Nrf2在乳腺癌发生发展及产生耐药作用中的研究进展
Advances in the Role of Nrf2 in the Development of Breast Cancer and the Development of Drug Resistance
DOI: 10.12677/ACM.2023.13102289, PDF, HTML, XML, 下载: 212  浏览: 317 
作者: 祖丽皮耶·买合木提, 李鸿涛*:新疆医科大学附属肿瘤医院乳腺甲状腺外科,新疆 乌鲁木齐
关键词: Nrf2信号通路乳腺癌耐药Nrf2 Signaling Pathway Breast Cancer Drug Resistance
摘要: 乳腺癌是女性最常见的恶性肿瘤,化疗是乳腺癌治疗的重要手段之一,但其对治疗产生的耐药性给临床治疗带来了巨大的挑战。相关学者研究发现乳腺癌的发生和发展与体内异常的Nrf2及其相关信号通路的激活有关。本文将概述Nrf2及Nrf2/Keap1/ARE信号通路异常激活与乳腺癌发生发展、化疗耐药以及不良预后相关的研究进展。
Abstract: Breast cancer is the most common malignant tumor in women, and chemotherapy is one of the im-portant means of breast cancer treatment, but its resistance to treatment has brought great chal-lenges to clinical treatment. Related scholars have found that the occurrence and development of breast cancer are related to the activation of abnormal Nrf2 and its related signaling pathway in the body. In this article, we will summarize the research progress of Nrf2 and the abnormal activation of Nrf2/Keap1/ARE signaling pathway in relation to the development of breast cancer, chemotherapy resistance and poor prognosis.
文章引用:祖丽皮耶·买合木提, 李鸿涛. Nrf2在乳腺癌发生发展及产生耐药作用中的研究进展[J]. 临床医学进展, 2023, 13(10): 16361-16367. https://doi.org/10.12677/ACM.2023.13102289

1. 引言

乳腺癌已成为全球大多数国家发病率和死亡率均居首位的恶性肿瘤 [1] ,2020年中国乳腺癌新发病例41.6万例,死亡病例约11.7万例。在每年新发乳腺癌患者中,约3%~10%的患者在确诊时即有远处转移。早期患者中约有30%可发展为晚期乳腺癌,晚期乳腺癌患者5年生存率仅为20%,中位总生存时间为2~3年,虽难以治愈,但可通过应用新型治疗药物改善晚期乳腺癌患者出现的对药物治疗的耐药性,延长带瘤生存时间 [2] 。目前研究发现,Nrf2及相关信号转导通路与包括乳腺癌在内的多种肿瘤的发生和药物敏感性的关系密切 [3] [4] 。本文就Nrf2及Nrf2/ARE信号通路结构和功能,与乳腺癌的发生、发展、侵袭转移及治疗耐药之间的关系进行综述。

2. Nrf2通路结构与功能

转录因子核因子红系2相关因子2 (NRF2)认为是细胞抗氧化反应的主要协调因子之一,Nrf2对Kelch样ECH相关蛋白(Keap1)进行负调节,而Keap1则是Cul3依赖性E3泛素连接酶复合物的底物接头 [5] [6] [7] 。2006年发现KEAP1在非小细胞肺癌中发生突变并导致NRF2水平长期升高,首次证明NRF2可能有助于癌症进展和耐药性,后来被称为NRF2的黑暗面 [8] [9] 。

3. Nrf2及相关信号通路介导乳腺癌发生,侵袭,转移

Nrf2曾被认为是一种抑制肿瘤的因子。通过对Nrf2基因敲除小鼠的皮肤、结直肠或乳腺组织进行处理,如使用7,12-二甲基苯并并蒽、12-O-十四酰佛波醇-13乙酸酯或葡聚糖硫酸钠,肿瘤发生率也增加了。这些研究结果表明,Nrf2在肿瘤的防治中发挥着重要的作用 [10] [11] [12] 。然而,许多研究也指出,Nrf2不仅有利于正常细胞的生存,还促进了肿瘤细胞的存活。异常激活的Nrf2及相关信号通路避免肿瘤细胞受超负荷氧化应激,为恶性肿瘤提供了有利于其生存的环境。下文就讨论Nrf2及相关信号通路异常与乳腺癌的发生,侵袭,转移的关系。

3.1. Nrf2与乳腺癌的发生

Nrf2主要通过平衡氧化还原反应、亲电应激或异生素过程的解毒机制来保护正常细胞。Frohlich等 [13] 发现在致癌剂作用下,Nrf2基因敲除小鼠的GST水平下降、活性氧(reactive oxygen species, ROS)水平上升,导致DNA损伤而诱导癌变。尽管大量的研究证明,Nrf2与癌症预防和治疗相关,发挥抗癌作用。然而,Nrf2在癌细胞中的异常表达导致刺激癌细胞/组织恶性的致癌程序。目前 [14] ,至少有四途径参与癌细胞中的NRF2激活。首先,NRF2、KEAP1或CUL3基因内的体细胞突变,引起NRF2在癌细胞中异常活化。第二,KEAP1基因的表观遗传沉默导致KEAP1下调和NRF2上调。第三,KEAP1相互作用蛋白如p62/Sqstm1和p21的积累阻断NRF2与KEAP1的结合,导致NRF2积累 [15] 。第四,肿瘤代谢物(如富马酸盐)对半胱氨酸的修饰会影响KEAP1活性,并导致NRF2蓄积。除了上述途径,通过癌基因依赖性信号通路上调Nrf2基因 [16] 。所有这些分子事件导致KEAP1与NRF2的结合被破坏,引起Nrf2在癌细胞中的异常积累。一项研究发现,与正常组织相比,乳腺癌患者的癌旁组织和乳腺癌组织中Nrf2/ARE通路相关蛋白的表达显著增加,表明该通路在乳腺癌中被异常激活并高度表达 [17] 。在肿瘤细胞中,Nrf2的异常增强表达增加了肿瘤细胞的抗衰老和抗凋亡能力,从而促进了细胞的增殖。Nrf2表达水平的增加与乳腺癌患者的较低存活率以及癌细胞的进展和增殖增加有关 [18] 。

3.1.1. NRF2与信号通路串扰

乳腺癌1号基因(BRCA1)是一种与遗传性乳腺癌直接相关的抑癌基因 [19] 。研究发现,NBRCA1与NRF2结合后,可以抑制NRF2的泛素化和降解,从而有效地抑制肿瘤的发生;乳腺癌细胞发生BRCA1突变时,雌激素可代偿性上调NRF2以保护肿瘤细胞免受ROS损伤。抑癌基因p53与NRF2具有协同作用,当nRF2被抑制时,p53会代偿性激活,可抑制乳腺癌的发生和增殖,p53和nRF2协同作用,能够激活蛋白酶体亚单位基因以及与硫氧还蛋白系统相关的基因,例如TXN和TXNRD1等,从而促进细胞的增殖和转移 [20] 。

3.1.2. NRF2与miRNA相互作用

miRNA (microRNA)是一种长度为20~25个核苷酸的小型非编码RNA分子,通过与目标基因的3'-非翻译区(3'-UTR)完全或部分结合,从而对其表达进行负调控。NRF2能与许多miRNAs作用。在乳腺癌中,NRF2也与microRNA关系密切。一方面,微小RNA可以通过调节NRF2来调控致癌过程。在雌激素诱导的乳腺癌中,雌激素能激活miR-93,而miR-93则通过转录后调控其靶基因NRF2的表达 [21] ,而miR-28则通过靶向NRF2 mRNA的3'-UTR,降底NRF2的表达 [22] 。另一方面,NNRF2在乳腺癌细胞的生长中也具有通过调节microRNA的能力。De Blasio等 [23] 证明,Nrf2通过下调miR-29b-1-5p的表达,提高了三阴性乳腺癌(TNBC)细胞的增殖和抗氧化能力。同时研究显示,降低NRF2的水平可以增加miR-181c的表达,从而抑制HIF1α在缺氧状态下介导的适应性代谢变化 [24] 。

3.2. Nrf2与乳腺癌的血管生成

血管生成是伤口愈合、月经周期、癌症和各种缺血性和炎性疾病的标志 [25] 。过去的研究表明Nrf2是正常血管新生所必需的。在恶性肿瘤中,氧气/二氧化碳和营养/废物的交换依赖于血管。氧化应激发生促进乳腺癌组织中的血管生成,血管生成是乳腺癌进展和转移的关键 [26] 。低氧条件下的肿瘤细胞微环境可诱导HIF-1α的激活,刺激多种生长因子、细胞因子和细胞外基质(ECM)重塑体的转录,从而建立血管系统 [27] 。以往的研究表明,Nrf2的抑制会导致HIF-1α蛋白的降低,抑制血管生成。另一方面,HIF-1α通过VEGF的表达激活ERK1/2调节Nrf2。此外,Nrf2还可以通过抑制HIF-1α的蛋白酶体降解,引发包括NQO1在内的一些基因的表达,从而直接调控HIF-1α [28] [29] 。

3.3. Nrf2与乳腺癌的侵袭,转移

Nrf2及相关信号通路的异常激活不进与乳腺癌的发生发展有关,同时也与乳腺癌的侵袭,转移有关系 [30] 。Zhang等 [31] Nrf2的过表达促进了MCF-7和MDA-MB-231细胞中G6PD和缺氧诱导因子1α (HIF-1α)的表达,并通过G6PD/HIF-1α通路上调Notch 1的表达。Notch信号通路通过调节HES-1和p21基因的表达来影响乳腺癌细胞的增殖,并且通过调节EMT通路的表达来调控乳腺癌细胞的迁移。RHO GTP酶属于小GTP酶RAS超家族的一组GTP水解酶 [32] 。Zhang [33] 等RhoA在MCF7和MDA-MB-231细胞中的恢复诱导Nrf2敲除抑制细胞生长和转移,Nrf2沉默抑制应力纤维和粘着斑形成,导致细胞迁移和侵袭减少。机制研究表明,Nrf2与雌激素相关受体α (ERR1)的启动子区结合,可能起到沉默子的作用。这可能增强RhoA蛋白的稳定性并导致RhoA在乳腺癌细胞中的过度表达,提供了Nrf2缺失通过下调RhoA抑制乳腺癌细胞增殖和转移的证据。Li等 [34] 新合成的一种氮丙啶酮化合物YD 0514显著抑制转移性乳腺癌细胞系MDA-MB-231、GI 101、GILM 2和GILM 3的增殖、运动和粘附。YD 0514还降低了基质金属蛋白酶2和9 (MMP2和MMP9)、粘着斑激酶(FAK)和整合素家族成员的蛋白表达。并抑制转移性乳腺癌异种移植瘤的生长,显著抑制体内肺转移。发现YD 0514对高侵袭性乳腺癌的抗转移作用是通过调节NRF-2/RHOA/ROCK信号通路介导的。这些结果表明,YD 0514,具有开发作为转移性癌症患者的抗转移疗法的潜力。

4. Nrf2及相关信号通路影响乳腺癌对放化疗的敏感性

肿瘤细胞对化疗的耐药一般是通过肿瘤耐药相关的分子介导实现的。例如:影响药物转运和外排的转运蛋白 [35] 。肿瘤细胞中Nrf2的异常表达有助于细胞对抗氧化应激和化疗耐药,从而提高其生存能力。这种异常表达导致细胞对抗耐药性 [36] 。下文就讨论Nrf2及相关信号通路如何影响乳腺癌的化疗,放射治疗的敏感性。我们还要讨论靶向Nrf2抑制剂作用耐药性乳腺癌细胞的机制。

4.1. 调节下游基因表达,诱导乳腺癌耐药的产生

4.1.1. Nrf2与BCRP

乳腺癌耐药蛋白(Breast cancer resistance protein, BCRP)是一种药物外排泵,依赖ATP水解释放的能量,并将药物转运出细胞,降低肿瘤细胞内的药物浓度,使细胞对多种细胞毒性药物耐药 [37] 。研究表明,Nrf2激活剂能够上调肝细胞和肝癌细胞中BCRP的表达水平,而Nrf2缺陷小鼠的肝细胞中BCRP的表达水平明显降低 [38] 。通过抑制Nrf2活性,可以降低肺癌和前列腺癌细胞中BCRP的表达水平,增加细胞对某些药物的敏感性 [39] 。此外,研究还发现,在应用某些化疗药物后,BCRP的表达水平与组织学反应有关,抑制BCRP的表达可能逆转乳腺癌细胞的耐药性,提高治疗效果并改善病人的预后 [40] 。

4.1.2. 介导肿瘤相关的酶分子

有一项研究表明,NRF2下游分子GSTs仅在阿霉素耐药的MCF-7细胞系MCF-7/ADR种高表达。GSTS能催化GSH与多种抗癌药物的结合这些药物是GSTS的底物,并能有效地从细胞中挤出。GSTPI的活性主要依赖于酪氨酸-7的磷酸化。当酪氨酸-7磷酸化失活时,MCF-7/ADR对ADR的耐药减少,表明GSTPI的酪氨酸-7磷酸化可能介导乳腺癌耐药。NBDHEX (硝基苯并恶二唑衍生物)通过抑制GSTPI活性而提高ADR疗效 [41] 。植物提取的一种黄酮类化合物木犀草素显著地诱导NRF2 mRNA降解和其他下游ARE驱动基因,如NQO1、HO-1和AKR1C [42] 。结果,木犀草素与奥沙利铂、博莱霉素和DOX联合使用时诱导细胞死亡。在TNBC细胞中,木犀草素纳米粒降低了NRF2、HO-1和MDR1 mRNA的表达水平。木犀草素纳米粒提高了MDAMB-231细胞对阿霉素的敏感性 [43] 。研究人员发现,乳腺癌细胞MCF7/DOX表现出对多柔比星耐药的特征,其中Nrf2、HO-1和NQO1的表达水平较高。

4.2. NRF2的表观遗传改变导致耐药

在多种肿瘤类型中,已经证实Nrf2或Keap1基因的表观遗传修饰可以增加Nrf2的稳定性,并促进抗氧化通路靶基因的表达。研究表明,在乳腺癌、前列腺癌和结肠癌等肿瘤中,Keap1启动子区域内的CpG岛和Nrf2启动子区域的高甲基化状态直接或间接导致化疗药 [44] [45] 。

4.3. 与ROS相关的耐药机制

高ROS水平可促进DNA损伤并诱导基因组不稳定。另一方面,DNA修复过程的上调产生细胞对各种治疗剂的抗性,并促进致癌和肿瘤发展。在非转化细胞中,Nrf2活化可以保护细胞免受氧化应激,但在转化细胞中,Nrf2的过度活化通过产生对治疗的抗性产使得肿瘤细胞得以生存,增值 [46] 。小豆蔻素是一种查尔酮类化合物,具有抗炎和抗肿瘤活性。结果表明,豆蔻素通过抑制HIF-1α介导的细胞代谢,从而抑制肿瘤细胞的生长和增殖。该化合物可通过降低HIF-1α的mRNA和蛋白水平,下调Nrf2的表达,从而触发ROS诱导的MDA-MB-231乳腺癌细胞凋亡 [47] 。铜绿假单胞菌甘露糖敏感血凝素(PA-MSHA)被认为是一种新型的抗癌药物,能促进细胞周期阻滞和细胞凋亡。结果表明,PA-MSHA可通过下调Nrf2和P62的表达,抑制MCF-7/MDR的生长和增殖。下调Nrf2及其靶基因可使细胞对阿霉素敏感并触发ROS诱导的凋亡 [48] 。研究指出,冬虫夏草通过下调Nrf2的作用,提高了MCF-7和MDA-MB-231细胞的辐照敏感性。通过抑制Nrf2而增加ROS水平是提高这些癌细胞敏感性的最重要机制 [49] 。

5. 小结

乳腺癌是女性最常见的恶性肿瘤之一。许多研究已经发现,Nrf2基因与相关信号分子的突变、其他信号通路的干扰以及miRNA的相互作用,都可以影响乳腺癌的发展。乳腺癌中与Nrf2相关的血管生成为之提供了远处转移的可能。近年来乳腺癌的耐药成为治疗的难题,研究表明Nrf2信号通路与多耐药基因的串扰,Nrf2调控的与乳腺癌耐药相关的酶分子以及表观遗传改变都与耐药相关。这些分子和通路被认为与乳腺癌逆转抗癌耐药性有关。目前发现有些化合物能抵抗其抗癌耐药性,然而,这些化合物在乳腺癌的研究中仍处于临床前阶段,需要进一步进行临床研究。此外,许多作用于Nrf2的化合物缺乏特异性,因此寻找特异性靶向Nrf2的化合物至关重要。随着对Nrf2与乳腺癌相互关系的深入研究,相信Nrf2将为揭示乳腺癌的发病机制以及乳腺癌的临床生物治疗提供新的治疗手段。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Sta-tistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] 国家肿瘤质控中心乳腺癌专家委员会, 中国抗癌协会乳腺癌专业委员会, 中国抗癌协会肿瘤药物临床研究专业委员会. 中国晚期乳腺癌规范诊疗指南(2022版) [J]. 中华肿瘤杂志, 2022, 44(12): 1262-1287.
[3] Raman, D., Foo, C.H.J., Clement, M.-V. and Pervaiz, S. (2016) Breast Cancer: A Molecular and Redox Snapshot. Antioxidants & Redox Signaling, 25, 337-370.
https://doi.org/10.1089/ars.2015.6546
[4] Smith, R.E., Tran, K., Smith, C.C., et al. (2016) The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases. Diseases, 4, Article No. 34.
https://doi.org/10.3390/diseases4040034
[5] Xie, T.Y., Zahid, H., et al. (2023) Inhibitors of Keap1-Nrf2 Pro-tein-Protein Interaction Reduce Estrogen Responsive Gene Expression and Oxidative Stress in Estrogen Recep-tor-Positive Breast Cancer. Toxicology and Applied Pharmacology, 460, Article ID: 116375.
https://doi.org/10.1016/j.taap.2023.116375
[6] Akira, K., Moon-Il, K., et al. (2004) Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase to Regulate Proteasomal Degradation of Nrf2. Molecular and Cellular Biology, 24, 7130-7139.
https://doi.org/10.1128/MCB.24.16.7130-7139.2004
[7] Zhang, D.D., Lo, S.-C., Cross, J.V., Templeton, D.J. and Hannink, M. (2004) Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex. Molecular and Cellular Biology, 24, 10941-10953.
https://doi.org/10.1128/MCB.24.24.10941-10953.2004
[8] Wang, X.-J., Sun, Z., Villeneuve, N.F., Zhang, S., Zhao, F., Li, Y.J., Chen, W.M., et al. (2008) Nrf2 Enhances Resistance of Cancer Cells to Chemotherapeutic Drugs, the Dark Side of Nrf2. Carcinogenesis, 29, 1235-1243.
https://doi.org/10.1093/carcin/bgn095
[9] Aboulkassim, T., et al. (2023) A NRF2 Inhibitor Selectively Sensitizes KEAP1 Mutant Tumor Cells to Cisplatin and Gefitinib by Restoring NRF2-Inhibitory Function of KEAP1 Mutants. Cell Reports, 42, Article ID: 113104.
https://doi.org/10.1016/j.celrep.2023.113104
[10] Xu, C.J., Huang, M.-T., Shen, G.X., Yuan, X.L., et al. (2006) Inhibition of 7, 12-Dimethylbenz(a)anthracene-Induced Skin Tumorigenesis in C57BL/6 Mice by Sulforaphane Is Medi-ated by Nuclear Factor E2-Related Factor 2. Cancer Research, 66, 8293-8296.
https://doi.org/10.1158/0008-5472.CAN-06-0300
[11] Khor, T.O., et al. (2008) Increased Susceptibility of Nrf2 Knockout Mice to Colitis-Associated Colorectal Cancer. Cancer Prevention Research (Philadelphia, Pa.), 1, 187-191.
https://doi.org/10.1158/1940-6207.CAPR-08-0028
[12] Becks, L., Prince, M., Burson, H., Christophe, C., Broadway, M., Itoh, K., et al. (2010) Aggressive Mammary Carcinoma Progression inNrf2 Knockout Mice Treated with 7,12-Dimethylbenz[a]anthracene. BMC Cancer, 10, Article No. 540.
https://doi.org/10.1186/1471-2407-10-540
[13] Frohlich, D.A., McCabe, M.T., Arnold, R.S. and Day, M.L. (2008) The Role of Nrf2 in Increased Reactive Oxygn Species and DNA Damage in Prostate Tumorigenesis. Oncogene, 27, 4353-4362.
https://doi.org/10.1038/onc.2008.79
[14] Taguchi, K. and Yamamoto, M. (2017) The KEAP1-NRF2 System in Cancer. Frontiers in Oncology, 7, Article No. 85.
https://doi.org/10.3389/fonc.2017.00085
[15] 马丽萍, 刘青杰, 田梅, 等. 辐射诱导p62/SQSTM1介导的细胞早衰研究进展[J]. 中华放射医学与防护杂志, 2020, 40(12): 968-972.
[16] 王秀君, 李欣, 唐修文. Nrf2通路在肿瘤化学预防中的研究进展[J]. 化学进展, 2013, 25(9): 1544-1552.
[17] 谢家祺, 刘毅, 霍楠楠. 乳腺癌中Nrf2/ARE信号通路异常表达的探讨[J]. 现代肿瘤医学, 2016, 24(7): 1065-1067.
[18] Almeida, M., Soares, M., Ramalhinho, A.C., Moutinho, J.F., Breitenfeld, L. and Pereira, L. (2020) The Prognostic Value of NRF2 in Breast Can-cer Patients: A Systematic Review with Meta-Analysis. Breast Cancer Research and Treatment, 179, 523-532.
https://doi.org/10.1007/s10549-019-05494-4
[19] Mehrgou, A. and Akouchekian, M. (2016) The Importance of BRCA1 and BRCA2 Genes Mutations in Breast Cancer Development. Medical Journal of the Islamic Republic of Iran, 30, Article No. 369.
[20] 丁牧遥, 张倩, 袁胜涛, 等. NRF2信号通路在乳腺癌中的研究进展[J]. 中国细胞生物学学报, 2021, 43(10): 2085-2092.
[21] Singh, B., et al. (2013) MicroRNA-93 Regulates NRF2 Expression and Is Asso-ciated with Breast Carcinogenesis. Carcinogenesis, 34, 1165-1172.
https://doi.org/10.1093/carcin/bgt026
[22] Yang, M.H., et al. (2011) MiR-28 Regulates Nrf2 Expression through a Keap1-Independent Mechanism. Breast Cancer Research and Treatment, 129, 983-991.
https://doi.org/10.1007/s10549-011-1604-1
[23] De Blasio, A., Di Fiore, R., Pratelli, G., et al. (2020) A Loop In-volving NRF2, miR-29b-1-5p and AKT, Regulates Cell Fate of MDA-MB-231 Triple-Negative Breast Cancer Cells. Journal of Cellular Physiology, 235, 629-637.
https://doi.org/10.1002/jcp.29062
[24] Lee, S., Hallis, P.S., Jung, K., et al. (2019) Impairment of HIF-1α-Mediated Metabolic Adaption by NRF2-Silencing in Breast Cancer Cells. Redox Biology, 24, Article ID: 101210.
https://doi.org/10.1016/j.redox.2019.101210
[25] Mdkhana, B., et al. (2022) Role of Oxidative Stress in Angio-genesis and the Therapeutic Potential of Antioxidants in Breast Cancer. European Review for Medical and Pharmacolog-ical Sciences, 26, 4677-4692.
[26] Kumar, H., Kumar, R.M., Bhattacharjee, D., et al. (2022) Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Frontiers in Pharmacology, 13, Article ID: 720076.
https://doi.org/10.3389/fphar.2022.720076
[27] Muz, B., de la Puente, P., Azab, F. and Azab, A.K. (2015) The Role of Hypoxia in Cancer Progression, Angiogenesis, Metastasis, and Resistance to Therapy. Hypoxia, 3, 83-92.
[28] Oh, E.T., Kim, J.W., Kim, J.M., et al. (2016) NQO1 Inhibits Proteasome-Mediated Degradation of HIF-1α. Nature Communications, 7, Article No. 13593.
https://doi.org/10.1038/ncomms13593
[29] Toth, K.R., Warfel, A.N. and Mondal, D. (2017) Strange Bedfellows: Nuclear Factor, Erythroid 2-Like 2 (Nrf2) and Hypoxia-Inducible Factor 1 (HIF-1) in Tumor Hypoxia. Antioxidants, 6, Article No. 27.
https://doi.org/10.3390/antiox6020027
[30] 史晓燕, 李倩. Nrf2/ARE信号通路及其在乳腺癌中的研究进展[J]. 广西医学, 2018, 40(21): 2586-2588.
[31] Zhang, H.-S., et al. (2019) Nrf2 Promotes Breast Cancer Cell Migration via Up-Regulation of G6PD/HIF-1α/Notch1 Axis. Journal of Cellular and Molecular Medicine, 23, 3451-3463.
https://doi.org/10.1111/jcmm.14241
[32] Aspenström, P. (2022) The Role of Fast-Cycling Atypical RHO GTPases in Cancer. Cancers, 14, Article No. 1961.
https://doi.org/10.3390/cancers14081961
[33] Zhang, C., Wang, H.-J., Bao, Q.-C., Wang, L., Guo, T.-K., Chen, W.-L., et al. (2016) NRF2 Promotes Breast Cancer Cell Proliferation and Metastasis by Increasing RhoA/ROCK Path-way Signal Transduction. Oncotarget, 7, 73593-73606.
https://doi.org/10.18632/oncotarget.12435
[34] Li, D.F., Wang, H., Ding, Y., et al. (2018) Targeting the NRF-2/RHOA/ROCK Signaling Pathway with a Novel Aziridonin, YD0514, to Suppress Breast Cancer Progression and Lung Metastasis. Cancer Letters, 424, 97-108.
https://doi.org/10.1016/j.canlet.2018.03.029
[35] Kartal-Yandim, M., Adan-Gokbulut, A. and Baran, Y. (2016) Molecular Mechanisms of Drug Resistance and Its Reversal in Cancer. Critical Reviews in Biotechnology, 36, 716-726.
https://doi.org/10.3109/07388551.2015.1015957
[36] Doyle, L.A., Yang, W., Abruzzo, L.V., Krogmann, T., Gao, Y., Rishi, A.K. and Ross, D.D. (1998) A Multidrug Resistance Transporter from Human MCF-7 Breast Cancer Cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665-15670.
https://doi.org/10.1073/pnas.95.26.15665
[37] 吴新刚, 彭姝彬, 黄谦. 乳腺癌耐药蛋白基因的转录调控机制[J]. 遗传, 2012, 34(12): 1529-1536.
[38] Singh, A., Wu, H.L., Zhang, P., Happel, C., Ma, J.F. and Biswal, S. (2010) Expression of ABCG2 (BCRP) Is Regulated by Nrf2 in Cancer Cells That Confers Side Population and Chemoresistance Phenotype. Molecular Cancer Therapeutics, 9, 2365-2376.
https://doi.org/10.1158/1535-7163.MCT-10-0108
[39] 张彦收, 唐甜甜, 周涛, 王新乐, 刘运江. BCRP和Ki-67与乳腺癌新辅助化疗疗效的关系[J]. 现代肿瘤医学, 2017, 25(16): 2588-2591.
[40] 张志鹏, 张喜平. 耐药基因的表达与乳腺癌化疗疗效的关系[J]. 内蒙古医科大学学报, 2019, 41(3): 328-331.
https://doi.org/10.16343/j.cnki.issn.2095-512x.2019.03.034
[41] Sha, H., Zou, R., Lu, Y., et al. (2023) NBDHEX Re-Sensitizes Adriamycin-Resistant Breast Cancer by Inhibiting Glutathione S-Transferase pi. Cancer Medicine, 12, 5833-5845.
https://doi.org/10.1002/cam4.5370
[42] Tang, X., Wang, H., Fan, L., et al. (2011) Luteolin Inhibits Nrf2 Leading to Negative Regulation of the Nrf2/ARE Pathway and Sensitization of Human Lung Carcinoma A549 Cells to Therapeutic Drugs. Free Radical Biology and Medicine, 50, 1599-1609.
https://doi.org/10.1016/j.freeradbiomed.2011.03.008
[43] Sabzichi, M., Hamishehkar, H., Ramezani, F., et al. (2014) Luteolin-Loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Sup-pressing Nrf2 Mediated Signalling. Asian Pacific Journal of Cancer Prevention: APJCP, 15, 5311-5316.
https://doi.org/10.7314/APJCP.2014.15.13.5311
[44] Barbano, R., Muscarella, L.A., Pasculli, B., et al. (2013) Aberrant Keap1 Methylation in Breast Cancer and Association with Clinicopathological Features. Epigenetics, 8, 105-112.
https://doi.org/10.4161/epi.23319
[45] Tserga, A., Michalopoulos, N.V., Levidou, G., et al. (2012) Association of Aberrant DNA Methylation with Clinicopathological Features in Breast Cancer. Oncology Reports, 27, 1630-1638.
[46] Ghareghomi, S., Habibi-Rezaei, M., et al. (2022) Nrf2 Modulation in Breast Cancer. Biomedicines, 10, Article No. 2668.
https://doi.org/10.3390/biomedicines10102668
[47] Jin, J.M., Qiu, S.P., Wang, P., Liang, X.H., Huang, F., Wu, H., et al. (2019) Cardamonin Inhibits Breast Cancer Growth by Repressing HIF-1α-Dependent Meta-bolic Reprogramming. Journal of Experimental & Clinical Cancer Research: CR, 38, Article No. 377.
https://doi.org/10.1186/s13046-019-1351-4
[48] Wei, Y.Z., Liu, D.Y., Jin, X.X., et al. (2016) PA-MSHA Inhibits the Growth of Doxorubicin-Resistant MCF-7/ADR Human Breast Cancer Cells by Downregulating Nrf2/p62. Cancer Medicine, 5, 3520-3531.
https://doi.org/10.1002/cam4.938
[49] Dong, J., Li, Y., Xiao, H., et al. (2018) Cordycepin Sensitizes Breast Cancer Cells toward Irradiation through Elevating ROS Production Involving Nrf2. Toxicology and Applied Pharmacology, 364, 12-21.
https://doi.org/10.1016/j.taap.2018.12.006