前列腺癌的早期诊疗研究进展
Advances in Early Diagnosisand Treatment of Prostate Cancer
DOI: 10.12677/HJBM.2023.134046, PDF, HTML, XML, 下载: 112  浏览: 430 
作者: 徐炜东, 杜剑飞, 杨健一, 赵 庆, 罗振国*:佳木斯大学附属第一医院泌尿外科,黑龙江 佳木斯
关键词: 前列腺癌PSA炎症脂质代谢研究进展Prostate Cancer PSA Inflammation Lipid Metabolism Research Progress
摘要: 临床上前列腺癌患者发病率逐年升高,目前临床上对前列腺癌的诊断方法也相对有限,探究前列腺癌的发病机制及相关因素更值得进一步学习。笔者在本文中对有利于前列腺癌的诊断研究进展情况作出总结,为探寻前列腺癌的诊断方法提供新思路。
Abstract: The incidence of prostate cancer in clinic is increasing year by year. At present, the clinical diagnosis of prostate cancer is relatively limited. It is worth further study to explore the pathogenesis and related factors of prostate cancer. In this paper, the author summarizes the research progress in the diagnosis of prostate cancer, and provides new ideas for exploring the diagnostic methods of prostate cancer.
文章引用:徐炜东, 杜剑飞, 杨健一, 赵庆, 罗振国. 前列腺癌的早期诊疗研究进展[J]. 生物医学, 2023, 13(4): 393-400. https://doi.org/10.12677/HJBM.2023.134046

1. 引言

前列腺腺癌(PCa)是全球男性癌症第二大常见病因和癌症相关致死的第六大原因。PCa的早期诊断十分重要。国民饮食结构高脂肪化、生活习惯的逐渐欧美化,PCa的发病率呈现上升趋势,俨然成为泌尿系统常见的恶性肿瘤之一,严重危害男性国民的身体健康。截止到2020年,PCa仍然是全球男性最常见的非皮肤癌,尽管死亡率很低但对新疗法或预防策略的需求至关重要,Pca发生过程是复杂和多因素的,不仅能够重塑细胞活动,还能够模拟代谢途径以适应肿瘤的营养需求以创造适宜肿物生长的微环境 [1] 。时至今日,PSA仍然广泛应用于临床对于PCa的早期筛查。

PSA作为前列腺癌的生物标志物最初是在1970年提出的,将其从正常、良性前列腺增生和前列腺癌组织中分离出来 [2] 。LM Shortliffe、N Wehner等人于1980年首次报道前列腺特异性抗原(PSA)是存在腺泡中一种分泌型丝氨酸蛋白酶与PCa存在相关性,其生理功能为协助精子液化、溶解精液凝块,于二十世纪初在临床上应用于前列腺癌的筛查、诊断、主动监测和风险预测,不可否认在一定程度上确实降低了PCa的死亡率 [3] 。PSA是由前列腺腺泡和导管的上皮细胞产生一种单链糖蛋白,是由位于人19号染色体长臂上的q13.2-q13.4位点编码产生,属于丝氨酸蛋白酶的糜蛋白酶(S1)家族中激肽释放酶相关肽酶(klk),在人体中分为3中不同形式:(25) pPSA、(24) pPSA和(22) pPSA,血液中的70%~90%的PSA以80~90 kDa与α-1-抗糜蛋白酶的复合物形式存在,不与蛋白酶抑制剂结合的少量PSA (约占总体的10%~30%),为游离的、非活性的,称为fPSA [4] 。在当时,成为人们早期筛查、主动监测PCa的重要工具之一,是具有跨时代意义的一项科研进展。随着相关研究的开展,PSA与PCa之间的唯一性及特异度到广泛学者的质疑。Komatsu等人通过观察814名男性患者的血清中PSA的表达情况,得出PSA具有组织性并非癌症特异性,在增生、感染等生理应激反应中也会出现异常增高的现象 [5] 。可能由于炎症、前列腺增生(BPH)、感染等因素破坏前列腺导管系统致使前列腺上皮细胞–血管屏障损坏,才能检测到PSA在血液中的表达,bph与pca之间无法应用明确的PSA截值来区分,这就说明PSA对于PCa诊断存在局限性 [6] 。约30%至50%的良性前列腺增生患者血清PSA浓度升高,具体取决于前列腺的大小和梗阻程度;25%至92%的前列腺癌患者血清PSA浓度升高,具体取决于肿瘤体积,也就是二者的PSA浓度存在交叉区间 [7] 。除前列腺疾病外以下几种因素也会引起PSA的升高:1) 药物,5-α-还原酶抑制剂如非那雄胺在治疗的前3至6个月内,在降低前列腺的大小的同时也降低PSA水平约50%或更多,这可能是对前列腺细胞内雄激素反应机制的直接抑制所造成的影响 [8] ;2) DRE对PSA水平的影响很小,术后出现约0.3 ng/ml的短暂升高随即恢复正常 [9] ;3) 射精会使PSA增高0.8 ng/mL,但会在2天内恢复正常 [10] ;4) 手术:前列腺活检可在手术后4至24小时内使PSA水平提高7.9 ng/mL此高水平将保持2至4周;经尿道前列腺气化电切术(TEVAP)可使PSA水平升高5.9 ng/mL,高水平维持3周,至少6周内不应进行筛查PSA测试 [11] ;5) 急性尿潴留可能会暂时升高PSA水平,1到2天内约下降50%。PSA仅仅是用于区分健康人和可能存在前列腺相关疾病的患者,而无法从前列腺疾病的患者中筛选出患PCa的病例。当PSA异常时,往往会进行经会阴前列腺穿刺活检取得组织标本进行病理学镜下诊断。当因PSA异常升高(PSA > 4 ng/ml)时,6针细针穿刺活检敏感度仅为30%,当增加至12针时穿刺活检敏感度为36%~58%,或许随着技术的不断完善阳性率会有所提升 [12] 。前列腺特异性抗原(PSA)当其值在4~10 ng/ml之间,即PSA灰色地带时,PCa的检出率较低仅为25%,通过回顾性分析4939名50至75岁男性的记录在接受穿刺活检术后,共有260名男性(5.3%)出现相关并发症,包括180名(3.6%)的血尿、36名(0.7%)的尿路感染、26名(0.5%)的急性尿潴留和血精症102 (2.1%)。欧洲泌尿外科杂志报道中提到前列腺穿刺活检后会导致约3.1%患者二次住院治疗 [13] 。无论是怎样的手术入路(经会阴、经直肠)都属于有创操作,术后脓毒血症的发病率显著提升,过度诊断、过度治疗这无疑会增加患者的焦虑及成本且不易实施,因此不利于早期诊断。故本文列举几种最新的前列腺癌的诊疗思路。

2. 前列腺癌健康指数与前列腺癌

自从1980年,PSA的问世及随后的广泛应用彻底改变了人们对于PCa的监测及管理,也的的确确的提高了我们对于早期PCa的治疗能力,但不否认的是其阳性率(PPV)及特异性低下的事实,尤其当PSA < 10 ng/ml时,BPH和PCa存在重合的PSA浓度 [14] 。在过去的四十年里,科学家致力于基于血清、组织和尿液的前列腺癌生物标志物候选物的研究,而近年来[-2]proPSA (p2PSA)、%p2PSA和前列腺健康指数(PHI)逐渐被科学界所接受,并成为研究用于诊断PCa的主要生物标志物 [15] 。前列腺特异性抗原 (proPSA)的前体或酶原形式由244个氨基酸残基组成,包括7个氨基酸的氨基末端前体,这些氨基酸末端前体被切割(人激肽释放酶2 (hk2))与蛋白酶结合形成PSA,理论上应该存在7种proPSA亚型,但存在血液中为[-2]proPSA、[-4]proPSA、[-5]proPSA和[-7]proPSA,其中[-2]proPSA是最具癌症特异性及在血清中结构最稳定的一种亚型,在免疫组织化学染色中优先集中在癌组织中,并且在患有PCa的男性血清中显着增加 [16] [17] 前列腺癌好发于外周带及癌组织缺基底细胞,导致正常的基底膜和管腔结构被破坏,由恶性前列腺癌细胞分泌的proPSA逃脱了蛋白水解过程,致使proPSA和几种截短形式可以直接进入循环系统,其“出现”在人血中的时间应早于PSA [18] 。有相关文献提出通过在诊断灰区,即tPSA介于4.0~10.0 μg/L时,不同f/t-PSA值对PCa的诊断效果中可看到,以f/t-PSA为0.10、0.15、0.25临界值发现当f/t-PSA为0.15时为最佳工作点,其诊断PCa具有较高灵敏度的同时仍保证了较高的特异性,这对于PCa与BPH的鉴别诊断具有一定的参考价值 [19] 。通过123名男性(51% PCa,49%非癌症)的血清样本证明了p2PSA和PCa之间的早期筛查关系,尤其在2到10 ng/mL的PSA范围内,p2PSA和%p2PSA继续与PCa显着相关:%p2PSA的AUC为0.73,而%fPSA为0.53,是十分优良的早期筛查血清指标 [20] 。PHI是综合了总PSA、游离PSA和PSA的一种同源异构体p2PSA的一个指数,其建立前列腺癌多因子数学模型,实现患者危险分层用以预测活检结果,鉴别低分级和高分级前列腺癌,还有助于预估前列腺癌复发风险,进而采取积极的预防措施,降低复发率,此外PHI具有优异的临床诊断价值,已被NCCN等国际指南推荐,其优于其他新型标志物,且简单、快速、成本低廉 [21] 。

3. 炎症与前列腺癌

前列腺是一种免疫活性器官由炎症细胞组成,而中性粒细胞是炎症急性阶段第一反应者之一,由细菌感染或环境损害引起的,随着炎症的持续发展并变成慢性不可逆阶段,癌症可能在这个阶段开始。原发性免疫细胞变成巨噬细胞和淋巴细胞 [22] 。前列腺内炎症是前列腺癌变的一个危险因素,与饮食、化学损伤和改变的微生物组有因果关系,机制为前列腺内炎症细胞的募集和扩增最终可以促进前列腺上皮细胞中的DNA双链断裂和雄激素受体激活,这推动了DNA修复和肿瘤抑制基因的过度表达,使这些基因易受诱变损伤,而生殖系DNA修复基因缺陷加速了致癌作用 [23] 。另有相关文献报道提及mRNA翻译成蛋 白质的进程在细胞增殖及分化、凋亡过程中起着重要作用,其中miR-199a可能通过作用于不同的靶基因进而影响前列腺癌的发生发展历程 [24] 。Perletti等人收集了关于前列腺炎在PCa发展和进展中作用的最新证据。这项对15项病例对照研究的荟萃分析显示,PCa与前列腺炎暴露之间存在显着关联,促进了对慢性前列腺炎综合征的积极治疗管理是否有助于预防癌症的调查 [25] 。尽管在日常临床实践中,可以使用一些参数例如实验室生物标志物(细胞因子)或临床参数(前列腺钙化、症状严重程度和对治疗的反应)来评估患者 [26] 。越来越多的研究探讨了PCa中不同种类的全身炎症指标的潜在诊断价值。血小板、中性粒细胞和淋巴细胞都是肿瘤微环境(TME)的重要组成部分,从多个方面影响肿瘤细胞增殖和侵袭 [27] 。这些研究已经研究了免疫细胞与癌症细胞之间的关联。血小板主要调节血液凝固和止血。血小板的不对称状态有助于癌症的促进和进展,直接导致癌症患者的血小板增多 [28] 。目前的细胞研究已经表明,血小板通过增加基质金属蛋白酶表达来增强雄激素受体阴性PCa细胞的侵袭 [29] 。在这样的临床试验中,应用抗血小板或抗凝治疗和血小板计数与接受初次放疗的PCa患者免于生化衰竭和远处转移有关 [30] 。中性粒细胞已被证明通过调节对肿瘤细胞的免疫反应在抗肿瘤和前肿瘤过程中发挥重要作用 [31] ,从而减弱抗肿瘤免疫,增强肿瘤细胞存活并增加血管生成 [32] 。除了中性粒细胞已证实的免疫功能外,中性粒细胞颗粒中的分子,包括中性粒细胞明胶酶相关的脂质运载蛋白,被证明是基质金属蛋白酶9的稳定剂 [33] ,后者参与细胞外基质的降解,并在转移和癌症进展中起重要作用。已知淋巴细胞,尤其是T淋巴细胞是抗肿瘤免疫应答的有效工具 [34] 。据报道,通过下调免疫抑制细胞因子(IL10, IL6)来促进TME中T淋巴细胞的浸润是增强抗肿瘤免疫的有效途径 [35] 。根据一些出版物,TME中更多淋巴细胞的浸润与癌症患者的更好生存率相关 [36] ,这表明淋巴细胞计数与癌细胞的免疫逃逸有关。与这些免疫细胞相关的指标,包括NLR、PLR和LMR,已经被用作PCa的预测指标 [37] 。这些比值还可以帮助医生在考虑对患者进行主动监测时预测低风险PCa评估中格里森评分的升级 [38] 。一些研究同时探讨了PLR、NLR和SII对前列腺癌的预测作用,表明SII比其他指标更客观地反映全身炎症与癌症之间的关联 [39] 。近年来,已经进行了许多研究来确定新型免疫疗法的安全性和有效性,例如通过增强组织驻留记忆T细胞 [40] 和免疫检查点抑制剂来预防粘膜癌的癌症疫苗,这些抑制剂通过刺激抗肿瘤免疫对肿瘤细胞具有腐蚀作用 [41] 。

4. 前列腺组织周围脂肪

脂肪组织是生物体中最大的内分泌器官之一,因为它能够合成和释放不同的生物活性分子。已经描述了两种主要类型的脂肪组织,即具有经典能量储存功能的白色脂肪组织(white adipose tissue, WAT)和具有产热活性的棕色脂肪组织(brown adipose tissue, BAT)。WAT既是能量储存场所,也是代谢活跃的内分泌器官,可分泌多种生物活性介质,促进旁分泌和自分泌信号通路。前列腺被脂肪组织边缘包围成为前列腺周围脂肪组织(Adipose tissue around prostate, PPAT)是PCa微环境的一部分,许多研究强烈建议PPAT参与PCa的侵袭性 [42] 。局部和全身炎症和FA可用性增加以及胰岛素和生长因子(GH)、胰岛素样生长因子(IGF)-1轴、性类固醇激素以及脂肪因子合成和分泌的失调已成为可能支撑PPAT和PCa之间复杂而复杂的串扰的机制 [43] 。WAT是与肥胖的病因和病理生理学密切相关的器官。它通过增加或减少脂肪细胞的大小和数量,或通过转分化过程诱导棕色–脂肪细胞样表型,以响应各种刺激,包括饮食或运动训练 [44] 。PPAT似乎参与影响PCa进展的信号通路,强调了WAT和肥胖在PCa中的关键作用。生长激素–胰岛素样生长因子1轴(GH/IGF1)在前列腺分化和癌症发展中起关键作用。肥胖与癌症之间的关联部分可以通过PCa和几种癌症中IGF1轴的改变来解释 [45] 。从Pca患者的PPAT分离的体外分化脂肪细胞作为培养基,通过旁分泌的旁分泌胰岛素样生长因子1 (IGF-1)上调IIB类微管蛋白(TUBB2B)抗体上调引起紫杉烷类药物(多西他赛)的耐药性 [46] 。Sasaki等人正是前列腺周围脂肪厚度和皮下脂肪厚度之间的治疗前比率可以作为接受ADT治疗的晚期PCa男性生存率的独立预测指标 [47] 。

5. 脂质代谢与前列腺癌的相关性

在癌症发展和进展过程中脂质代谢被重新编程是实体瘤癌症的标志之一,增加从头合成及脂质摄取和储存,在癌症细胞中上调相关蛋白表达为快速膜形成提供了充足的构建模块包括信号分子和底物,并且提供两个氮原子来合成己糖胺、核苷酸和氨基酸,所有这些也是生长所必需原料 [48] 。PCa细胞显示出独特的代谢特征,例如与新生脂质从头合成,脂肪酸摄取、输出和β氧化相关的几种酶的更高表达。Banerjee等人观察到与使用电喷雾解吸电离质谱(Desorption electrospray ionization, DESI-MSI)的良性前列腺组织相比,PCa组织中葡萄糖、柠檬酸盐及脂质的比例增加 [49] 。观察到是由于PCa中柠檬酸盐水平的显着降低,而葡萄糖信号强度的增加则不那么明显并提出将柠檬酸盐分流到PCa中的脂肪生成和氧化中。据报道,这种异常的脂质代谢对PCa生长,激素难治性进展和治疗耐药性很重要。前列腺癌进展的一个标志是通过脂肪酸合酶(fatty acid synthetase, FASN)的过表达导致脂质代谢失调,FASN是新生脂肪酸合成的第一个关键酶。发表在美国国家科学院院刊文献表示IPI-9119 (一种新型、有效的、选择性的、不可逆的FASN抑制剂)并证明选择性FASN抑制通过代谢重编程拮抗CRPC生长,并导致全长AR剪接变体的蛋白质表达和转录活性降低,在体内IPI-9119减少了AR剪变体V7驱动的CRPC异种移植物和人mCRPC衍生类器官的生长,并增强CRPC细胞对于恩杂鲁胺中的敏感性 [50] 。磷脂酶Cɛ (PLCɛ),一种具有鸟嘌呤核苷酸交换因子活性的磷酸肌醇特异性PLC家族成员,它也被证实是一种多功能信号蛋白,在不同类型的癌症中增加等人通过沉默PLCɛ可以通过(腺苷酸活化蛋白激酶–固醇调节元件结合蛋白,AMPK/SREBP)信号通路抑制PCa中的脂质代谢和恶性行为 [51] 。参与Pca发病机制的共同特征是脂质代谢紊乱和胆固醇积累异常,其中最重要的是致癌PI3K/AKT/mTOR信号通路的组成活性,该信号通路通过以下方式增强细胞内胆固醇水平:1) 通过激活转录因子–甾醇调节元件结合蛋白(Sterol-regulatory element binding proteins, SREBPs)诱导胆固醇从头合成;2) 诱导LDL受体介导的胆固醇内吞性摄取;3) 抑制人ATP结合盒转运蛋白A1 (ATP binding cassette transporter A1, ABCA1)介导的胆固醇输出 [52] 。Yes相关蛋白1 (Yes-associated protein 1, YAP1)的过表达激活羟甲基戊二酸单酰辅酶A还原酶(HMGCR)和AR之间的相互作用影响细胞内脂质代谢有助于PCa从雄激素依赖性到去势抵抗性生长的转变,YAP1具有恩杂鲁胺耐药的治疗和诊断潜力 [53] 。

6. 膜筏与前列腺癌的相关性

膜筏脂组成的蛋白质组学分析表明由鞘脂、胆固醇和糖脂、磷脂酰丝氨酸、磷脂酰乙醇胺等共同组成具有生物活性的微域。近年来是相关实体癌症研究的热点,例如乳腺癌、PCA等。它们传递来自生长因子受体的信号,因此与细胞增殖和运动控制有关。确定膜筏作为信号平台在癌症发展中的作用至关重要以及它们作为抗癌治疗靶标的可能应用,例如1、PI3K/AKT/EGFR通路2肝脏X受体(LXR)膜筏信号传导的调节剂3、IL-6-STAT3通路4、CXCL12/CXCR4通路5、HGF/c-Met通路 [54] 。由于膜筏在调节前列腺癌进展的各个阶段中的作用,作为癌症治疗和可能预防的有趣靶标而受到关注。

7. 总结与展望

前列腺癌的发病率逐年升高,严重危害男性患者的生命健康,影响生存质量。早期诊断PCa对治疗及患者预后具有非常重要意义。我国目前对PCa筛查的高质量研究较少,故探寻前列腺癌早期诊断更高效的诊断方法有重要意义,从而达到提升前列腺癌防控效果。

NOTES

*通讯作者。

参考文献

[1] Sousa, A.P., Costa, R., Alves, M.G., Soares, R., Baylina, P. and Fernandes, R. (2022) The Impact of Metabolic Syndrome and Type 2 Diabetes Mellitus on Prostate Cancer. Frontiers in Cell and Developmental Biology, 10, Article 843458.
https://doi.org/10.3389/fcell.2022.843458
[2] Papsidero, L.D., Wang, M.C., Valenzuela, L.A., Murphy, G.P. and Chu, T.M. (1980) Prostate Antigen in Serum of Patients with Prostate Cancer. Cancer Research, 40, 2428-2432.
[3] Shortliffe, L.M., Wehner, N. and Stamey, T.A. (1981) Use of a Solid-Phase Radioimmunoassay and Formalin-Fixed Whole Bacterial Antigen in the Detection of Antigen-Specific Immunoglobulin in Prostatic Fluid. Clinical Investment, 67, 790-799.
https://doi.org/10.1172/JCI110096
[4] Mikolajczyk, S.D., Song, Y., Wong, J.R., Matson, R.S. and Rittenhouse, H.G. (2004) Are Multiple Markers the Future of Prostate Cancer Diagnosis? Clinical Biochemistry, 37, 519-528.
https://doi.org/10.1016/j.clinbiochem.2004.05.016
[5] Komatsu, K., Wehner, N., Prestigiacomo, A.E., Chen, Z. and Stamey, T.A. (1996) Physiologic (Intraindividual) Variation of Serum Prostate-Specific Antigen in 814 Men from a Screening Population. Urology, 47, 343-346.
https://doi.org/10.1016/S0090-4295(99)80450-6
[6] Thompson, I.M., Pauler, D.K., Goodman, P.J., Tangen, C.M., Lucia, M.S., Parnes, H.L., Minasian, L.M., Ford, L.G., Lippman, S.M., Crawford, E.D., Crowley, J.J. and Coltman Jr, C.A. (2004) Prevalence of Prostate Cancer among Men with a Prostate-Specific Antigen Level ≤ 4.0 ng per Milliliter. The New England Journal of Medicine, 350, 2239-2246.
https://doi.org/10.1056/NEJMoa031918
[7] Nadji, M., Tabei, S.J., Castro, A., et al. (1981) Prostatic-Specific Antigen: An Immunohistologic Marker for Prostatic Neoplasms. Cancer, 48, 1229-1232.
https://doi.org/10.1002/1097-0142(19810901)48:5<1229::AID-CNCR2820480529>3.0.CO;2-L
[8] Wang, L.G., Liu, X.M., Kreis, W. and Budman, D.R. (1997) Down-Regulation of Prostate-Specific Antigen Expression by Finasteride through Inhibition of Complex Formation between Androgen Receptor and Steroid Receptor-Binding Consensus in the Promoter of the PSA Gene in LNCaP Cells. Cancer Research, 57, 714-719.
[9] Chybowski, F.M., Bergstralh, E.J. and Oesterling, J.E. (1992) Effect of Digital Rectal Examination on Serum Prostate Specific Antigen Concentration: Results of a Randomized Study. Journal of Urology, 148, 83-86.
https://doi.org/10.1016/S0022-5347(17)36517-5
[10] Herschman, J.D., Smith, D.S. and Catalona, W.J. (1997) Effect of Ejaculation on Serum Total and Free Prostate-Specific Antigen Concentrations. Urology, 50, 239-243.
https://doi.org/10.1016/S0090-4295(97)00209-4
[11] Tchetgen, M.B.N. and Oesterling, J.E. (1997) Effects of Prostatitis, Urinary Retention, Ejaculation and Walking on Serum Prostate Specific Antigen Concentration. Urologic Clinics of North America, 24, 283-291.
https://doi.org/10.1016/S0094-0143(05)70374-8
[12] Delongchamps, N.B., de la Roza, G., Jones, R., Jumbelic, M. and Haas, G.P. (2009) Saturation Biopsies on Autopsicd Prostates for Detecting and Characterizing Prostate Cancer. BJU International, 103, 49-54.
https://doi.org/10.1111/j.1464-410X.2008.07900.x
[13] Wagenlehner, F.M., van Oostrum, E., Tenke, P., et al. (2013) Infective Complications after Prostate Biopsy: Outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a Prospective Multinational Multicentre Prostate Biopsy Study. European Urology, 63, 521-527.
https://doi.org/10.1016/j.eururo.2012.06.003
[14] Wu, Z.Y., Yang, C., Luo, J., Deng, S.L., Wu, B. and Chen, M. (2019) To Establish the Reference Interval of Serum [-2]proPSA (p2PSA), %p2PSA and Prostate Health Index in Healthy Men. OncoTargets and Treatment, 12, 6453-6460.
https://doi.org/10.2147/OTT.S212340
[15] Artibani, W. (2012) Markers in the Diagnosis of Prostate Cancer: Biomarkers. Peking University International, 10, 8-13.
https://doi.org/10.1111/j.1464-410X.2012.011429.x
[16] Takayama, T.K., Fujikawa, K. and David, E.W. (1997) Characterization of the Precursor of Prostate-Specific Antigen. Activation by Trypsin and by Human Glandular Kallikrein. Journal of Biological Chemistry, 272, 21582-21588.
https://doi.org/10.1074/jbc.272.34.21582
[17] Chan, T.Y., Mikolajczyk, S.D., Lecksell, K., Shue, M.J., Rittenhouse, H.G., et al. (2003) Immunohistochemical Staining of Prostate Cancer with Monoclonal Antibodies to the Precursor of Prostate-Specific Antigen. Urology, 62, 177-181.
https://doi.org/10.1016/S0090-4295(03)00138-9
[18] Huang, Y.Q., Sun, T., Zhong, W.D. and Wu, C.L. (2014) Clinical Manifestations of serum [-2]proPSA Derivatives, %p2PSA and PHI in Detection and Management of Prostate Cancer. American Journal of Clinical and Experimental Urology, 2, 343-350.
[19] 王新敏, 章乐, 王勤章, 等. 血清PSA、f/t-PSA比值在前列腺癌诊断中的意义[J]. 农垦医学, 2011, 33(5): 395-397.
[20] Sokol, L.J., Wang, Y., Feng, Z., Kagan, J., Partin, A.W., Sanda, M.G., et al. (2008) [-2]Proenzyme Prostate Specific Antigen for Prostate Cancer Detection: A National Cancer Institute Early Detection Research Network Validation Study. Journal of Urology, 180, 539-543.
https://doi.org/10.1016/j.juro.2008.04.015
[21] 罗振国, 杜剑飞, 毛秀娟, 赵庆, 徐炜东, 高福生, 毕睿, 宋歌, 候雪飞, 陈向峰. PHI值联合~(18)F-FDG PET/CT检查的SUVmax值对于前列腺癌的早期诊断及恶性程度的评估价值[J]. 中国男科学杂志, 2022, 36(3): 44-49.
[22] Sciarra, A., Gentilucci, A., Salciccia, S., Pierella, F., Del Bianco, F., Gentile, V., et al. (2016) Prognostic Value of Inflammation in Prostate Cancer Progression and Response to Treatment: An Important Review. Journal of Inflammation, 13, Article No. 35.
[23] de Bono, J.S., Guo, C., Gurel, B., De Marzo, A.M., Sfanos, K.S., Mani, R.S., Gil, J., Drake, C.G. and Alimonti, A. (2020) Prostate Carcinogenesis: Inflammatory Storms. Nature Reviews Cancer, 20, 455-469.
https://doi.org/10.1038/s41568-020-0267-9
[24] 裴家鑫, 周维, 唐娜. MiR-199a在泌尿系统肿瘤中的相关研究进展[J]. 农垦医学, 2021, 43(2): 148-151, 169.
[25] Perletti, G., Monti, E., Magri, V., Cai, T., Cleves, A., Trinchieri, A. and Montanari, E. (2017) The Association between Prostatitis and Prostate Cancer. Systematic Review and Meta-Analysis. Archivio Italiano di Urologia e Andrologia, 89, 259-265.
https://doi.org/10.4081/aiua.2017.4.259
[26] Ficarra, V., Sekulovic, S., Zattoni, F., Zazzera, M. and Novara, G. (2013) Why and How to Assess Chronic Prostate Inflammation. European Urology Supplements, 12, 110-115.
https://doi.org/10.1016/j.eursup.2013.08.002
[27] Gonzalez, H., Hagerling, C. and Werb, Z. (2018) Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes & Development, 32, 1267-1284.
https://doi.org/10.1101/gad.314617.118
[28] Hwang, B.O., Park, S.Y., Cho, E.S., Zhang, X., Lee, S.K., Ahn, H.J., Chun, K.S., Chung, W.Y. and Song, N.Y. (2021) Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Frontiers in Immunology, 12, Article 807600.
https://doi.org/10.3389/fimmu.2021.807600
[29] Hwang, B., Park, S., Cho, E.S., Zhang, X., Lee, S.K., Ahn, H., Chun, K., Chung, W. and Song, N. (2021) Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Frontiers in Immunology, 12, Article 807600.
https://doi.org/10.3389/fimmu.2021.807600
[30] Gutiontov, S.I., Cui, K.S., Miller, J.L. and Liao, S.L. (2020) Improved Outcomes after Radiotherapy for Prostate Cancer: Anticoagulation, Antiplatelet Therapy, and Platelet Count as Key Factors in Disease Progression. Cancer Medicine, 9, 4667-4675.
https://doi.org/10.1002/cam4.3087
[31] Xiong, T.T., He, P., Zhou, M., Zhong, D., Yang, T., He, W.H., et al. (2022) Glutamate Blunts Cell-Killing Effects of Neutrophils in Tumor Microenvironment. Cancer Science, 113, 1955-1967.
https://doi.org/10.1111/cas.15355
[32] Chang, C.Y., Tai, J.A., Li, S., Nishikawa, T. and Kaneda, Y. (2016) Virus-Stimulated Neutrophils in the Tumor Microenvironment Enhance T Cell-Mediated Anti-Tumor Immunity. Oncotarget, 7, 42195-42207.
https://doi.org/10.18632/oncotarget.9743
[33] Chapel, W.H., Abrams, S.L., Letteri Piapon, K., Fitzgerald, T.L., Matelli, A.M., Cocoa, L., et al. (2016) Novel Roles of Androgen Receptor, Epidermal Growth Factor Receptor, TP53, Regulatory RNAs, NF-κ-B, Chromosomal Translocations, Neutrophil Associated Gelatinase, and Matrix Metalloproteinase-9 in Prostate Cancer and Prostate Cancer Stem Cells. Advanced Biological Regulation, 60, 64-87.
https://doi.org/10.1016/j.jbior.2015.10.001
[34] Griesalu-Tal, S., Dürberg, S., Baker, L., Chang, C., Eitan, M., Hediye-Zadeh, S., et al. (2021) Metastatically Entrained Eosinophils Enhance Lymphocyte-Mediated Anti-Tumor Immunity. Cancer Research, 81, 5555-5571.
https://doi.org/10.1158/0008-5472.CAN-21-0839
[35] Huang, C., Li, Z.H., Zhu, J.L., et al. (2021) Systems Pharmacology Dissection of Epimedium Targeting Tumor Microenvironment to Enhance Cytotoxic T Lymphocyte Responses in Lung Cancer. Aging, 13, 2912-2940.
https://doi.org/10.18632/aging.202410
[36] Gudeng, M.J., Debok, G.H., Levers, N., Daimen, T. and Naiman, H.W. (2011) The Prognostic Influence of Tumour-Infiltrating Lymphocytes in Cancer: A Systematic Review with Meta-Analysis. British Journal of Cancer, 105, 93-103.
https://doi.org/10.1038/bjc.2011.189
[37] Xu, Z.P., Zhang, J., Zhong, Y.X., et al. (2021) Predictive Value of the Monocyte-to-Lymphocyte Ratio in the Diagnosis of Prostate Cancer. Medicine, 100, e27244.
https://doi.org/10.1097/MD.0000000000027244
[38] Ferro, M., Musi, G., Serino, A., Cozzi, G., Mistretta, F.A., Costa, B., et al. (2019) Neutrophil, Platelets, and Eosinophil to Lymphocyte Ratios Predict Gleason Score Upgrading in Low-Risk Prostate Cancer Patients. Urologia Internationalis, 102, 43-50.
https://doi.org/10.1159/000494259
[39] Man, Y.N. and Chen, Y.F. (2019) Systemic Immune-Inflammation Index, Serum Albumin, and Fibrinogen Impact Prognosis in Castration-Resistant Prostate Cancer Patients Treated with First-Line Docetaxel. International Urology and Nephrology, 51, 2189-2199.
https://doi.org/10.1007/s11255-019-02265-4
[40] Dumauthioz, N., Labiano, S. and Romero, P. (2018) Tumor Resident Memory T Cells: New Players in Immune Surveillance and Therapy. Frontiers in Immunology, 9, Article 411458.
https://doi.org/10.3389/fimmu.2018.02076
[41] Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. and Kroemer, G. (2020) Immunostimulation with Chemotherapy in the Era of Immune Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 17, 725-741.
https://doi.org/10.1038/s41571-020-0413-z
[42] Ribeiro, R., Monteiro, C., Cunha, V., Oliveira, M.J., Freitas, M., Fraga, A., Príncipe, P., Lobato, C., Lobo, F. and Morais, A. (2012) Human Periprostatic Adipose Tissue Promotes Prostate Cancer Aggressiveness in vitro. Journal of Experimental & Clinical Cancer Research, 31, Article No. 32.
https://doi.org/10.1186/1756-9966-31-32
[43] Martinez-Outschoorn, U.E., Sotgia, F. and Lisanti, M.P. (2014) Metabolic Asymmetry in Cancer: A “Balancing Act” That Promotes Tumor Growth. Cancer Cell, 26, 5-7.
https://doi.org/10.1016/j.ccr.2014.06.021
[44] Park, J., Morley, T.S., Kim, M., Clegg, D.J. and Scherer, P.E. (2014) Obesity and Cancer—Mechanisms of Tumor Progression and Recurrence. Nature Reviews Endocrinology, 10, 455-465.
https://doi.org/10.1038/nrendo.2014.94
[45] Tong, Y., Wu, J., Huang, O., et al. (2020) IGF-1 Interacted with Obesity in Prognosis Prediction in HER2-Positive Breast Cancer Patients. Frontiers in Oncology, 10, Article 550.
https://doi.org/10.3389/fonc.2020.00550
[46] Liotti, A., La Civita, E., Cennamo, M., Crocetto, F., Ferro, M., Guadagno, E., Insabato, L., Imbimbo, C., Palmieri, A., Mirone, V., Liguoro, P., Formisano, P., Beguinot, F. and Terracciano, D. (2021) Periprostatic Adipose Tissue Promotes Docetaxel Resistance in Prostate Cancer by Paracrine IGF-1 Upregulation of TUBB2B β-Tubulin Isoforms. The Prostate, 81, 407-417.
https://doi.org/10.1002/pros.24117
[47] Sasaki, T., Sugino, Y., Kato, M., Nishikawa, K. and Kanda, H. (2020) Pre-Treatment Ratio of Periprostatic to Subcutaneous Fat Thickness on MRI Is an Independent Survival Predictor in Hormone-Naïve Men with Advanced Prostate Cancer. International Journal of Clinical Oncology, 25, 370-376.
https://doi.org/10.1007/s10147-019-01559-y
[48] Sunami, Y., Rebelo, A. and Kleeff, J. (2017) Lipid Metabolism and Lipid Droplets in Pancreatic Cancer and Stellate Cells. Cancers, 10, Article 3.
https://doi.org/10.3390/cancers10010003
[49] Banerjee, S., Zare, R.N., Tibshirani, R.J., Kunder, C.A., Nolley, R. and Fan, R. (2017) Diagnose of Prostate Cancer by Desorption Electrospray Ionization Mass Spectrometry Imaging of Small Metabolites and Lipids. Proceedings of the National Academy of Sciences of the United States of America, 114, 3334-3339.
https://doi.org/10.1073/pnas.1700677114
[50] Zadra, G., Ribeiro, C.F., Chetta, P., Ho, Y., Cacciatore, S., Gao, X., Syamala, S., Bango, C., Photopoulos, C., Huang, Y., Tyekucheva, S., Bastos, D.C., Tchaicha, J., Lawney, B., Uo, T., D’Anello, L., Csibi, A., Kalekar, R., Larimer, B., Ellis, L., Butler, L.M., Morrissey, C., McGovern, K., Palombella, V.J., Kutok, J.L., Mahmood, U., Bosari, S., Adams, J., Peluso, S., Dehm, S.M., Plymate, S.R. and Loda, M. (2019) Inhibition of de Novo Lipogenesis Targets Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Proceedings of the National Academy of Sciences of the United States of America, 116, 631-640.
https://doi.org/10.1073/pnas.1808834116
[51] Zheng, Y., Jin, J., Gao, Y., Luo, C., Wu, X. and Liu, J. (2020) Phospholipase Cε Regulates Prostate Cancer Lipid Metabolism and Proliferation by Targeting AMP-Activated Protein Kinase (AMPK)/Sterol Regulatory Element-Binding Protein 1 (SREBP-1) Signaling Pathway. Medical Science Monitor, 26, e924328.
https://doi.org/10.12659/MSM.924328
[52] Škara, L., Hujiek Turković, A., Pezelj, I., Vrtarić, A., Sinčić, N., Krušlin, B. and Ulamec, M. (2021) Prostate Cancer—Focus on Cholesterol. Cancers, 13, Article 4696.
https://doi.org/10.3390/cancers13184696
[53] Li, H.C., Ou, C.H., Huang, Y.C., Hou, B., Clayton, C.J., Lin, Y.S., Hu, C.Y. and Lin, S.C. (2021) YAP1 Overexpression Promotes the Development of Enzalutamide Resistance by Inducing Cancer Stemness and Lipid Metabolism in Prostate Cancer. Oncogene, 40, 2407-2421.
[54] Hryniewicz-Jankowska, A., Augoff, K. and Sikorski, A.F. (2019) The Role of Cholesterol and Cholesterol-Driven Membrane Raft Domains in Prostate Cancer. Experimental Biology and Medicine, 244, 1053-1061.
https://doi.org/10.1177/1535370219870771