#### 期刊菜单

Experimental Study on Transformation and Operation Characteristics of Transformer
DOI: 10.12677/MP.2023.13616, PDF, HTML, XML, 下载: 189  浏览: 263

Abstract: Transformer is a kind of special equipment that realizes the transformation, distribution, transmission, measurement and compensation of electric energy based on electromagnetic induction principle. It has the advantages of high mechanical strength, strong load capacity and low power loss, and is widely used in electric power industry, industrial production, transportation industry and other fields. In this paper, the structure, working principle and output characteristics of transformer are analyzed, the relationship between the secondary voltage and the primary voltage, the number of turns of the primary coil under the open circuit; secondary current and primary current, the number of turns of secondary coil in short circuit; primary current and secondary current under load were studied experimentally, the output power of transformer is measured. Combined with trans-former theory, the experimental results are analyzed in detail.

1. 引言

2. 实验原理

Figure 1. Transformer equivalent circuit

${\stackrel{˙}{U}}_{1}=-{\stackrel{˙}{E}}_{1}+\left({R}_{1}+j\omega {L}_{10}\right){\stackrel{˙}{I}}_{1}$ (1)

${\stackrel{˙}{U}}_{2}=-{\stackrel{˙}{E}}_{2}+\left({R}_{2}+j\omega {L}_{20}\right){\stackrel{˙}{I}}_{2}$ (2)

Figure 2. Structural schematic diagram of the ideal transformer

${\stackrel{˙}{U}}_{1}=-{\stackrel{˙}{E}}_{1}=j\omega {N}_{1}\Phi =j\omega {L}_{1}{\stackrel{˙}{I}}_{1}+j\omega M{\stackrel{˙}{I}}_{2}$ (3)

${\stackrel{˙}{U}}_{2}={\stackrel{˙}{E}}_{2}=-j\omega {N}_{2}\Phi =j\omega {L}_{2}{\stackrel{˙}{I}}_{2}+j\omega M{\stackrel{˙}{I}}_{1}$ (4)

$\frac{{\stackrel{˙}{U}}_{1}}{{\stackrel{˙}{U}}_{2}}=-\frac{{\stackrel{˙}{E}}_{1}}{{\stackrel{˙}{E}}_{2}}=-\frac{{\stackrel{˙}{N}}_{1}}{{\stackrel{˙}{N}}_{2}}=-K$ (5)

${\stackrel{˙}{U}}_{1}=j\omega {L}_{1}{\stackrel{˙}{I}}_{0}$ (6)

$\frac{{\stackrel{˙}{{I}^{\prime }}}_{1}}{{\stackrel{˙}{I}}_{2}}=\frac{{\stackrel{˙}{I}}_{1}-{\stackrel{˙}{I}}_{0}}{{\stackrel{˙}{I}}_{2}}=-\frac{M}{{L}_{1}}=-\frac{{N}_{2}}{{N}_{1}}=-\frac{1}{K}$ (7)

${{Z}^{\prime }}_{1}=\frac{{\stackrel{˙}{U}}_{1}}{{\stackrel{˙}{I}}_{1}}={\left(\frac{{N}_{1}}{{N}_{2}}\right)}^{2}\frac{{\stackrel{˙}{U}}_{2}}{{\stackrel{˙}{I}}_{2}}={\left(\frac{{N}_{1}}{{N}_{2}}\right)}^{2}{Z}_{1}={K}^{2}{Z}_{1}$ (8)

3. 变压器的变换和运行特性实验研究

3.1. 开路下次级电压的测量

3.1.1. 次级电压与初级电压的关系

3.1.2. 次级电压与初级绕组匝数的关系

Figure 3. Relationship between secondary open circuit voltage and primary voltage

Figure 4. Relationship between secondary open circuit voltage and primary turns

3.2. 短路时次级电流的测量

3.2.1. 次级短路电流与初级电流的关系

Figure 5. Relationship between secondary short-circuit current and primary current

3.2.2. 次级短路电流与次级线圈匝数的关系

Figure 6. Relationship between secondary short-circuit current and secondary turns

3.3. 带载下次级电流与初级电流的关系

Figure 7. Relationship between secondary current and primary current under load

Figure 8. Output power of transformer under load

3.4. 带载下变压器的输出功率测量

4. 结论

 [1] 刘玉, 张晶焯, 鲁海亮, 蓝磊, 文习山. 变压器空载合闸励磁涌流试验和仿真分析[J]. 2022, 53(10): 117-123. [2] 邵凯旋, 何怡刚, 汪磊. 基于多尺度熵分析与改进SVM的变压器故障识别[J]. 电子测量与仪器学报, 2022. 36(6): 161-168. [3] 赵忠云, 刘培欣, 庄雷, 周芳, 郑炜, 程耀庚. 绕组结构排列方式对单机24脉波整流变压器阻抗的影响[J]. 变压器, 2022, 59(1): 11-12. [4] 周海滨, 张正祥, 李文涛, 等. 干式变压器不同负载下绕组热点温度的计算与分析[J]. 变压器, 2022, 59(1): 1-5. [5] 李涛, 孙学武, 杜晓平, 等. 基于有限元的变压器流场及温度场仿真分析[J]. 自动化与仪表, 2020, 35(5): 1-5. [6] 刘斌, 张喜乐, 王浩名, 等. 不同负载条件下换流变压器绕组温升的计算与分析[J]. 变压器, 2020, 57(5): 1-6. [7] 于继来, 柳焯. 移相调节变压器特性的统一分析[J]. 哈尔滨工业大学学报, 1994(1): 42-46. [8] 薛向党, 郭晖, 郑云祥, 等. 在地磁感应电流作用时分析和计算电力变压器特性的一种新方法——时域和频域法[J]. 电工技术学报, 2000, 15(2): 1-5. [9] Yu, Z., Liu, J., Cheng, X., et al. (2010) Output Characteristics of a Kind of High-Voltage Pulse Transformer with Closed Magnetic Core. IEEE Transac-tions on Plasma Science, 38, 1019-1027. https://doi.org/10.1109/TPS.2010.2041368 [10] 李东, 丁剑, 王正风, 等. 移相变压器的研究现状及工程应用[J]. 智能电网, 2015(7): 608-616. [11] Shi, Y., Wu, T., Cai, M., et al. (2016) Energy Conversion Characteristics of a Hydropneumatic Transformer in a Sustainable-Energy Vehicle. Applied Energy, 171, 77-85. https://doi.org/10.1016/j.apenergy.2016.03.034 [12] 陈旭. 变压器运行特性分析[J]. 露天采矿技术, 2016, 31(3): 57-59. [13] 王帅兵, 李琳, 谢裕清, 等. 统一潮流控制器中串联耦合变压器特性及仿真模型研究[J]. 电网技术, 2017, 41(2): 551-557. [14] 丁然, 梅军, 管州, 等. 适用于MMC型直流变压器的直流故障主动限流控制方法[J]. 电力系统自动化, 2018, 42(21): 131-138. [15] He, Z., Zhang, S., Liu, Y., et al. (2019) Research on the Power Output Characteristics of a Coupling Transformer in D-FACTS. Energies, 12, 1-14. https://doi.org/10.3390/en12244709 [16] 吴争, 孔力, 袁晓冬, 等. 基于电力电子变压器的交直流混合可再生能源关键技术[J]. 电工电能新技术, 2019, 38(2): 1-10. [17] Kladukhin, V. and Khramtsov, S. (2021) Optimum Transfer Characteristics of the Tesla Transformer on the First and Second Half-Waves of Output Voltage. Journal of Physics: Conference Series, 2064, 012130. https://doi.org/10.1088/1742-6596/2064/1/012130 [18] Górecki, K., Detka, K. and Kaczerski, K. (2022) The Influ-ence of the Transformer Core Material on the Characteristics of a Full-Bridge DC-DC Converter. Energies, 15, 6160. https://doi.org/10.3390/en15176160