转铁蛋白受体CD71在脓毒症诊疗及预后中的研究进展
Research Progress of Transferrin Receptor CD71 in Diagnosis Treatment and Prognosis of Sepsis
DOI: 10.12677/ACM.2023.13122743, PDF, HTML, XML, 下载: 112  浏览: 174 
作者: 胡枞宇:新疆医科大学研究生院,新疆 乌鲁木齐;张大权*:新疆维吾尔自治区人民医院,重症医学科,新疆 乌鲁木齐
关键词: 脓毒症转铁蛋白受体1TfRlCD71铁代谢Sepsis Transferrin Receptor 1 TfRl CD71 Iron Metabolism
摘要: 脓毒症是重症监护病房患者的主要死亡原因,由于缺少特异性诊断标志物和针对性治疗,其死亡率一直居高不下。转铁蛋白受体1 (Transferrin Receptor 1, TfRl),即CD71分子,是一种参与铁代谢和调节细胞生长所必需的膜蛋白,其在许多类型的细胞表面均有表达,与细胞的成熟、增殖、分化密切相关。近年来研究发现铁代谢在脓毒症中意义重大,同时铁死亡被证实在脓毒症的病程发展中发挥着重要的作用,这使铁代谢的研究具有重大的意义。本文综述了脓毒症中铁代谢的研究现况以及转铁蛋白受体1在临床中的相关应用,通过分析其共同的病理生理过程,以期找到更多转铁蛋白受体CD71在脓毒症中表达的意义,为帮助鉴别诊断脓毒症,判断患者病情严重程度,指导预后等提供潜在的生物标志物,同时为脓毒症提供新的干预靶点和治疗手段。
Abstract: Sepsis is the main cause of death of patients in intensive care unit. Due to the lack of specific diag-nostic markers and limited treatment, the incidence and mortality of patients with sepsis have been high. Transferrin receptor 1 receptor 1 (CD71) is a necessary membrane protein involved in iron metabolism and regulating cell growth. It is expressed on many types of cells and is closely re-lated to cell maturation, proliferation and differentiation. In recent years, studies have found that iron metabolism is of great significance in sepsis, and iron death has been proved to play an im-portant role in the development of sepsis, which makes the study of iron metabolism of great signif-icance. This article reviews the research status of iron metabolism in sepsis and the related clinical application of transferrin receptor receptor 1, through the analysis of its common pathophysiologi-cal process, in order to find thesignificance of TfRl (CD71) expression in sepsis, and to provide po-tential biomarkers for differential diagnosis of sepsis, judging the severity of patients and guiding prognosis. At the same time, it provides new intervention targets and treatment methods for sepsis.
文章引用:胡枞宇, 张大权. 转铁蛋白受体CD71在脓毒症诊疗及预后中的研究进展[J]. 临床医学进展, 2023, 13(12): 19484-19488. https://doi.org/10.12677/ACM.2023.13122743

1. 引言

脓毒症被定义为由宿主对严重感染失调反应而导致的危及生命的多脏器损伤及功能障碍 [1] 。流行病学数据显示,重症监护病房(Intensive Care Unit, ICU)患者脓毒症的发病率高达39%,死亡率为26% [2] 。在我国,脓毒症和感染性休克的发生率和死亡率远远高于北美和欧洲国家,20%的ICU患者会感染脓毒症,其90天死亡率高达35.5%,且需要更多的医疗预算支持 [3] 。尽管国际上对脓毒症采取了液体复苏、抗感染、应用血管活性药物等一系列积极治疗措施 [4] ,但发病率和死亡率仍居高不下,流行病学调查显示,在正常人群中脓毒症的年发生率约为700/10万人,脓毒症患者的医院死亡率为17%,严重脓毒症患者的死亡率达26%,对全球人类健康和社会经济均造成严重威胁 [5] 。过去对于脓毒症机制的研究,主要集中在炎症及免疫方面 [6] 。近年来,微量元素铁代谢异常在脓毒症发病机制的作用越来越受到研究者的重视 [7] 。目前已有研究表明TfR1具有作为脓毒症诊断标志物、预后指标的潜在应用价值,但仍缺乏动物实验及临床研究的验证。本文旨在探讨TfR1的表达在脓毒症中的意义。

2. 转铁蛋白受体1在脓毒症铁代谢中的研究进展

脓毒症的病程发展是一个复杂的病理生理过程,包括病原体入侵、细胞因子释放、微循环功能障碍、人体免疫系统失衡等 [8] 。由于脓毒症复杂的发病机制,导致目前缺少有效的针对性治疗。研究发现,在脓毒症发病过程中存在着多种细胞死亡形式,其中铁死亡作为一种铁依赖的与细胞凋亡、坏死、自噬、焦亡等不同的新的死亡形式,被认为与脓毒症息息相关 [9] [10] 。研究发现,铁螯合剂可以降低铁离子浓度,随后抑制细胞铁死亡的发生,提高了脓毒症患者的生存率 [11] ,这说明铁代谢障碍是铁死亡发生的关键步骤。在铁代谢的基本过程中,TfR1是参与铁运输的主要蛋白质 [12] 。而当机体处于炎症、感染等病理状态时,铁代谢常常会出现异常 [13] [14] 。脓毒症的主要特征即是炎症反应,炎症反应会激活机体免疫系统,促炎因子及抗炎因子的产生会引起铁调素表达上调导致铁稳态失衡 [15] ,一些铁代谢相关标志物会在机体炎症反应时出现变化 [16] 。研究表明,脓毒症患者入住ICU早期,血清铁和转铁蛋白水平均明显降低,而铁调素、铁蛋白和IL-6显著升高 [17] [18] [19] 。但也有研究表明,脓毒症患者的铁代谢指标在病程中是不断变化的 [20] 。脓毒症的铁代谢变化复杂,目前关于脓毒症铁代谢指标变化情况的研究较为缺乏,还有许多变化机制及变化过程尚不清楚,需要更多的研究进一步揭示。

目前临床上常用的铁代谢指标包括血清铁、转铁蛋白、铁蛋白等。血清铁利于细菌繁殖,研究提示脓毒症患者的血清铁水平上调,且与脓毒症患者90 d死亡率正相关 [21] [22] 。一些研究也表明转铁蛋白与脓毒症的严重程度具有相关性 [23] [24] ,而铁蛋白则与脓毒症的预后相关 [25] [26] 。这些研究均表明了铁代谢障碍在脓毒症的发生中具有重要作用,然而脓毒症患者的铁代谢指标变化大,需要进一步寻找一种更加稳定的生物标志物。

3. 转铁蛋白受体1在脓毒症中的应用价值

转铁蛋白受体1 (TfR1)是铁离子转运、吸收及利用的主要蛋白质 [27] 。TfR1已在血液、肿瘤、免疫疾病的诊疗及预后中被证实应用价值 [28] [29] ,同时TfR1作为一种较稳定的铁代谢标志物,也可以用于铁代谢性疾病的诊疗过程中 [30] [31] 。研究发现,TfR1 (CD71)高表达于增殖活跃的细胞中,在血液肿瘤相关研究中发现,TfR1 (CD71)的水平可反映肿瘤的增殖状况 [32] 。而在肿瘤的治疗研究进展中,由于TfR1具有胞外可及性和内化能力,使该受体成为抗体介导治疗的潜在靶点 [33] 。

Schwab L等的研究发现,TfR1 (CD71)与转铁蛋白结合后主要表达于增殖活跃的细胞的细胞膜,也是表达上调最快的分子,在T细胞刺激后6~8 h就可检测到TfR1 (CD71) [34] 。在脓毒症中,以T细胞为主介导的免疫功能紊乱是脓毒症发生的核心机制,调节T细胞的免疫功能对脓毒症的治疗具有重要意义 [35] ,而TfR1在T细胞增殖时表达上调最快,因此,TfR1有望成为新的脓毒症诊断生物标志物。同时TfR1具有内吞作用和内化能力,或许可以作为抗体治疗的靶点调节T细胞免疫功能,从而达到治疗脓毒症的目的。

目前TfR1在脓毒症中的相关研究报道较少,李林芳等通过数据非依赖性采集模式(Data in Dependent Acquisition, DIA)筛选出脓毒症患者和健康者血清样本的差异蛋白质,采用生物信息学技术分析公共数据库数据中差异蛋白在转录水平上的差异,研究结果提示TfR1对脓毒症有较好的诊断和预后判断价值,具有作为脓毒症生物标志物的潜力 [36] 。徐秀娟等以重症肺炎患者为研究对象,发现TfR1具有较好预测重症肺炎预后的效能 [37] 。目前未见TfR1水平变化与脓毒症的相关临床研究报道,仍需要进一步探索TfR1的作用机制,并增加样本量在细胞水平和动物实验中加以验证。

4. 总结和展望

基于脓毒症的复杂性,发现新的生物标志物用于诊断脓毒症尤为重要,也有助于尽早采取有效的治疗措施,提高脓毒症患者的生存率。TfR1不仅可以作为反应铁代谢变化的指标,也是铁死亡的特异标记物。Feng H等人的研究通过抗体高通量筛选出能特异性识别铁死亡的抗体,该抗体的抗原TfR1是铁死亡中的一种特异性标志物 [38] 。TfR1对脓毒症的诊断和预后判断价值需要更多的临床研究进一步证实,后续仍需要进一步探讨TfR1在脓毒症中的作用机制,并在细胞水平和动物实验中加以验证。同时,TfR1作为铁死亡的特异性标志物,其在脓毒症中的变化可能反应了铁死亡在脓毒症中的作用,能够为脓毒症的治疗提供新的思路。

参考文献

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Sakr, Y., Jaschinski, U., Wittebole, X., Szakmany, T., Lipman, J., et al. (2018) Sepsis in Intensive Care Unit Patients: Worldwide Data from the Intensive Care over Nations Audit. Open Forum Infectious Diseases, 5, ofy313.
https://doi.org/10.1093/ofid/ofy313
[3] Liu, Y.C., Yao, Y., Yu, M.M., Gao, Y.L., Qi, A.L., et al. (2022) Fre-quency and Mortality of Sepsis and Septic Shock in China: A Systematic Review and Meta-Analysis. BMC Infectious Diseases, 22, Article No. 564.
https://doi.org/10.1186/s12879-022-07543-8
[4] Kalimouttou, A., Lerner, I., Cheurfa, C., Jannot, A.S. and Pir-racchio, R. (2022) Machine-Learning-Derived Sepsis Bundle of Care. Intensive Care Medicine, 49, 26-36.
https://doi.org/10.1007/s00134-022-06928-2
[5] Xie, J., Wang, H., Kang, Y., Zhou, L., Liu, Z., et al. (2020) The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Critical Care Medicine, 48, e209-e218.
https://doi.org/10.1097/CCM.0000000000004155
[6] Ackerman, M.H., Ahrens, T., Kelly, J. and Pontillo, A. (2021) Sepsis. Critical Care Nursing Clinics of North America, 33, 407-418.
https://doi.org/10.1016/j.cnc.2021.08.003
[7] 姚政彬, 丁宁. 铁代谢在脓毒症发病机制中的研究进展[J]. 实用休克杂志(中英文), 2022, 6(1): 41-43.
[8] Arina, P. and Singer, M. (2021) Pathophysiology of Sepsis. Current Opinion in Anaesthesiology, 34, 77-84.
https://doi.org/10.1097/ACO.0000000000000963
[9] Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421.
https://doi.org/10.1016/j.cell.2022.06.003
[10] Hirschhorn, T. and Stockwell, B.R. (2019) The Development of the Concept of Ferroptosis. Free Radical Biology & Medicine, 133, 130-143.
https://doi.org/10.1016/j.freeradbiomed.2018.09.043
[11] Chen, X., Kang, R., Kroemer, G. and Tang, D. (2021) Ferroptosis in Infection, Inflammation, and Immunity. The Journal of Experimental Medicine, 218, e20210518.
https://doi.org/10.1084/jem.20210518
[12] Vogt, A.C.S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., et al. (2021) On Iron Metabolism and Its Regulation. International Journal of Molecular Sciences, 22, Article 4591.
https://doi.org/10.3390/ijms22094591
[13] Wang, J. and Pantopoulos, K. (2011) Regulation of Cellular Iron Me-tabolism. The Biochemical Journal, 434, 365-381.
https://doi.org/10.1042/BJ20101825
[14] Shutong, L., Yu, J., Jia, W., Huafei, D., Shifan, Y., et al. (2022) HO-1/Autophagic Flux Axis Alleviated Sepsis-Induced Acute Lung Injury via Inhibiting NLRP3 Inflammasome. Cellu-lar Signalling, 100, Article ID: 110473.
https://doi.org/10.1016/j.cellsig.2022.110473
[15] Doganyigit, Z., Eroglu, E. and Akyuz, E. (2022) Inflammatory Mediators of Cytokines and Chemokines in Sepsis: From Bench to Bedside. Human & Experimental Toxicology, 41.
https://doi.org/10.1177/09603271221078871
[16] Imaeda, T., Nakada, T.A., Abe, R. and Oda, S. (2019) De-creased Total Iron Binding Capacity upon Intensive Care Unit Admission Predicts Red Blood Cell Transfusion in Criti-cally Ill Patients. PLOS ONE, 14, e0210067.
https://doi.org/10.1371/journal.pone.0210067
[17] Hu, Y., Cheng, X., Mao, H., Chen, X., Cui, Y. and Qiu, Z. (2021) Causal Effects of Genetically Predicted Iron Status on Sepsis: A Two-Sample Bidirectional Mendelian Randomi-zation Study. Frontiers in Nutrition, 8, Article 747547.
https://doi.org/10.3389/fnut.2021.747547
[18] 胡晨玲, 沈旦, 王扬, 潘旭东. 老年脓毒症患者血清转铁蛋白与预后相关性研究[J]. 中华老年医学杂志, 2022, 41(12): 1483-1488.
[19] Olinder, J., Börjesson, A., Norrman, J., West, T., Carlström, J., et al. (2022) Hepcidin Discriminates Sepsis from Other Critical Illness at Admission to Intensive Care. Scientific Reports, 12, Article No.14857.
https://doi.org/10.1038/s41598-022-18826-0
[20] Piagnerelli, M., Cotton, F., Herpain, A., Rapotec, A., Chatti, R., et al. (2013) Time Course of Iron Metabolism in Critically Ill Patients. Acta Clinica Belgica, 68, 22-27.
https://doi.org/10.2143/ACB.68.1.2062715
[21] Lan, P., Pan, K.H., Wang, S.J., Shi, Q.C., Yu, Y.X., et al. (2018) High Serum Iron level Is Associated with Increased Mortality in Patients with Sepsis. Scientific Reports, 8, Article No. 11072.
https://doi.org/10.1038/s41598-018-29353-2
[22] Akkaş, İ., Ince, N. and Sungur, M.A. (2020) Serum Trace Element and Heavy Metal Levels in Patients with Sepsis. The Aging Male, 23, 222-226.
https://doi.org/10.1080/13685538.2020.1740200
[23] Smolár, M., Dedinská, I., Hošala, M., Mazúch, J. and Laca, L. (2018) Importance of Markers of Sepsis in Surgical Patients. The American Surgeon, 84, 1058-1063.
https://doi.org/10.1177/000313481808400666
[24] D’Onofrio, V., Heylen, D., Pusparum, M., Grondman, I., Vanwalleghem, J., et al. (2022) A Prospective Observational Cohort Study to Identify Inflammatory Biomarkers for the Diagnosis and Prognosis of Patients with Sepsis. Journal of Intensive Care, 10, Article No. 13.
https://doi.org/10.1186/s40560-022-00602-x
[25] Kelly, B.J., Lautenbach, E., Nachamkin, I., Coffin, S.E., Gerber, J.S., et al. (2018) Combined Biomarkers Predict Acute Mortality among Critically Ill Patients with Suspected Sepsis. Critical Care Medicine, 46, 1106-1113.
https://doi.org/10.1097/CCM.0000000000003137
[26] Chen, R., Sang, L., Jiang, M., Yang, Z., Jia, N., et al. (2020) Longitudinal Hematologic and Immunologic Variations Associated with the Progression of COVID-19 Patients in China. The Journal of Allergy and Clinical Immunology, 146, 89-100.
https://doi.org/10.1016/j.jaci.2020.05.003
[27] Sargent, P.J., Farnaud, S. and Evans, R.W. (2005) Struc-ture/Function Overview of Proteins Involved in Iron Storage and Transport. Current Medicinal Chemistry, 12, 2683-2693.
https://doi.org/10.2174/092986705774462969
[28] Kawabata, H. (2019) Transferrin and Transferrin Receptors Update. Free Radical Biology & Medicine, 133, 46-54.
https://doi.org/10.1016/j.freeradbiomed.2018.06.037
[29] Luria-Pérez, R., Helguera, G. and Rodríguez, J.A. (2016) Antibody-mediated Targeting of the Transferrin Receptor in Cancer Cells. Boletin Medico Del Hospital Infantil De Mexi-co, 73, 372-379.
https://doi.org/10.1016/j.bmhimx.2016.11.004
[30] Vázquez-López, M.A., Ibáñez-Alcalde, M., Lendínez-Molinos, F., Ruíz-Sánchez, A.M., Galera-Martínez, R., et al. (2015) Reference Values of Serum Transferrin Receptor and sTfR/log Ferritin Index in Healthy Adolescents. Journal of Pediatric Hematology/Oncology, 37, 274-280.
https://doi.org/10.1097/MPH.0000000000000274
[31] Infusino, I., Braga, F., Dolci, A. and Panteghini, M. (2012) Soluble Transferrin Receptor (sTfR) and sTfR/Log Ferritin index for the Diagnosis of Iron-Deficiency Anemia. A Me-ta-Analysis. American Journal of Clinical Pathology, 138, 642-649.
https://doi.org/10.1309/AJCP16NTXZLZFAIB
[32] 魏园玉, 张晓飐, 张帆, 李曌博, 王宁宁, 刘帅, 岳保红. CD71作为增殖指标在血液肿瘤中的表达及与Ki-67的相关性分析[J]. 中国实验血液学杂志, 2015, 23(1): 234-240.
[33] Candelaria, P.V., Leoh, L.S., Penichet, M.L. and Daniels-Wells, T.R. (2021) Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-Cancer Agents. Frontiers in Immunology, 12, Article 607692.
https://doi.org/10.3389/fimmu.2021.607692
[34] Schwab, L., Michel, G., Bein, G. and Hackstein, H. (2020) CD71 Surface Analysis of T Cells: A Simple Alternative for Extracorporeal Photopheresis Quality Control. Vox Sanguinis, 115, 81-93.
https://doi.org/10.1111/vox.12850
[35] Qiu, P., Liu, Y. and Zhang, J. (2019) Review: The Role and Mecha-nisms of Macrophage Autophagy in Sepsis. Inflammation, 42, 6-19.
https://doi.org/10.1007/s10753-018-0890-8
[36] 李林芳, 张源源, 胡迎春, 陈睦虎. 转铁蛋白受体CD71可作为脓毒症潜在的诊断及预后生物标志物[J]. 中华危重病急救医学, 2022, 34(2): 121-126.
[37] 徐秀娟, 方长太, 尤青海. 血清转铁蛋白受体CD71水平对重症肺炎预后的预测价值[J]. 郑州大学学报(医学版), 2023, 58(4): 529-532.
[38] Feng, H., Schorpp, K., Jin, J., Yozwiak, C.E., Hoffstrom, B.G., et al. (2020) Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Reports, 30, 3411-3423.E7.
https://doi.org/10.1016/j.celrep.2020.02.049