LncRNA在宫颈病变发生发展中的作用及机制研究进展
Research Progress on the Role and Mechanism of LncRNA in the Occurrence and Development of Cervical Lesions
DOI: 10.12677/ACM.2023.13102231, PDF, HTML, XML, 下载: 151  浏览: 242 
作者: 张 邢, 王 菲:内蒙古医科大学附属医院,内蒙古 呼和浩特
关键词: 长链非编码RNA宫颈病变Long Non-Coding RNA Cervical Lesions
摘要: 宫颈癌是女性生殖系统中最常见的恶性肿瘤之一,主要是由高危型人乳头瘤病毒(human papillo-mavirus, HPV)感染引起,从高危型HPV感染到发展为宫颈病变是一个极其复杂的多阶段、多基因调控异常的过程。长链非编码RNA (long non-coding RNA, LncRNA)是无编码蛋白质功能的RNA (>200个核苷酸),但它在转录、转录后的表观遗传水平起作用,与人类癌症的发生、侵袭、转移等过程密切相关;并且在宫颈病变的发生发展过程中起着重要作用。
Abstract: Cervical cancer is one of the most common malignant tumors in the female reproductive system, which is mainly caused by high-risk human papillomavirus (human papillomavirus, HPV) infection. From high-risk HPV infection to cervical disease is an extremely complex multi-stage and multigene abnormal regulation process. Long-chain non-coding RNA (long non-coding RNA, LncRNA) is an RNA without coding protein function (>200 nucleotides), but it plays a role in transcription and tran-scription epigenetic level, and is closely related to the occurrence, invasion, metastasis of human cancer; and plays an important role in the occurrence and development of cervical lesions.
文章引用:张邢, 王菲. LncRNA在宫颈病变发生发展中的作用及机制研究进展[J]. 临床医学进展, 2023, 13(10): 15964-15969. https://doi.org/10.12677/ACM.2023.13102231

1. 引言

宫颈癌是女性生殖系统中最常见的恶性肿瘤之一,发病率逐年增高并且趋于年轻化 [1] 。高危型HPV感染是宫颈癌发生发展的主要原因,但宫颈病变从不典型增生发展到侵袭性宫颈癌是一个缓慢的过程,在此期间病变可发生消退、持续和进展三种结局。宫颈病变的发生和发展是一个多因素、多阶段的过程,有多种基因的异常调控参与其中。杨 [2] 等研究表明在宫颈炎症、LSIL、HSIL及宫颈癌患者中,HPV E6/E7 mRNA、P16、ki67蛋白的表达水平以及HPV感染阳性率逐渐升高。宫颈癌的多种治疗和预防策略已被引入并广泛应用,包括手术、化疗、放疗、激素治疗、RNA干扰治疗、疫苗预防等 [3] 。但其发病率仍逐年升高,有必要寻找新的分子靶点用于诊断、预后和治疗。LncRNA是一类长度超过200个核苷酸的转录RNA分子,由RNA聚合酶II转录,在过去被认为是基因转录的“噪音”,不具有编码蛋白质的能力,近年来,LncRNA引发了广泛的关注,大量研究发现,LncRNA具有重要的生物学功能,除了调控表观遗传学、细胞周期、细胞分化和细胞凋亡外,它们还在癌变、肿瘤发展和免疫功能及治疗耐药性中发挥重要的调控作用 [4] 。LncRNA在肿瘤中异常表达,发挥着癌基因或抑癌基因的作用。LncRNA也可作为诊断和预后的生物标志物。研究表明,各种LncRNA在宫颈病变的发生发展过程中以及宫颈癌治疗后表达均有明显变化 [5] 。

2. 宫颈病变中LncRNA的异常调控

2.1. 宫颈病变中异常调控的LncRNA

2.1.1. 发挥致癌基因作用的LncRNA

MALAT1是最早被发现与人类疾病,特别是癌症相关的LncRNA之一,位于人染色体11q13。与正常宫颈组织相比,宫颈癌组织中MALAT1的表达上调。此外,MALAT1表达水平在宫颈癌组织、癌前病变组织以及正常宫颈组织中逐渐降低的变化趋势可作为宫颈癌前病变的早期生物标志物 [5] ,有助于针对宫颈病变的发展采取有针对性的治疗方法。LncRNA Hox转录反义基因间RNA (HOTAIR)在宫颈癌组织中表达上调,通过靶向miR-331-3p/RCC2轴发挥作用,HOTAIR负向调节miR-331-3p的表达水平,而miR-331-3p负向调节RCC2的表达水平,从而促进细胞增殖、迁移和侵袭,在宫颈癌中发挥致癌作用 [6] 。HOTAIR也可通过miR-214-3p/Wnt/β-catenin信号通路,促进HPV16阳性宫颈癌细胞增殖,抑制凋亡 [7] 。这也可能和HOTAIR是HPV癌蛋白E7在宫颈癌中的靶点,E7通过调节HOTAIR的表达和功能部分介导了宫颈癌的发生有关。HOTAIR在癌旁组织中的表达水平明显低于癌组织,在阴道分泌物和血清中的表达水平高于宫颈癌患者,与肿瘤恶性程度呈正相关,同时在术后3个月阴道分泌物和血清中HOTAIR的表达水平均显著降低,HOTAIR在阴道分泌物中的诊断性能高于血清,有可能成为宫颈癌诊断和治疗的标志物 [8] 。而GIHCG是在肝细胞癌中新发现的一种LncRNA,影响着多种肿瘤的发生与发展。在宫颈病变中,Zhang [9] 的研究结果显示GIHCG 在宫颈癌组织和人宫颈癌细胞系的表达水平均高于正常组织和正常宫颈细胞系。并且在宫颈癌血清中GIHCG的表达式水平也显著升高,ROC曲线分析显示血清GIHCG能准确区分宫颈癌患者和健康对照。对于GIHCG的功能研究表明,过表达GIHCG可以促进宫颈癌细胞增殖,抑制细胞凋亡,促进细胞迁移,这是GIHCG通过抑制miR-200b的表达在宫颈癌中发挥致癌基因的作用所致。另外,该研究也提示GIHCG可能是一种非侵入性的诊断生物标志物和宫颈癌的潜在治疗靶点。

除上述LncRNA,还有一些新的在宫颈组织中高表达的LncRNA,同样发挥着癌基因的作用。TCAM1P的表达水平随着宫颈病变程度的增加而增加,ROC曲线结果显示 [10] ,TCAM1P能够准确诊断AUC大于0.7的宫颈高级别病变,表示TCAM1P可以有效诊断宫颈高级别病变,可以作为宫颈癌筛查的有效方法。LncRNA PVT1在宫颈癌患者中表达显著升高,通过PVT1/miR-503/ARL2轴在宫颈癌进展中发挥肿瘤促进作用并且其表达升高与总生存率较差有关 [11] 。此外,子宫内膜癌的生物体液中可以稳定检测到PVT1,这表明PVT1可能是一种非侵入性的生物标志物 [12] 。CERS6-AS1在宫颈癌组织中过表达,通过负调控miR-195-5p在宫颈癌中起致癌基因的作用;抑制CERS6-AS1的表达可以减弱宫颈癌细胞的活力、侵袭和迁移,促进细胞凋亡,抑制肿瘤生长 [13] 。LMCD1-AS1在宫颈癌组织中高表达,并且高表达的LMCD1-AS1与FIGO分期、淋巴结转移及患者预后较差相关。LMCD1-AS1过表达通过调控miR-873-3p促进宫颈癌细胞增殖和EMT过程。此外,FIGO分期、淋巴结转移和LMCD1-AS1高表达可能是宫颈癌患者预后的独立因素 [14] 。AATBC在宫颈癌中高表达,与FIGO分期和淋巴结转移密切相关,研究表明,AATBC在宫颈癌发生发展中的潜在分子机制可能与miR-1245b-5p介导AATBC下调后的抑瘤作用有关 [15] 。LINC01012在宫颈癌样本和宫颈上皮内瘤变3级组织中高表达,而在宫颈癌中上调LINC01012的表达可能会促进癌细胞的增殖和迁移,从而通过下调CDKN2D促进宫颈癌的进展 [16] 。LncRNA TDRG1在宫颈癌组织中呈高表达,并且其表达水平与FIGO分期、淋巴结转移、宫颈基底浸润深度、癌细胞分化相关,而高表达患者比低表达患者生存率更低 [17] 。

2.1.2. 发挥致癌基因作用的LncRNA

CCDST又称ENST00000429352,位于染色体1:152,205,858-152,207,057,长度约397个核苷酸。CCDST在癌组织中的表达水平低于正常组织,而在HPV阴性细胞中的表达水平高于HPV阳性细胞。CCDST抑制DHX9的表达从而抑制宫颈癌细胞的迁移、侵袭、增殖和血管生成 [18] 。16、18型是主要的高危型HPV,而HPV编码的E6、E7癌蛋白共同参与宫颈病变的发生发展 [19] 。E6和E7下调CCDST的表达,进而上调DHX9的表达和增加其致瘤性 [18] ,这为HPV相关恶性肿瘤的潜在治疗靶点提供了一定的参考。CARMN是最初在人类心肌细胞中发现的LncRNA,又称作心脏中胚层增强子相关非编码RNA,在肿瘤中发挥着肿瘤抑制因子的作用。CARMN可通过抑制miR-92a-3p上调BTG2转录,进而阻断Wnt/β-catenin信号通路,从而抑制宫颈癌细胞生长 [20] 。另有研究表明 [21] ,过表达CARMN可降低CC细胞的增殖、迁移和侵袭能力,促进细胞凋亡。其机制可能是通过m6A修饰调节低水平的CARMN表达,而CARMN调节miR-21-5p的表达来发挥其功能。MCM3AP-AS1位于染色体21q22.3上,作为一种竞争内源性RNA可以海绵吸收miRNA,促进癌细胞的生长、增殖、侵袭和转移。然而在宫颈癌中,MCM3AP-AS1的表达下调,可能通过下调miRNA-93抑制宫颈癌细胞增殖,并预示较差的生存 [22] 。PDHB-AS在宫颈癌细胞中下调,在宫颈癌的进展中起肿瘤抑制作用,此外,PDHB-AS的过表达抑制Wnt/β-catenin通路从而抑制了宫颈癌细胞的肿瘤生长和顺铂耐药,并且PDHB-AS高表达患者的总生存率高于低表达患者 [23] 。

上述研究提示LncRNA可以作为宫颈癌的重要诊断生物标志物,为宫颈病变潜在的治疗提供一定的思路,但仍需要进一步的证据来支持这一观点。

2.2. LncRNA对宫颈癌细胞表型特征的影响

MALAT1通过下调miR-124-3p/STAT3分子轴促进宫颈癌细胞的增殖和迁移 [24] ,也较大可能通过MALAT1-miR124-RBG2轴促进高危型HPV阳性癌细胞的生长和侵袭 [25] 。ERS6-AS1是阿尔茨海默病的一项衍生研究中发现的LncRNA,在宫颈癌中通过miR-6838-5p/FOXP2轴调控宫颈癌细胞的增殖、侵袭和凋亡,CERS6-AS1作为竞争性内源RNA,抑制miR-6838-5p以增强FOXP2的表达,加速宫颈癌细胞的增殖和侵袭,抑制细胞凋亡,这也表明CERS6-AS1可能是治疗宫颈癌的潜在靶点 [26] 。AC010883.5通过调节MAPK信号通路促进宫颈癌细胞增殖、侵袭、迁移和上皮–间质转化 [27] 。这些研究提示LncRNAs可以影响宫颈癌细胞的表型特征,可以为我们今后在治疗宫颈癌方面提供一定思路,为宫颈癌的潜在治疗靶点提供了指示。

2.3. LncRNA对宫颈癌放化疗耐药性的影响

MALAT1与宫颈癌顺铂耐药有关,在顺铂耐药宫颈癌患者中,MALAT1的表达高于顺铂化疗敏感宫颈癌患者,并且研究表明 [28] ,外泌体MALAT1通过吸附miR-370-3p上调STAT3,激活PI3K/AKT通路,促进CC细胞顺铂耐药,提示外部MALAT1可作为顺铂耐药宫颈癌患者的诊断生物标志物。宫颈癌细胞在X射线照射下,表达水平上调的CASC19可负向调控miR-449b-5p的表达,部分逆转沉默CASC19对HeLa细胞增殖、凋亡和辐射敏感性的影响,表明CASC19/miR-449b-5p轴可能有助于宫颈癌对放疗的耐药 [29] 。HOTAIR在宫颈癌中通过miR-29b/PTEN/PI3K信号通路促进EMT,从而促进化疗耐药 [30] 。GAS5作为miR-106b海绵,在体外和体内抑制miR-106b,促进IER3表达,增加宫颈癌细胞的放射敏感性 [31] 。LOXL1-AS1通过海绵miR-526b-5p正向调节LYPLA1的表达,下调LOXL1-AS1可抑制宫颈癌细胞的功能,包括增殖、迁移、侵袭和血管生成能力,而LYPLA1过表达可降低LOXL1-AS1沉默对宫颈癌细胞恶性行为的抑制作用 [32] 。

3. LncRNA在宫颈病变中的分子调控机制

3.1. LncRNA与mirRNA、蛋白质、mRNA互相调节

LncRNA可与mirRNA、蛋白质或其他种类的RNA分子相互作用,在癌症进展过程中充当原癌基因或抑癌基因。Wang等研究发现 [33] ,MEG3过表达后,PI3K、AKT、MMP-2、MMP-9、Bcl-2的基因和蛋白表达均降低,Bax、P21的基因和蛋白表达均降低升高。这表明MEG3通过调节宫颈癌中PI3K/AKT/Bcl-2/Bax/P21和PI3K/AKT/MMP-2/9信号通路抑制宫颈癌进展。UCA1a可以促进PKM2蛋白核易位和稳定,同时UCA1a和PKM2的过表达促进HeLa细胞的增殖,UCA1a通过结合PKM2并增强PKM2活性在宫颈癌中发挥促瘤作用 [34] 。LINC00426在宫颈癌中表达上调,其中METTL3通过m6A甲基化修饰促进LINC00426的表达,此外,LINC00426/miR-200a-3p/ZEB1轴通过调节EMT标志物的表达影响CC的增殖、迁移和侵袭 [35] 。

3.2. LncRNA的单核苷酸多态性

一项荟萃分析显示 [36] ,HOTAIR rs4759314、rs920778、rs12826786、rs874945和rs12427129多态性显著增加了癌症发展的可能性。另一则多态性研究中显示 [37] MALAT1 rs3200401可能改变SRSF2的表达水平并参与宫颈癌的发展。

综上所述,lncRNA可以通过多种分子机制对宫颈病变的发生发展产生影响。

4. 总结

综上所述,宫颈病变的治疗和预防措施目前已被引入并广泛应用,包括手术、化疗、放疗、激素治疗、RNA干扰治疗、疫苗预防等,但有必要寻找新的分子靶点用于诊断、预后和治疗。寻找一种新的无创方法及时治疗宫颈鳞状上皮内病变是一种预防措施并且侵袭性宫颈癌的有效防治措施对改善妇女健康状况、维持生育能力具有重要意义。lncRNAs在宫颈病变的发生发展、细胞学行为、耐药及预后中起着重要作用,并且受多种基因表达调控的影响。近年来,越来越多lncRNA的发现,有望成为宫颈病变的新型标志物和治疗靶点,但目前lncRNAs在宫颈病变的发生发展过程中的具体机制目前仍未阐明,需要进一步深入研究。

参考文献

[1] Hegde, Y.M., Theivendren, P. and Srinivas, G. (2023) A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer. Anti-Cancer Agents in Medicinal Chemistry, 23, 37-59.
https://doi.org/10.2174/1871520622666220513160706
[2] 杨波, 秦月勤, 曹云桂, 等. 高危型人乳头瘤病毒E6/E7感染与宫颈病变组织中P16、ki67的相关性研究[J]. 中国妇产科临床杂志, 2023, 24(5): 514-515.
[3] Viveros-Carreño, D., Fernandes, A. and Pareja, R. (2023) Updates on Cervical Cancer Prevention. In-ternational Journal of Gynecological Cancer, 33, 394-402.
https://doi.org/10.1136/ijgc-2022-003703
[4] Begliarzade, S. and Beilerli, A. (2023) Long Non-Coding RNAs as Promising Biomarkers and Therapeutic Targets in Cervical Cancer. Non-coding RNA Research, 8, 233-239.
https://doi.org/10.1016/j.ncrna.2023.02.006
[5] Dudea-Simon, M. and Mihu, D. (2022) Alteration of Gene and miRNA Expression in Cervical Intraepithelial Neoplasia and Cervical Cancer. International Journal of Molecular Sci-ences, 23, Article No. 6054.
https://doi.org/10.3390/ijms23116054
[6] Buranjiang, G. and Abuduwanke, A. (2023) LncRNA HOTAIR En-hances RCC2 to Accelerate Cervical Cancer Progression by Sponging miR-331-3p. Clinical and Translational Oncolo-gy, 25, 1650-1660.
https://doi.org/10.1007/s12094-022-03059-4
[7] Zhou, Y., Wang, Y. and Lin, M. (2021) LncRNA HOTAIR Promotes Proliferation and Inhibits Apoptosis by Sponging miR-214-3p in HPV16 Positive Cervical Cancer Cells. Can-cer Cell International, 21, Article No. 400.
https://doi.org/10.1186/s12935-021-02103-7
[8] Liu, M.Y. and Li, N. (2023) The Diagnostic Value of lncRNA HOTAIR for Cervical Carcinoma in Vaginal Discharge and Serum. Medicine (Baltimore), 102, e34042.
https://doi.org/10.1097/MD.0000000000034042
[9] Zhang, X. and Mao, L. (2019) Long Noncoding RNA GIHCG Functions as an Oncogene and Serves as a Serum Diagnostic Biomarker for Cervical Cancer. Journal of Cancer, 10, 672-681.
https://doi.org/10.7150/jca.28525
[10] Zhu, Y. and Ren, C. (2022) Identification and Validation of the High Expression of Pseudogene TCAM1P in Cervical Cancer via Integrated Bioinformatics Analysis. Cancer Cell In-ternational, 22, Article No. 17.
https://doi.org/10.1186/s12935-021-02440-7
[11] Liu, W., Yao, D. and Huang, B. (2021) LncRNA PVT1 Pro-motes Cervical Cancer Progression by Sponging miR-503 to Upregulate ARL2 Expression. Open Life Sciences, 16, 1-13.
https://doi.org/10.1515/biol-2021-0002
[12] Hao, C., Lin, S., Liu, P., Liang, W., Li, Z. and Li, Y. (2023) Po-tential Serum Metabolites and Long-Chain Noncoding RNA Biomarkers for Endometrial Cancer Tissue. Journal of Ob-stetrics and Gynaecology Research, 49, 725-743.
https://doi.org/10.1111/jog.15494
[13] Xiong, S. and Song, H. (2023) LncRNA CERS6-AS1 Is a Tumor Promoter in Cervical Cancer by Sponging miR-195-5p. Annals of Clinical & Laboratory Science, 53, 30-41.
[14] Liang, M., Li, Y. and Chen, C. (2023) LMCD1-AS1 Facilitates Cell Proliferation and EMT by Sponging miR-873-3p in Cervical Can-cer. Critical Reviews™ in Eukaryotic Gene Expression, 33, 13-25.
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022042882
[15] Liu, Y.Q., Liu, C. and Bai, Y. (2023) LncRNA AATBC Indicates Development and Facilitates Cell Growth and Metastasis of Cervical Cancer as a Sponge of miR-1245b-5p. The Kaohsiung Journal of Medical Sciences, 39, 115-123.
https://doi.org/10.1002/kjm2.12628
[16] Zhang, K. and Ni, X. (2023) LINC01012 Upregulation Promotes Cervical Cancer Proliferation and Migration via Downregulation of CDKN2D. Oncology Letters, 25, Article No. 124.
https://doi.org/10.3892/ol.2023.13710
[17] El-Lateef, A.E.A. and El-Shemi, A.G.A. (2023) Analysis of Correlation between LncRNA TDRG1 Expression and Its Prognosis in Cervical Carcinoma Tissues. Applied Biochemistry and Bio-technology.
https://doi.org/10.1007/s12010-023-04496-9
[18] Ding, X. and Jia, X. (2019) Correction to: A DHX9-lncRNA-MDM2 Interaction Regulates Cell Invasion and Angiogenesis of Cervical Cancer. Cell Death & Differ-entiation, 26, 2807.
https://doi.org/10.1038/s41418-019-0273-1
[19] 阮立通, 邵志叶, 钱钢. HPV16-E6、E7蛋白在宫颈癌组织中的表达与病理特征的相关性[J]. 现代实用医学, 2021, 33(3): 297-299.
[20] Wang, L. and Zhao, H. (2023) LncRNA CARMN Inhibits Cervical Cancer Cell Growth via the miR-92a-3p/BTG2/ Wnt/β-cateninaxis. Physio-logical Genomics, 55, 1-15.
https://doi.org/10.1152/physiolgenomics.00088.2022
[21] Yu, B. and Li, X. (2023) Post-Transcriptional Regulation of Tumor Suppressor Gene lncRNA CARMN via m6A Modification and miRNA Reg-ulation in Cervical Cancer. Journal of Cancer Research and Clinical Oncology, 149, 10307-10318.
https://doi.org/10.1007/s00432-023-04893-x
[22] Lan, L. and Liang, Z. (2020) LncRNA MCM3AP-AS1 Inhibits Cell Proliferation in Cervical Squamous Cell Carcinoma by Down-Regulating miRNA-93. Bioscience Reports, 40, BSR20193794.
https://doi.org/10.1042/BSR20193794
[23] Chi, C. and Hou, W. (2023) PDHB-AS Suppresses Cervical Cancer Progression and Cisplatin Resistance via Inhibition on Wnt/β-catenin Pathway. Cell Death & Disease, 14, Article No. 90.
https://doi.org/10.1038/s41419-022-05547-5
[24] 阿小英, 郭桂兰. LncRNA MALAT1靶向miR124-3p/STAT3对宫颈癌细胞增殖和侵袭的影响[J]. 中国妇产科临床杂志, 2021, 22(3): 267-269.
[25] Liang, T., Wang, Y. and Jiao, Y. (2021) LncRNA MALAT1 Accelerates Cervical Carcinoma Proliferation by Suppressing miR-124 Expression in Cervical Tumor Cells. Journal of Oncology, 2021, Article ID: 8836078.
https://doi.org/10.1155/2021/8836078
[26] Yan, K. and Hu, C. (2023) LncRNA CERS6-AS1, Sponging miR-6838-5p, Promotes Proliferation and Invasion in Cervical Carcinoma Cells by Upregulating FOXP2. Histology and Histopathology, 38, 823-835.
[27] Gan, Q. and Huang, X. (2023) AC010883.5 Promotes Cell Proliferation, Invasion, Migration, and Epithelial-to-Mesenchymal Transition in Cervical Cancer by Modulating the MAPK Signaling Pathway. BMC Cancer, 23, Article No. 364.
https://doi.org/10.1186/s12885-023-10825-2
[28] Hu, Y. and Li, G. (2023) Ef-fect of Exosomal lncRNA MALAT1/miR-370-3p/STAT3 Positive Feedback Loop on PI3K/Akt Pathway Mediating Cisplatin Resistance in Cervical Cancer Cells. Journal of Oncology, 2023, Article ID: 6341011.
https://doi.org/10.1155/2023/6341011
[29] Liu, Y.J. and Guo, R.X. (2020) Effect of CASC19 on Proliferation, Apoptosis and Radiation Sensitivity of Cervical Cancer Cells by Regulating miR-449b-5p Expression. Chinese Journal of Obstetrics and Gynecology, 55, 36-44.
[30] Zhang, W. and Wu, Q. (2022) LncRNA HOTAIR Promotes Chemo-resistance by Facilitating Epithelial to Mesenchymal Transition through miR-29b/PTEN/PI3K Signaling in Cervical Can-cer. Cells Tissues Organs, 211, 16-29.
https://doi.org/10.1159/000519844
[31] Gao, J. and Liu, L. (2019) LncRNA GAS5 Confers the Radio Sensitivity of Cervical Cancer Cells via Regulating miR-106b/IER3 Axis. International Journal of Biological Macromolecules, 126, 994-1001.
https://doi.org/10.1016/j.ijbiomac.2018.12.176
[32] Zhang, Y. and Zheng, M. (2023) Correction: LncRNA LOXL1-AS1 Facilitates the Oncogenic Character in Cervical Cancer by the miR-526b-5p/LYPLA1 Axis. Biochemical Genetics, 61, 448.
https://doi.org/10.1007/s10528-022-10301-9
[33] Wang, X. and Wang, Z. (2017) LncRNA MEG3 Has An-ti-Activity Effects of Cervical Cancer. Biomedicine & Pharmacotherapy, 94, 636-643.
https://doi.org/10.1016/j.biopha.2017.07.056
[34] Yu, M. and Xue, S. (2023) Long Non-Coding RNA UCA1a Promotes Proliferation via PKM2 in Cervical Cancer. Reproductive Sciences, 30, 601-614.
https://doi.org/10.1007/s43032-022-01042-6
[35] Shen, S. and Jin, H. (2023) LINC00426, a Novel m6A-Regulated Long Non-Coding RNA, Induces EMT in Cervical Cancer by Binding to ZEB1. Cell Signaling, 109, Article ID: 110788.
https://doi.org/10.1016/j.cellsig.2023.110788
[36] Moazeni-Roodi, A. and Aftabi, S. (2020) Genetic Association between HOTAIR Gene and the Risk of Cancer: An Updated Meta-Analysis. Journal of Genetics, 99, Article No. 48.
https://doi.org/10.1007/s12041-020-01214-w
[37] Yao, Y. and Liang, Y. (2022) Association of Long Non-Coding RNAs (lncRNAs) ANRIL and MALAT1 Polymorphism with Cervical Cancer. Pharmacogenomics and Personalized Medicine, 15, 359-375.
https://doi.org/10.2147/PGPM.S358453