群代谢产物分泌异常,从而使黏膜屏障功能破坏,导致宿主粘膜免疫系统紊乱,炎性细胞及促炎因子激活,诱发肠道炎症 [16] 。因此,本文将基于昼夜节律角度探讨其对肠道稳态的影响,初步阐述炎症性肠病潜在的发病机制。

2. 昼夜节律对肠道菌群的影响

正常人的肠道内菌群主要分为三种:共生菌、致病菌、中性菌。肠道菌群与宿主互惠共生,组成了人体复杂的肠道微生态环境,共同参与机体营养代谢、肠道屏障修复及免疫调节等 [17] 。研究发现,受宿主生物钟及摄食的影响,肠道菌群的构成、数量、定植以及功能活动均具有显著的昼夜节律性变化。Xue等 [18] 在48小时内对小鼠粪便颗粒取样并测试后发现细菌数量在晚上11点左右达到峰值,早上7点达到最低水平,此外,拟杆菌门和厚壁菌门这两种菌属在明暗循环中变化最明显,拟杆菌门的平均丰度在晚上11点和上午1点较高,在其他时间较低,而厚壁菌门的平均丰富度在凌晨3点和7点较高,11点最低。当Per等时钟基因表达被抑制或切除时,小鼠出现显著改变的微生物群落特征和特定微生物类群的节律丧失 [19] 。昼夜节律改变会破坏肠道微生态,使有益菌丰度减少,菌群移位并激活条件致病菌,使病原菌增殖。在经历异常明暗周期饲养后,对昼夜节律紊乱的小鼠粪便样品进行宏基因组测序发现约氏乳杆菌(Lactobacillus johnsonii)减少,而瘤胃球菌(Ruminococcus torques)数量增加,而后者是一种会降低肠道屏障完整性的细菌。此外,绳尾真杆菌(Eubacterium plexicaudatum)和罕见小球菌属(Subdoligranulum)也相对减少,二者都是丁酸的上游物质,丁酸可以调节粘膜基因表达以维持肠道屏障的完整性,并增强对炎症的抑制。

微生物定植是指各种微生物从不同环境接触到机体,并在特定部位黏附、生长和繁殖的现象 [20] 。Thaiss等 [21] 研究发现菌群在肠黏膜层定植程度呈24 h周期性变化,但肠道菌群定植位置节律具体是如何变化尚有待研究。肠道菌群丰度的节律变化与功能密切相关。在对啮齿类动物昼夜期间肠道菌群含量测定中发现,白天休眠期中肠道乳杆菌数量较多,这与解毒、胃肠蠕动、感知环境等功能相关;相反在夜间厚壁菌和拟杆菌含量增加,相对应能量代谢和细胞生长及发育作用增强。昼夜节律紊乱会导致肠道菌群紊乱。肠道菌群紊乱与IBD之间存在着十分复杂的联系,二者之间的影响是双向的 [22] 。其具体机制可能是肠道促炎细菌丰度增加,其通过自身侵袭力及分泌毒素破坏正常的机械屏障及免疫屏障,使肠粘膜通透性增高,菌群移位,激活异常的免疫反应,进一步加剧肠道炎症反应 [23] 。同时肠道抗炎细菌如乳酸杆菌、双歧杆菌等细菌丰度降低,这些益生菌具有与病原菌竞争营养物质及附着位点、产生抑菌性物质,从而抑制病原菌的生长,改善肠黏膜屏障功能的作用 [24] 。短链脂肪酸(short-chain fatty acids, SCFA)是调控肠道屏障和免疫稳态的重要物质,在IBD患者中,SCFAs水平显著降低,生成SCFA的专性厌氧菌数量减少,而SCAF是肠道上皮细胞(intestinal epithelial cells, IECs)的重要能量来源之一,对于调节肠道上皮细胞增殖分化及凋亡,增加粘蛋白的产生,并对包括紧密连接蛋白完整性在内的上皮屏障具有保护作用 [25] 。此外,肠道菌群对于宿主免疫系统的发育、成熟和调节具有重要意义。脂多糖(Lipopoly- saccharides, LPS)是革兰氏阴性菌细胞壁的组成部分,在体内可以通过细胞信号转导系统激活免疫细胞,合成和释放多种细胞因子和炎性介质,进而引起机体炎症反应。昼夜节律紊乱上调了控制LPS合成的微生物基因。而LPS水平升高会导致免疫异常激活,肠道损伤因子增加,引起肠道损伤 [26] 。

3. 昼夜节律对肠道粘膜屏障的影响

肠道粘膜屏障是肠道吸收营养物质的主要场所,具有分离肠腔与机体内环境,抵御各种致病因子侵袭的作用 [27] 。肠道粘膜屏障主要由物理屏障、化学屏障、免疫屏障和微生物屏障组成 [28] 。其中由黏液、肠上皮细胞以及肠上皮细胞之间的紧密连接构成的物理屏障是维持肠道化学屏障、免疫屏障等屏障功能的结构基础,在宿主肠道防御中起着核心作用 [29] 。越来越多的证据表明昼夜节律在调节肠黏膜屏障中发挥重要作用。

肠黏膜上皮作为肠道屏障重要组成部分之一,其细胞更新周期呈稳定节律,研究发现其细胞周期S期的峰值出现在深夜,而有丝分裂活性在清晨最高,在傍晚左右最低,与之相关的周期蛋白也同样表现昼夜节律性 [30] 。肠道通透性依赖于调节上皮细胞旁通路的紧密连接(Tight junction, TJ),TJ蛋白的功能障碍会削弱细胞间粘附,导致肠道通透性改变和炎症反应 [31] 。Occludin和Claudins是维持肠黏膜机械屏障的重要蛋白。Kyoko等 [32] 在检测野生型小鼠结肠Occludin和Claudin-1水平中发现,二者表现出时间依赖性变化,与此同时,结肠中的Per1、Per2、Cry1和Bmal1 mRNA水平也表现出时间依赖性变化,Occludin和Claudin-1昼夜节律振荡依赖于正常的Per2活性。进一步研究发现Clock和Bmal1作为转录因子可以直接结合到Occludin和Claudin-1启动子区的E-box元件上并影响其转录,影响TJ功能,从而调节结肠通透性。

肠道屏障功能的受损也会破坏肠道上皮细胞节律,使肠道炎症加重 [33] 。上皮肌球蛋白轻链激酶(Myosin light chain kianse, MLCK)是细胞旁屏障的关键调节因子,IBD患者肠道上皮MLCK激活会诱发肠道共生菌向侵袭性病原体的转化,侵袭性细菌通过Rac1/STAT3依赖性途径、MLCK非依赖性途径破坏上皮昼夜节律,导致促炎细胞因子上调和糖皮质激素表达下调,从而加剧结肠炎。肠道粘膜屏障的维持还依赖于肠道菌群及其代谢产物。昼夜节律导致肠道菌群紊乱继而引起丁酸盐等代谢物减少,而丁酸盐可以诱导上皮细胞增殖,增加粘蛋白的产生,对包括紧密连接蛋白完整性在内的上皮屏障具有保护作用 [34] 。此外,Pagel等 [35] 在Per1/2突变型小鼠中发现潘氏细胞、杯状细胞减少,而二者的富集对肠道粘膜屏障具有保护作用,而潘氏细胞、杯状细胞的丢失与Wee1抑制有丝分裂有关,其启动子活性受时钟蛋白Clock和Bmal1控制。总之,肠黏膜屏障对维持机体内环境稳定、抵御外来抗原物质至关重要,其中任一屏障的功能受损均可参与IBD的发病,昼夜节律紊乱可以破坏肠道粘膜屏障,增加肠黏膜通透性,参与并加重肠道炎症,但其具体机制仍待进一步研究。

4. 昼夜节律对肠道免疫的影响

肠道免疫紊乱已经被认为是炎症性肠病发病的重要因素,先天免疫和适应性免疫为肠道免疫的重要组成部分,其中先天免疫主要由上皮屏障及先天免疫细胞如中性粒细胞、巨噬细胞、单核细胞及树突状细胞等构成,能够产生快速非特异性反应来防御病原体和肠道微生物侵入,同时保持对肠道微生物群的免疫耐受性 [36] 。肠粘膜上皮是抵御病原微生物入侵的第一道防线,它可以通过细胞紧密连接装置、粘液、抗菌蛋白和免疫球蛋白a (IgA)形成物理屏障抵御病原体入侵 [37] ,而肠道屏障的破坏将刺激抗原特异效应物的增殖,导致先天性和适应性免疫激活,引起异常免疫反应,加重肠道炎症 [38] 。先天免疫细胞通过识别病原体相关分子模式(Pathogen-associated molecular patterns, PAMP)和损伤相关分子模式(Damage-associated molecular patterns, DAMP)产生细胞因子和趋化因子,触发补体级联反应和吞噬作用,或通过呈递抗原激活适应性免疫,从而促进宿主防御、炎症反应和组织愈合 [39] 。如中性粒细胞作为“先天免疫的先锋”,可在细胞因子、趋化因子、生长因子等影响下,迅速被召集到病变部位,通过吞噬、脱颗粒、产生活性氧(ROS)和释放中性粒细胞胞外陷阱(Neutrophil extracellular traps, NETs)参与微生物的消除 [40] ,但当免疫异常时,中性粒细胞过度活化促进多种水解酶(如中性粒细胞弹性蛋白酶、基质金属蛋白酶(Matrix metalloprot-einaSes, MMPs))、促炎细胞因子(IL-8、TNF-α、IL-1β)和ROS释放,NETs产生加剧,直接引起上皮屏障损伤,同时还会引起中性粒细胞和其他免疫细胞向炎症组织的募集,激活过度的免疫反应。

参与适应性免疫的细胞主要包括T调节细胞和T辅助细胞以及B调节细胞。调节性T细胞(Regulatory T-cells, TReg)通过负调控效应T细胞来维持肠道稳态,并通过产生IL-10或转化生长因子β (Transforming growth factor-β, TGF-β)和高表达细胞毒性T淋巴细胞抗原(CTLA-4或CD152)在抑制肠道炎症中发挥关键作用 [41] ,当TReg数量减少或功能缺陷时会导致TReg免疫调节故障,从而导致免疫紊乱和肠道炎症发展。此外,研究发现,T辅助细胞2 (T helper 2 cell, Th2)可分泌IL-13,其在UC患者中显著上调,增强肠道上皮细胞的细胞毒性 [42] 。在UC患者中肠道中发现T辅助细胞2 (T helper 9 cell, Th9)细胞的浸润,同时伴随着IL-9的高度表达,后者可影响紧密连接蛋白的表达和抑制肠道细胞增殖进而破坏上皮屏障,使肠道通透性增加,对微生物群耐受性降低,导致肠道炎症加剧 [43] 。调节性B细胞(Regulatory B cells, Bregs)通过产生免疫抑制细胞因子如TGF-β、IL-10及IL-35等,在维持肠道免疫平衡和抗炎方面起着关键的作用 [44] 。总之,当这些免疫细胞异常时,肠道促炎因子增加,抗炎因子减少,肠黏膜炎症反应异常亢进,组织修复能力降低,疾病症状加重。

时钟基因与肠道免疫密切相关。研究发现,在Rev-erba缺失小鼠中,LPS诱导的炎症比野生型小鼠更严重,同时,一些参与NF-κB信号正调控的基因,如Nfkb2、Tlr4、Stat3和Traf2被发现上调,抑制NF-κB信号传导的基因(Nfkbib和Usp31)被发现下调 [45] 。而NF-κB作为免疫反应关键性调节因子,可以通过模式识别受体或细胞因子激活转录促进促炎细胞因子分泌调控炎症反应。TOll样受体(Toll-like receptoors, TLRs)作为模式识别受体的重要组成部分,其表达受生物钟调控。Silver等 [46] 发现Clock-Bmal1异二聚体能直接结合TLR9启动子部位的E-boxes来调控TLR9的昼夜节律。此外,在Per2突变的小鼠中,TLR9基因表达的mRNA减少,这些说明生物钟可以控制TLR9进而调控免疫反应。此外Spen-gler等 [47] 发现CLOCK蛋白可以作为NF-κb应答的正调节因子,Tang等 [48] 发现低氧可促进Clock基因的表达,增加的Clock蛋白可通过活性氧产物导致NF-κB通路的进一步活化,从而激发一系列的免疫反应。Rev-erba作为是生物钟系统的核心组成部分,能够影响机体免疫,在炎症疾病中起着重要作用 [49] 。研究发现在UC小鼠中,大部分时钟基因(Cry1、Npas2、Clock、Per2、Rev-erba)表达降低并且节律性被打乱。敲除Rev-erba蛋白的小鼠对UC的易感性增加,促炎因子如IL-1β、IL-18与IL-6表达增加。进一步研究中发现Rev-erba可通过其与Nlrp3启动子内Rev-RE位点的特异性结合直接抑制Nlrp3表达。此外Rev-erba可通过NF-κB通路间接抑制Nlrp3表达 [50] 。

总之,生物钟时钟影响免疫细胞的功能及活动周期,进而影响传到免疫细胞发挥吞噬、炎症因子释放、免疫调节及抗菌等功能,而这些与炎症性肠病发病相关。但是目前对于昼夜节律紊乱是如何影响肠道免疫仍需要不断探索,未来以生物钟调节机体免疫反应或许可以成为炎症性肠病治疗的新靶点。

5. 总结与展望

昼夜节律紊乱会导致肠道菌群紊乱、粘膜屏障破坏及肠道免疫异常,这三方面是维持肠道稳态的关键部分,需要说明的是,三者并不是独立作用的,而是在生物钟控制下相互影响,共同参与IBD的发病。目前昼夜节律在IBD发病中的研究尚未形成完整体系,相关机制上下游的因果关系缺少拼图,未来的研究或可基于昼夜戒律从IBD上下游之间的连接入手,这对阐明节律对IBD的影响具有重大意义,可为临床提供新的治疗角度与方法。

NOTES

*通讯作者。

参考文献

[1] Ramos, G.P. and Papadakis, K.A. (2019) Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clinic Proceed-ings, 94, 155-165.
https://doi.org/10.1016/j.mayocp.2018.09.013
[2] 杨雯迪, 李伟, 许博洋, 等. 黄芪多糖治疗炎症性肠病作用机制研究进展[J]. 中西医结合研究, 2023, 15(1): 55-58.
[3] Ng, S.C., Shi, H.Y., Hamidi, N., et al. (2017) Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Re-view of Population-Based Studies. The Lancet, 390, 2769-2778.
https://doi.org/10.1016/S0140-6736(17)32448-0
[4] Piovani, D., Danese, S., Peyrin-Biroulet, L. and Bonovas, S. (2020) Inflammatory Bowel Disease: Estimates from the Global Burden of Disease 2017 Study. Alimentary Pharmacol-ogy & Therapeutics, 51, 261-270.
https://doi.org/10.1111/apt.15542
[5] Kaplan, G.G. (2015) The Global Burden of IBD: From 2015 to 2025. Na-ture Reviews Gastroenterology & Hepatology, 12, 720-727.
https://doi.org/10.1038/nrgastro.2015.150
[6] 钱家鸣, 杨红. 中国炎症性肠病研究的历史回顾、现状和展望[J]. 中国实用内科杂志, 2015, 35(9): 727-730.
[7] 刘小伟, 孙瑞娟, 董尔丹. 肠道稳态及相关疾病研究现状与趋势[J]. 生理科学进展, 2013, 44(3): 206-212.
[8] 马玲玲, 冀建斌. 炎症性肠病肠道微生态新进展[J]. 医学理论与实践, 2022, 35(9): 1472-1474, 1481.
[9] Pévet, P. (2009) Bi-ological Rhythms: From Molecular Clocks to Human Health. Frontiers in Neuroscience, 3, 1650-1651.
https://doi.org/10.3389/conf.neuro.01.2009.16.122
[10] Patke, A., Young, M.W. and Axelrod, S. (2020) Molecular Mechanisms and Physiological Importance of Circadian Rhythms. Nature Reviews Molecular Cell Biology, 21, 67-84.
https://doi.org/10.1038/s41580-019-0179-2
[11] Wood, S.H., Hindle, M.M., Mizoro, Y., et al. (2020) Circadian Clock Mechanism Driving Mammalian Photoperiodism. Nature Communications, 11, Article No. 4291.
https://doi.org/10.1038/s41467-020-18061-z
[12] Cermakiann, N. and Boivin, D.B. (2003) A Molecular Perspec-tive of Human Circadian Rhythm Disorders. Brain Research Reviews, 42, 204-220.
https://doi.org/10.1016/S0165-0173(03)00171-1
[13] Mure, L.S., Le, H.D., Benegiamo, G., et al. (2018) Diurnal Transcriptome Atlas of a Primate across Major Neural and Peripheral Tissues. Science, 359, eaao0318.
https://doi.org/10.1126/science.aao0318
[14] Zhang, R., Podtelezhnikov, A.A., Hogenesch, J.B. and Anafi, R.C. (2016) Discovering Biology in Periodic Data through Phase Set Enrichment Analysis (PSEA). Journal of Biological Rhythms, 31, 244-257.
https://doi.org/10.1177/0748730416631895
[15] Turek, F.W., Joshu, C., Kohsaka, A., et al. (2005) Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice. Science, 308, 1043-1045.
https://doi.org/10.1126/science.1108750
[16] Butler, T.D. and Gibbs, J.E. (2020) Circadian Host-Microbiome In-teractions in Immunity. Frontiers in Immunology, 11, Article 1783.
https://doi.org/10.3389/fimmu.2020.01783
[17] 王婷, 李兴华. 肠道菌群失调在消化道肿瘤中的研究进展[J]. 中国病原生物学杂志, 2023, 18(4): 495-496.
[18] Liang, X., Bushman, F.D. and Fitzgerald, G.A. (2015) Rhythmicity of the Intestinal Microbiota Is Regu-lated by Gender and the Host Circadian Clock. Proceedings of the National Academy of Sciences of the United States of America, 112, 10479-10484.
https://doi.org/10.1073/pnas.1501305112
[19] Thaiss, C.A., Zeevi, D., Levy, M., et al. (2014) Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell, 159, 514-529.
https://doi.org/10.1016/j.cell.2014.09.048
[20] 张谨莹, 唐陆琦, 胡良宇, 等. 肠道菌群的昼夜节律性及其与宿主间代谢互作的研究进展[J]. 动物营养学报, 2020, 32(8): 3577-3583.
[21] Thaiss, C.A., Levy, M., Korem, T., et al. (2016) Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell, 167, 1495-1510.E12.
https://doi.org/10.1016/j.cell.2016.11.003
[22] Ni, J., Wu, G.D., Albenberg, L. and Tomov, V.T. (2017) Gut Mi-crobiota and IBD: Causation or Correlation? Nature Reviews Gastroenterology & Hepatology, 14, 573-584.
https://doi.org/10.1038/nrgastro.2017.88
[23] Pickard, J.M., Zeng, M.Y., Caruso, R. and Núñez, G. (2017) Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunological Reviews, 279, 70-89.
https://doi.org/10.1111/imr.12567
[24] Sanders, M.E., Merenstein, D.J., Reid, G., Gibson, G.R. and Rastall, R.A. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nature Reviews Gas-troenterology & Hepatology, 16, 605-616.
https://doi.org/10.1038/s41575-019-0173-3
[25] 王程瑶, 张政, 吴静. 肠道短链脂肪酸在炎症性肠病中的研究进展[J]. 中国医刊, 2022, 57(12): 1302-1307.
[26] Glassner, K.L., Abraham, B.P. and Quigley, E.M.M. (2020) The Microbiome and Inflammatory Bowel Disease. Journal of Allergy and Clinical Immunology, 145, 16-27.
https://doi.org/10.1016/j.jaci.2019.11.003
[27] Di Tommaso, N., Gasbarrini, A. and Ponziani, F.R. (2021) Intesti-nal Barrier in Human Health and Disease. International Journal of Environmental Research and Public Health, 18, Arti-cle 12836.
https://doi.org/10.3390/ijerph182312836
[28] Baumgart, D.C. and Dignass, A.U. (2002) Intestinal Barrier Function. Current Opinion in Clinical Nutrition & Metabolic Care, 5, 685-694.
https://doi.org/10.1097/00075197-200211000-00012
[29] An, J., Liu, Y., Wang, Y., et al. (2022) The Role of In-testinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Frontiers in Immunology, 13, Article 871713
https://doi.org/10.3389/fimmu.2022.871713
[30] Pácha, J. and Sumová, A. (2013) Circadian Regulation of Epithelial Functions in the Intestine. Acta Physiologica, 208, 11-24.
https://doi.org/10.1111/apha.12090
[31] Groschwitz, K.R. and Hogan, S.P. (2009) Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. Journal of Allergy and Clinical Immunology, 124, 3-20.
https://doi.org/10.1016/j.jaci.2009.05.038
[32] Oh-Oka, K., Kono, H., Ishimaru, K., et al. (2014) Expressions of Tight Junction Proteins Occludin and Claudin-1 Are under the Circadian Control in the Mouse Large Intestine: Implica-tions in Intestinal Permeability and Susceptibility to Colitis. PLOS One, 9, e98016.
https://pubmed.ncbi.nlm.nih.gov/24845399/
https://doi.org/10.1371/journal.pone.0098016
[33] Pai, Y.C., Li, Y.H., Turner, J.R. and Yu, L.C.H. (2023) Tran-sepithelial Barrier Dysfunction Drives Microbiota Dysbiosis to Initiate Epithelial Clock-Driven Inflammation. Journal of Crohn’s and Colitis.
https://doi.org/10.1093/ecco-jcc/jjad064
[34] Swanson, G.R., Siskin, J., Gorenz, A., et al. (2020) Disrupted Diur-nal Oscillation of Gut-Derived Short Chain Fatty Acids in Shift Workers Drinking Alcohol: Possible Mechanism for Loss of Resiliency of Intestinal Barrier in Disrupted Circadian Host. Translational Research, 221, 97-109.
https://doi.org/10.1016/j.trsl.2020.04.004
[35] Pagel, R., Bär, F., Schröder, T., et al. (2017) Circadian Rhythm Disruption Impairs Tissue Homeostasis and Exacerbates Chronic Inflammation in the Intestine. The FASEB Journal, 31, 4707-4719.
https://doi.org/10.1096/fj.201700141RR
[36] Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sánchez-Martinez, H. and Gonzalez-Granado, J.M. (2023) Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. In-ternational Journal of Molecular Sciences, 24, Article 1526.
https://doi.org/10.3390/ijms24021526
[37] Sun, M., He, C., Cong, Y. and Liu, Z. (2015) Regulatory Immune Cells in Regulation of Intestinal Inflammatory Response to Mi-crobiota. Mucosal Immunology, 8, 969-978.
https://doi.org/10.1038/mi.2015.49
[38] 崔伟, 刘力, 杜晓泉, 等. 基于肠道菌群与肠道免疫相互作用认识溃疡性结肠炎发病的研究概况[J]. 现代消化及介入诊疗, 2022, 27(7): 925-930.
[39] Muñoz, L.E., Leppkes, M., Fuchs, T.A., Hoffmann, M. and Herrmann, M. (2017) Missing in Ac-tion—The Meaning of Cell Death in Tissue Damage and Inflammation. Immunological Reviews, 280, 26-40.
https://doi.org/10.1111/imr.12569
[40] Zhou, G., Yu, L., Fang, L., et al. (2018) CD177+ Neutrophils as Function-ally Activated Neutrophils Negatively Regulate IBD. Gut, 67, 1052-1063.
https://doi.org/10.1136/gutjnl-2016-313535
[41] Cronkite, D.A. and Strutt, T.M. (2018) The Regulation of In-flammation by Innate and Adaptive Lymphocytes. Journal of Immunology Research, 2018, Article ID: 1467538.
https://doi.org/10.1155/2018/1467538
[42] Giuffrida, P., Caprioli, F., Facciotti, F. and Di Sabatino, A. (2019) The Role of Interleukin-13 in Chronic Inflammatory Intestinal Disorders. Autoimmunity Reviews, 18, 549-555.
https://doi.org/10.1016/j.autrev.2019.03.012
[43] Shohan, M., Sabzevary-Ghahfarokhi, M., Bagheri, N., et al. (2018) Intensified Th9 Response Is Associated with the Immunopathogenesis of Active Ulcerative Colitis. Immunologi-cal Investigations, 47, 700-711.
https://doi.org/10.1080/08820139.2018.1486411
[44] Berthelot, J.M., Jamin, C., Amrouche, K., et al. (2013) Reg-ulatory B Cells Play a Key Role in Immune System Balance. Joint Bone Spine, 80, 18-22.
https://doi.org/10.1016/j.jbspin.2012.04.010
[45] Griffin, P., Dimitry, J.M., Sheehan, P.W., et al. (2019) Circadian Clock Protein Rev-Erbα Regulates Neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 116, 5102-5107.
https://doi.org/10.1073/pnas.1812405116
[46] Silver, A.C., Arjona, A., Walker, W.E. and Fikrig, E. (2012) The Circadian Clock Controls Toll-Like Receptor 9-Media- ted Innate and Adaptive Immunity. Immunity, 36, 251-261.
https://doi.org/10.1016/j.immuni.2011.12.017
[47] Spengler, M.L., Kuropatwinski, K.K., Comas, M., et al. (2012) Core Circadian Protein CLOCK Is a Positive Regulator of NF-κB—Mediated Transcription. Proceedings of the National Academy of Sciences of the United States of America, 109, E2457-E2465.
https://doi.org/10.1073/pnas.1206274109
[48] Tang, X., Guo, D., Lin, C., et al. (2015) Hclock Causes Rho-Kinase-Mediated Endothelial Dysfunction and NF-κB- Mediated Inflammatory Responses. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 671839.
https://doi.org/10.1155/2015/671839
[49] Sato, S., Sakurai, T., Ogasawara, J., et al. (2014) A Circadian Clock Gene, Rev-Erbα, Modulates the Inflammatory Function of Macrophages through the Negative Regulation of Ccl2 Ex-pression. The Journal of Immunology, 192, 407-417.
https://doi.org/10.4049/jimmunol.1301982
[50] Ivanov, I.I., Mckenzie, B.S., Zhou, L., et al. (2006) The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell, 126, 1121-1133.
https://doi.org/10.1016/j.cell.2006.07.035