抗甲状腺药物治疗Graves病复发影响因素的研究进展
Research Progress on Influencing Factors of Graves’ Disease Recurrence Treated with Antithyroid Drugs
DOI: 10.12677/ACM.2023.13122844, PDF, HTML, XML, 下载: 96  浏览: 157 
作者: 何潇潇, 李 钶*:重庆医科大学附属第二医院内分泌与代谢病科,重庆
关键词: Graves病自身免疫性甲状腺疾病抗甲状腺药物治疗复发Graves Disease Autoimmune Thyroid Diseases Antithyroid Drugs Therapy Recurrence
摘要: Graves病(Graves Disease, GD)是常见的自身免疫性疾病(Autoimmune thyroid disease, AITD),目前尚无针对病因的治疗方法。通常情况下,抗甲状腺药物治疗(Antithyroid drugs, ATD)仍然使我国首选的治疗措施,但停药后复发风险高。GD多次复发不仅影响患者的工作和生活,也给临床医生的治疗带来挑战,因此明确影响复发的因素至关重要,有助于为治疗提供更精准的指导。本文就ATD治疗后GD复发的影响因素进行综述。
Abstract: Graves Disease (GD) is a common Autoimmune thyroid disease (AITD), which currently has no treatment for the cause. Usually, Antithyroid drugs (ATD) remain the preferred treatment in China, but the risk of recurrence is high after withdrawal. Repeated recurrence of GD not only affects pa-tients’ work and life, but also brings challenges to the treatment of clinicians. Therefore, it is crucial to identify the factors affecting recurrence, which helps to provide more accurate guidance for treatment. This article reviews the factors affecting GD recurrence after ATD treatment.
文章引用:何潇潇, 李钶. 抗甲状腺药物治疗Graves病复发影响因素的研究进展[J]. 临床医学进展, 2023, 13(12): 20204-20212. https://doi.org/10.12677/ACM.2023.13122844

1. 引言

甲状腺功能亢进症(Hyperthyroidism,简称:甲亢)是指甲状腺自主合成和分泌甲状腺激素过多所致的甲状腺毒症,其中80%由Graves病(Graves Disease, GD)引起。GD是一种自身免疫性甲状腺疾病(Autoimmune thyroid disease, AITD),其发病与遗传、环境等因素有关。根据国内外指南,目前针对GD的治疗方法有3种:抗甲状腺药物治疗(Antithyroid drugs, ATD)、碘131治疗以及手术切除治疗。理想的治疗目标是将甲状腺激素水平维持在正常范围,同时避免甲亢的复发,然而,无论是哪种治疗方法都有其利和弊,且存在一定的复发率。ATD治疗后的复发率约为52%~53%,碘131治疗后的复发率约为8%~15%,手术治疗后的复发率约为0%~10% [1] 。对GD的首选治疗方式因地域偏好不同而异,目前ATD仍然是我国治疗GD的一线治疗,具有方便、不破坏甲状腺组织(安全)的优点,但停药后的高复发率是其最大的缺点 [2] 。导致GD复发的因素很多,因此,本文对现有的研究进行归纳总结,分析影响GD复发的因素,有助于为临床治疗提供参考。

2. 非遗传因素

2.1. 年龄

GD可发生于任何年龄,主要好发年龄为30~60岁之间,60岁以后GD的患病率明显下降。衰老过程在GD的病理生理学上具有复杂的作用,一项前瞻性研究发现,年轻患者较老年患者相比,复发风险增大 [3] 。同样,Allahabadia [4] 等人通过对536名Graves甲亢患者的回顾性研究发现,发病年龄是ATD治疗失败的显著预测因素,40岁以下的患者更有可能在药物治疗后不能得到长期缓解。Suzuki [5] 等研究发现,甲亢的严重程度随着年龄的增长而降低,但其预后不受年龄影响,原因可能是开始治疗后疾病的严重程度会受到环境因素的影响。Tristan [6] 等进行的随机效应荟萃分析也发现,参与者的年龄与GD的复发没有相关性。中国的一项纳入了133例甲亢患者的研究也发现,年龄在复发组和缓解组之间无统计学意义 [7] 。综上,年龄与药物治疗后GD复发的相关性目前尚未达成共识,还需要行进一步的相关研究。

2.2. 性别

女性是GD患者中的主要发病人群,女性的患病率是男性的4~7倍。一项队列研究显示,男性与ATD治疗失败具有显著相关性,并且男性在药物治疗后效果更差,缓解率只有19.6%,而女性缓解率有40% [4] 。一项包含了294例首次诊断GD患者的回顾性研究发现,男性是GD复发的独立危险因素,在ATD停用1年内以及5年随访时间内,男性甲亢的复发率明显高于女性 [8] 。而另一项纳入了54项试验、7595例参与者的系统评价及Meta分析则发现,性别与停止ATD治疗后甲亢的复发没有显著相关性 [6] 。Tun [9] 等也得出了相同的结论。因此,性别与药物治疗后GD复发风险的关系仍有待验证。

2.3. 吸烟

吸烟是很多疾病发病和预后的重要危险因素。吸烟可影响甲状腺的免疫状态,进而增加AITD的风险和严重程度,尤其是GD [10] 。Kim [11] 等人研究显示,与不吸烟患者相比,吸烟患者GD的发病风险增加(HR = 1.4)。2013年的一项研究发现,吸烟是GD复发的一个强有力预测指标 [12] 。一项双盲前瞻性随机研究发现,吸烟是ATD治疗后甲亢复发的独立危险因素 [13] 。Quadbeck [14] 等人的研究也发现,吸烟患者的复发率明显高于非吸烟者。而来自瑞典北部的一项观察性回顾性研究发现,既往吸烟者5年后的GD缓解率高于当前吸烟者或非吸烟者(85.7% vs 55.8% vs 50.5%),表示既往吸烟可以防止GD复发,但是当前吸烟并不能预测疾病的复发。这一保护作用值得进一步研究 [15] 。总之,吸烟是Graves甲亢的危险因素,作为一个明确的可控因素,建议患者应尽早戒烟。

2.4. 压力

导致GD发病的因素有很多,其中压力也被认为是其发病的重要因素。早在1825年,应激性生活事件与GD发病之间的关系就被首次报道 [16] 。2015年的一项前瞻性研究共纳入了58名GD患者,他们接受ATD治疗,并在停药后随访至少5年,然后将患者分为缓解组、恶化组和复发组三组。最终结果显示,所有经历过病情加重或复发的患者都有经历过压力事件,并且压力事件的发生总数与患者的复发次数显著相关(P < 0.001) [17] 。而Ceyhan [18] 等人的研究也发现,GD患者中负面生活事件的发生数量明显高于健康对照组。Xander [19] 等研究报道,与年龄一样,压力也被认为是GD病情严重程度的主要决定因素。因此,虽然压力触发GD的机制目前尚不清楚,但可以知道的是,压力的管理可以有效的减少疾病的复发。

2.5. 失眠

Weng [20] 等人的研究表明,GD发病时出现失眠与停药后较高的复发风险相关,通过调整混杂因素后发现失眠仍具有显著相关性,复发风险大约为3倍,具体机制尚不清楚,但表明了睡眠质量的恢复对人体的神经免疫系统的重要性。一项对300名患者进行的为期6年的前瞻性研究显示 [21] ,积极的应对方式和社会支持有利于改善GD患者的康复。然而,目前相关的研究较少,有待更多的研究进一步的验证改善睡眠质量对GD复发的影响。

2.6. 甲状腺肿

甲状腺肿是Graves甲亢常见的临床表现之一。一项队列研究发现,较大的甲状腺肿与ATD治疗失败具有显著相关性,虽然在考虑到年龄和性别的差异后,这种相关性变得并不显著 [4] 。Liu [7] 等进行的一项前瞻性研究表明,甲状腺肿的大小是药物治疗后甲亢复发的危险因素,停药时甲状腺更肿大的患者复发率更高,但诊断时较大的甲状腺肿和较高的复发率之间没有显著统计学差异。台湾的一项前瞻性研究也证实了这一结论 [12] 。来自南京的一项系统评价和荟萃分析也发现,GD诊断时甲状腺肿大或甲状腺体积增大是ATD治疗后复发的危险因素 [22] 。

2.7. 促甲状腺激素受体抗体(TSH Receptor Antibody, TRAb)

TRAb是GD的特征性自身抗体,其通过激活TSH受体,刺激甲状腺细胞,导致甲状腺激素产生过量,从而引起甲亢。TRAb对GD的诊断具有较高的敏感性和特异性,也常作为ATD治疗停药和预测复发的指标。英国的一项前瞻性队列研究发现,GD诊断时的TRAb水平与循环中甲状腺激素和复发风险呈正相关,该研究还发现年龄可以影响TRAb对甲状腺功能和复发风险的影响,这种风险与年轻患者有关,而与老年患者无关 [3] 。一项观察性研究通过随访观察初诊GD患者停止硫酰胺类药物治疗后四年内GD的复发情况,发现GD诊断时以及停止ATD治疗时的TRAb高滴度与较高的复发风险相关 [9] 。Li [23] 等人的研究也得到了相同的结论。Cappelli [24] 等人进行的一项为期120个月的前瞻性研究报道,TRAb滴度在甲亢诊断时、ATD治疗6个月时或在6个月时的下降率和ATD治疗停药时甲亢预后的预测因子。故TRAb是药物治疗后GD复发的重要影响因素之一。

2.8. 药物治疗方案

ATD治疗是我国甲亢首选的治疗方法,目前常用的ATD方案有两种:滴定法、阻断–替代法 [25] [26] 。滴定法是指ATD的剂量随着时间改变逐渐被调整至维持甲状腺功能正常状态的最小剂量。阻断替代法是使用高剂量的ATD同时联合替代剂量的左旋甲状腺素。一项纳入了20项研究共3242例患者的荟萃分析发现,阻断替代方案停药后GD复发率比滴定方案低,而ATD治疗的时间与复发率之间没有相关性 [22] 。Razvi [27] 等的研究认为,阻断替代方案是治疗Graves病的首选治疗方法,尤其是对于患有甲状腺眼病、治疗期间甲状腺功能波动以及无法定期进行血液检测的患者。但Vaidya [28] 等人进行的一项针对450名GD患者的回顾性观察研究发现,没有证据表明阻断替代方案能使患者甲状腺功能更稳定。且2010年的一项系统回顾显示,阻断替代方案和滴定方案两组的复发率相似,且滴定方案的副作用更少 [25] ,同时,来自英国的一项队列研究表明,药物治疗失败率在阻断替代组明显高于滴定组,分别为46.8%、29.9% [29] 。因此,具体选择哪种治疗药物治疗方案应根据患者情况个体化制定。

2.9. 甲状腺功能

甲状腺激素(Thyroid hormone, TH)主要由三碘甲腺原氨酸(Triiodothyronine, T3)和四碘甲腺原氨酸(Tetraiodothyronine, T4)组成,其中T3是生物活性形式,且TH的水平与GD的病情发展和预后存在一定关系。研究发现,高水平的TH是甲亢复发的独立危险因素 [6] [30] 。Liu [31] 等研究表明,高水平的TH通过B细胞激活因子的过度表达促进GD的复发,并且发现GD患者的血清B细胞激活因子的水平与FT3、FT4以及TRAb水平呈正相关。来自2021年的一篇系统综述发现,ATD停药4周后低TSH水平与GD患者较高的复发率有关,提示在ATD停药后的短时间内测量TSH水平对预测GD的短期复发可能具有重要意义 [32] 。一项长期随访的前瞻性随机临床试验,通过评估第二次ATD治疗后的长期缓解率发现,治疗停药时TSH正常参考范围高值或轻度升高时,复发的风险比降低 [33] 。一项Mete分析报道,GD诊断时FT3或FT4水平较高,停药后的复发率越高 [22] 。多个研究也得到的相同的结论 [24] [34] 。并且Park [35] 等研究显示,ATD停药时较低的T3/FT4比值与与ATD治疗后较低的GD复发率独立相关。但也有研究表明,FT3或FT4水平并不能预测ATD治疗后GD的复发 [9] [15] 。

2.10. 维生素D

维生素D是一种类固醇激素,其主要作用是调节骨骼代谢并维持体内钙、磷的平衡 [36] 。目前,维生素D的免疫调节作用已被证实,许多研究报道了维生素D缺乏与不同的自身免疫性疾病之间的相关性,包括甲状腺自身免疫性疾病 [37] ,而维生素D与AITD之间的联系仍存在争议。GD是常见的AITD,多个研究发现,GD患者中维生素D水平较低 [38] [39] [40] 。Yasuda [41] 等人观察到,与正常人群和GD缓解患者相比,未缓解组GD患者血清25(OH)D显著降低(18.6 ± 5.3 vs 18.2 ± 5.1 vs 14.5 ± 2.9 ng/ml, P < 0.0005)。也有研究不支持这一结论 [42] 。但是,2015年的两项荟萃分析表明,维生素D缺乏是GD的危险因素 [43] [44] 。Ahn [34] 等人随访了143名接受ATD治疗的GD患者停药1年后复发情况,研究进一步发现,低水平的血清25(OH)D与更高的GD复发率相关,血清25(OH)D可能是预测ATD治疗停药后GD复发的独立危险因素。Cho [45] 等人的研究表明,补充维生素D并不能防止GD的复发,但当补充维生素D达到适当的水平时,患者的复发被推迟。

3. 遗传因素

大多数研究表明,GD是由于遗传和非遗传因素之间的复杂相互作用,导致甲状腺抗原的免疫耐受丧失,引发持续的自身免疫反应。其中遗传因素占主导作用,对双胞胎的一项队列研究表明,遗传因素对GD的贡献可高达80% [46] 。非遗传因素在诱发遗传易感个体起病中也发挥一定作用。一些免疫调节基因被发现参与了GD的发展,包括人类白细胞抗原(Human leukocyte antigen, HLA)、CD40、细胞毒性T淋巴细胞相关因子4(Cytotoxic T-lymphocyte-associated factor 4, CTLA-4)、非受体型蛋白酪氨酸磷酸酶22 (Protein tyrosine phosphatase, non-receptor type 22, PTPN22)和Fc受体样蛋白3 (Fc receptor-like protein, FCRL3) [47] 。HLA复合体位于6号染色体断臂上,主要分为三类:I类、II类、III类。HLA基因具有高度多态性,因此成为疾病易感性的候选基因。一项来自白种人的前瞻性队列研究发现,HLA的亚型DRB1*03、DQA1*05和DQB1*02是GD复发的强预测因子 [48] 。然而,另一项关于白种人的研究没有观察到HLA DQA1*05与GD复发之间的相关性 [49] 。导致这一结果不一致的原因可能是研究规模大小不同以及随访时间不同。

在易感基因中,CD40和CTLA-4基因被认为参与GD的发展 [50] [51] [52] 。CD40是肿瘤坏死因子受体家族的成员,主要在B细胞和其他抗原提呈细胞中表达 [53] 。来自台湾的一项随访研究发现,4个共刺激基因(传入:CTLA-4、CD28、ICOS;传出:CD40)的四个SNPs与抗甲状腺药物停药后的疾病复发显著相关。在传入信号中,CTLA-4基因的单核苷酸多态性(SNP)外显子1 + 49A/G(rs231775)是GD复发的风险等位基因;而在传出信号中,CD40的3个风险等位基因(rs745307, rs11569309, rs3765457)与GD复发有关。因此,结合CTLA-4和CD40的风险等位基因可提高复发的可预测性 [12] 。CTLA-4是T细胞介导的免疫反应的主要负调控因子。Wang等人的研究发现,CTLA-4外显子1中第49位的A/G SNP与停药后GD复发有关 [54] ,并在后续的研究中进一步证实了这一结论 [55] 。土耳其的一项研究也得到了相似的结果,他们报道了CTLA-4分子的A/G多态性与GD有关,其中GG基因型与AA基因型相比,GD复发的风险显著增加 [56] 。而Kim等人没有发现GD的复发与疾病易感基因CD40和CTLA-4之间的联系。可能与研究人群数量、种族等因素有关 [57] 。

PTPN22是一种强大的T细胞激活抑制剂。PTPN22多态性主要为:R620W或1858C/T (rs2476601)、启动子区-1123G/C (rs2488457)和内含子19 (rs3789607) [58] 。Vos [48] 等人的一项在欧洲人群的研究中发现了PTPN22 (rs2476601)是GD患者复发的一个预测因子,并将起与其他因素一起被纳入了GD治疗后复发事件(Graves’ recurrent events after therapy, GREAT)评分标准。

除此之外,miRNAs作为一个非编码的小RNA分子也被认为参与GD的发病。Liu [23] 等人通过招募103例新诊断GD并接受ATD (甲巯咪唑,MMI)治疗的患者,研究了循环中miRNA-346与患者停药后复发的关系,结果显示,GD诊断和停药时miRNA-346水平下降均是GD停药后复发的独立危险因素。但该研究样本量小,需要更多的研究来支持这一结论。

4. 总结

综上所述,ATD治疗作为目前我国GD患者首选的治疗方案,停药后复发率高,年龄、性别、吸烟、压力、失眠、甲状腺肿、TRAb、药物治疗方案、甲状腺功能、维生素D、基因等因素均可能影响GD的复发。因此,在为每个GD患者选择合适的治疗方法时,应考虑到复发的风险预测因素。

参考文献

[1] Wiersinga, W.M., Poppe, K.G. and Effraimidis, G. (2023) Hyperthyroidism: Aetiology, Pathogenesis, Diagnosis, Man-agement, Complications, and Prognosis. The Lancet Diabetes Endocrinology, 11, 282-298.
https://doi.org/10.1016/S2213-8587(23)00005-0
[2] Kahaly, G.J. (2020) Management of Graves Thyroidal and Extrathyroidal Disease: An Update. The Journal of Clinical Endocrinology and Metabolism, 105, 3704-3720.
https://doi.org/10.1210/clinem/dgaa646
[3] Bano, A., Gan, E., Addison, C., Narayanan, K., Weaver, J.U., Tsat-lidis, V. and Razvi, S. (2019) Age May Influence the Impact of TRAbs on Thyroid Function and Relapse-Risk in Pa-tients with Graves Disease. The Journal of Clinical Endocrinology and Metabolism, 104, 1378-1385.
https://doi.org/10.1210/jc.2018-01738
[4] Allahabadia, A., Daykin, J., Holder, R.L., Sheppard, M.C., Gough, S.C. and Franklyn, J.A. (2000) Age and Gender Predict the Outcome of Treatment for Graves’ Hyperthyroidism. The Journal of Clinical Endocrinology and Metabolism, 85, 1038-1042.
https://doi.org/10.1210/jcem.85.3.6430
[5] Suzuki, N., Noh, J.Y., Yoshimura, R., Mikura, K., Kinoshita, A., Su-zuki, A., Mitsumatsu, T., Hoshiyama, A., Fukushita, M., Matsumoto, M., Yoshihara, A., Watanabe, N., Sugino, K. and Ito, K. (2021) Does Age or Sex Relate to Severity or Treatment Prognosis in Graves’ Disease? Thyroid: Official Journal of the American Thyroid Association, 31, 1409-1415.
https://doi.org/10.1089/thy.2020.0881
[6] Struja, T., Feh-lberg, H., Kutz, A., Guebelin, L., Degen, C., Mueller, B. and Schuetz, P. (2017) Can We Predict Relapse in Graves’ Disease? Results from a Systematic Review and Meta-Analysis. European Journal of Endocrinology, 176, 87-97.
https://doi.org/10.1530/EJE-16-0725
[7] Liu, X., Shi, B. and Li, H. (2015) Valuable Predictive Features of Re-lapse of Graves’ Disease after Antithyroid Drug Treatment. Annales d’endocrinologie, 76, 679-683.
https://doi.org/10.1016/j.ando.2015.08.004
[8] Magri, F., Zerbini, F., Gaiti, M., Capelli, V., Ragni, A., Rotondi, M. and Chiovato, L. (2016) Gender Influences the Clinical Presentation and Long-Term Outcome of Graves Disease. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 22, 1336-1342.
https://doi.org/10.4158/EP161350.OR
[9] Tun, N.N., Beckett, G., Zammitt, N.N., Strachan, M.W., Seckl, J.R. and Gibb, F.W. (2016) Thyrotropin Receptor Antibody Levels at Diagnosis and after Thionamide Course Predict Graves’ Disease Relapse. Thyroid: Official Journal of the American Thyroid Association, 26, 1004-1009.
https://doi.org/10.1089/thy.2016.0017
[10] Antonelli, A., Ferrari, S.M., Ragusa, F., Elia, G., Paparo, S.R., Ruffilli, I., Patrizio, A., Giusti, C., Gonnella, D., Cristaudo, A., Foddis, R., Shoenfeld, Y. and Fallahi, P. (2020) Graves’ Disease: Epidemiology, Genetic and Environmental Risk Factors and Viruses. Best Practice & Research Clinical Endocrinology & Metabolism, 34, Article ID: 101387.
https://doi.org/10.1016/j.beem.2020.101387
[11] Kim, H.J., Hong, G., Hwang, J., Kazmi, S.Z., Kim, K.H., Kang, T., Swan, H., Cha, J., Kim, Y.S., Kim, K.U., Hann, H.J. and Ahn, H.S. (2023) Familial Risk of Graves Disease among First-Degree Relatives and Interaction with Smoking: A Population-Based Study. The Journal of Clinical Endocrinology and Metabolism, 108, e502-e511.
https://doi.org/10.1210/clinem/dgad083
[12] Wang, P.W., Chen, I.Y., Juo, S.H., Hsi, E., Liu, R.T. and Hsieh, C.J. (2013) Genotype and Phenotype Predictors of Relapse of Graves’ Disease after Antithyroid Drug Withdrawal. European Thyroid Journal, 1, 251-258.
https://doi.org/10.1159/000342621
[13] Glinoer, D., de Nayer, P., Bex, M. and Belgian Collaborative Study Group on Graves’ Disease (2001) Effects of L-Thyroxine Administration, TSH-Receptor Antibodies and Smoking on the Risk of Recurrence in Graves’ Hyperthyroidism Treated with Antithyroid Drugs: A Double-Blind Prospective Randomized Study. European Journal of Endocrinology, 144, 475-483.
https://doi.org/10.1530/eje.0.1440475
[14] Quadbeck, B., Roggenbuck, U., Janssen, O.E., Hahn, S., Mann, K., Hoermann, R. and Basedow Study Group (2006) Impact of Smoking on the Course of Graves’ Disease after Withdrawal of Antithyroid Drugs. Experimental and Clinical Endocri-nology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 114, 406-411.
https://doi.org/10.1055/s-2006-924065
[15] Mohlin, E., Filipsson Nyström, H. and Eliasson, M. (2014) Long-Term Prognosis after Medical Treatment of Graves’ Disease in a Northern Swedish Population 2000-2010. Euro-pean Journal of Endocrinology, 170, 419-427.
https://doi.org/10.1530/EJE-13-0811
[16] Rosch, P.J. (1993) Stressful Life Events and Graves’ Disease. The Lan-cet (London, England), 342, 566-567.
https://doi.org/10.1016/0140-6736(93)91402-8
[17] Vita, R., Lapa, D., Trimarchi, F. and Benvenga, S. (2015) Stress Triggers the Onset and the Recurrences of Hyperthyroidism in Patients with Graves’ Disease. Endocrine, 48, 254-263.
https://doi.org/10.1007/s12020-014-0289-8
[18] Topcu, C.B., Celik, O. and Tasan, E. (2012) Effect of Stressful Life Events on the Initiation of Graves’ Disease. International Journal of Psychiatry in Clinical Practice, 16, 307-311.
https://doi.org/10.3109/13651501.2011.631016
[19] Vos, X.G., Smit, N., Endert, E., Brosschot, J.F., Tijssen, J.G. and Wiersinga, W.M. (2009) Age and Stress as Determinants of the Severity of Hyperthyroidism Caused by Graves’ Disease in Newly Diagnosed Patients. European Journal of Endocrinology, 160, 193-199.
https://doi.org/10.1530/EJE-08-0573
[20] Weng, H., Tian, W.B., Xiao, Z.D. and Xu, L. (2023) Prediction for Re-currence Following Antithyroid Drug Therapy for Graves’ Hyperthyroidism. Archives of Endocrinology and Metabolism, 67, e000609.
https://doi.org/10.20945/2359-3997000000609
[21] Chen, D.Y., Schneider, P.F., Zhang, X.S., He, Z.M., Jing, J. and Chen, T.H. (2012) Mental Health Status and Factors That Influence the Course of Graves’ Disease and Antithyroid Treatments. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 120, 524-528.
https://doi.org/10.1055/s-0032-1323807
[22] Shi, H., Sheng, R., Hu, Y., Liu, X., Jiang, L., Wang, Z. and Cui, D. (2020) Risk Factors for the Relapse of Graves’ Disease Treated with Antithyroid Drugs: A Systematic Review and Me-ta-Analysis. Clinical Therapeutics, 42, 662-675.
https://doi.org/10.1016/j.clinthera.2020.01.022
[23] Li, J., Cai, Y., Sun, X., Yao, D. and Xia, J. (2017) MiR-346 and TRAb as Predicative Factors for Relapse in Graves’ Disease within One Year. Hormone and Metabolic Research, 49, 180-184.
https://doi.org/10.1055/s-0043-100116
[24] Cappelli, C., Gandossi, E., Castellano, M., Pizzocaro, C., Agosti, B., Delbarba, A., Pirola, I., De Martino, E. and Rosei, E.A. (2007) Prognostic Value of Thyrotropin Receptor Antibodies (TRAb) in Graves’ Disease: A 120 Months Prospective Study. Endocrine Journal, 54, 713-720.
https://doi.org/10.1507/endocrj.k06-069
[25] Abraham, P., Avenell, A., McGeoch, S.C., Clark, L.F. and Bevan, J.S. (2010) Antithyroid Drug Regimen for Treating Graves’ Hyperthyroidism. The Cochrane Database of Systematic Reviews, 2010, CD003420.
https://doi.org/10.1002/14651858.CD003420.pub4
[26] Li, J., Bai, L., Wei, F., Wei, M., Xiao, Y., Yan, W. and Wei, J. (2021) Effect of Addition of Thyroxine in the Treatment of Graves’ Disease: A Systematic Review. Frontiers in Endocrinology, 11, Article ID: 560157.
https://doi.org/10.3389/fendo.2020.560157
[27] Razvi, S., Vaidya, B., Perros, P. and Pearce, S.H. (2006) What Is the Evidence behind the Evidence-Base? The Premature Death of Block-Replace Antithyroid Drug Regimens for Graves’ Disease. European Journal of Endocrinology, 154, 783-786.
https://doi.org/10.1530/eje.1.02169
[28] Vaidya, B., Wright, A., Shuttleworth, J., Donohoe, M., Warren, R., Brooke, A., Gericke, C.A. and Ukoumunne, O.C. (2014) Block & Replace Regime versus Titration Regime of Antithyroid Drugs for the Treatment of Graves’ Disease: A Retrospective Observational Study. Clinical Endocrinology, 81, 610-613.
https://doi.org/10.1111/cen.12478
[29] Hussain, Y.S., Hookham, J.C., Allahabadia, A. and Balasubramanian, S.P. (2017) Epidemiology, Management and Outcomes of Graves’ Disease-Real Life Data. Endocrine, 56, 568-578.
https://doi.org/10.1007/s12020-017-1306-5
[30] Liu, L., Lu, H., Liu, Y., Liu, C. and Xun, C. (2016) Predicting Relapse of Graves’ Disease Following Treatment with Antithyroid Drugs. Experimental and Therapeutic Medicine, 11, 1453-1458.
https://doi.org/10.3892/etm.2016.3058
[31] Liu, S., Miao, J.J., Zhou, X., Sun, Q. and Mao, X.M. (2022) High Levels of Thyroid Hormones Promote Recurrence of Graves’ Dis-ease via Overexpression of B-Cell-Activating Factor. Journal of Clinical Laboratory Analysis, 36, e24701.
https://doi.org/10.1002/jcla.24701
[32] Subekti, I., Kartiko, G.J., Suhardi, Z.F., Muhadi and Wisnu, W. (2021) Se-rum TSH Level as Predictor of Graves’ Disease Recurrence Following Antithyroid Drug Withdrawal: A Systematic Re-view. PLOS ONE, 16, e0245978.
https://doi.org/10.1371/journal.pone.0245978
[33] Liu, X., Qiang, W., Liu, X., Liu, L., Liu, S., Gao, A., Gao, S. and Shi, B. (2015) A Second Course of Antithyroid Drug Therapy for Recurrent Graves’ Disease: An Experience in Endocrine Practice. European Journal of Endocrinology, 172, 321-326.
https://doi.org/10.1530/EJE-14-0704
[34] Ahn, H.Y., Chung, Y.J. and Cho, B.Y. (2017) Serum 25-Hydroxyvitamin D Might Be an Independent Prognostic Factor for Graves Disease Recurrence. Medicine, 96, e7700.
https://doi.org/10.1097/MD.0000000000007700
[35] Park, S., Song, E., Oh, H.S., Kim, M., Jeon, M.J., Kim, W.G., Kim, T.Y., Shong, Y.K., Kim, D.M. and Kim, W.B. (2019) When Should Antithyroid Drug Therapy to Reduce the Relapse Rate of Hyperthyroidism in Graves’ Disease Be Discontinued? Endocrine, 65, 348-356.
https://doi.org/10.1007/s12020-019-01987-w
[36] Kim, D. (2017) The Role of Vitamin D in Thyroid Diseases. In-ternational Journal of Molecular Sciences, 18, Article No. 1949.
https://doi.org/10.3390/ijms18091949
[37] Kivity, S., Agmon-Levin, N., Zisappl, M., Shapira, Y., Nagy, E.V., Dankó, K., Szekanecz, Z., Langevitz, P. and Shoenfeld, Y. (2011) Vitamin D and Autoimmune Thyroid Diseases. Cellular & Molecular Immunology, 8, 243-247.
https://doi.org/10.1038/cmi.2010.73
[38] Planck, T., Shahida, B., Malm, J. and Manjer, J. (2018) Vitamin D in Graves Disease: Levels, Correlation with Laboratory and Clinical Parameters, and Genetics. European Thyroid Journal, 7, 27-33.
https://doi.org/10.1159/000484521
[39] Ma, J., Wu, D., Li, C., Fan, C., Chao, N., Liu, J., Li, Y., Wang, R., Miao, W., Guan, H., Shan, Z. and Teng, W. (2015) Lower Serum 25-Hydroxyvitamin D Level Is Associated with 3 Types of Autoimmune Thyroid Diseases. Medicine, 94, e1639.
https://doi.org/10.1097/MD.0000000000001639
[40] Zhang, H., Liang, L. and Xie, Z. (2015) Low Vitamin D Status Is Associated with Increased Thyrotropin-Receptor Antibody Titer in Graves Disease. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 21, 258-263.
https://doi.org/10.4158/EP14191.OR
[41] Yasuda, T., Okamoto, Y., Hamada, N., Miyashita, K., Takaha-ra, M., Sakamoto, F., Miyatsuka, T., Kitamura, T., Katakami, N., Kawamori, D., Otsuki, M., Matsuoka, T.A., Kaneto, H. and Shimomura, I. (2013) Serum Vitamin D Levels Are Decreased in Patients without Remission of Graves’ Disease. Endocrine, 43, 230-232.
https://doi.org/10.1007/s12020-012-9789-6
[42] Ke, W., Sun, T., Zhang, Y., He, L., Wu, Q., Liu, J. and Zha, B. (2017) 25-Hydroxyvitamin D Serum Level in Hashimoto’s Thyroiditis, but Not Graves’ Disease Is Relatively Deficient. Endocrine Journal, 64, 581-587.
https://doi.org/10.1507/endocrj.EJ16-0547
[43] Wang, J., Lv, S., Chen, G., Gao, C., He, J., Zhong, H. and Xu, Y. (2015) Meta-Analysis of the Association between Vitamin D and Autoimmune Thyroid Disease. Nutrients, 7, 2485-2498.
https://doi.org/10.3390/nu7042485
[44] Xu, M.Y., Cao, B., Yin, J., Wang, D.F., Chen, K.L. and Lu, Q.B. (2015) Vitamin D and Graves’ Disease: A Meta-Analysis Update. Nutrients, 7, 3813-3827.
https://doi.org/10.3390/nu7053813
[45] Cho, Y.Y. and Chung, Y.J. (2020) Vitamin D Supplementation Does Not Prevent the Recurrence of Graves’ Disease. Scientific Reports, 10, Article No. 16.
https://doi.org/10.1038/s41598-019-55107-9
[46] Brix, T.H., Kyvik, K.O., Christensen, K. and Hegedüs, L. (2001) Evidence for a Major Role of Heredity in Graves’ Disease: A Population-Based Study of Two Danish Twin Cohorts. The Journal of Clinical Endocrinology and Metabolism, 86, 930-934.
https://doi.org/10.1210/jcem.86.2.7242
[47] Marinò, M., Latrofa, F., Menconi, F., Chiovato, L. and Vitti, P. (2015) Role of Genetic and Non-Genetic Factors in the Etiology of Graves’ Disease. Journal of Endocrinological Investigation, 38, 283-294.
https://doi.org/10.1007/s40618-014-0214-2
[48] Vos, X.G., Endert, E., Zwinderman, A.H., Tijssen, J.G. and Wiersinga, W.M. (2016) Predicting the Risk of Recurrence before the Start of Antithyroid Drug Therapy in Patients with Graves’ Hyperthyroidism. The Journal of Clinical Endocrinology and Metabolism, 101, 1381-1389.
https://doi.org/10.1210/jc.2015-3644
[49] Badenhoop, K., Donner, H., Braun, J., Siegmund, T., Rau, H. and Usadel, K.H. (1996) Genetic Markers in Diagnosis and Prediction of Relapse in Graves’ Disease. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Associ-ation, 104, 98-100.
https://doi.org/10.1055/s-0029-1211712
[50] Dittmar, M. and Kahaly, G.J. (2005) Immunoregulatory and Suscep-tibility Genes in Thyroid and Polyglandular Autoimmunity. Thyroid: Official Journal of the American Thyroid Associa-tion, 15, 239-250.
https://doi.org/10.1089/thy.2005.15.239
[51] Tomer, Y., Concepcion, E. and Greenberg, D.A. (2002) A C/T Sin-gle-Nucleotide Polymorphism in the Region of the CD40 Gene Is Associated with Graves’ Disease. Thyroid: Official Journal of the American Thyroid Association, 12, 1129-1135.
https://doi.org/10.1089/105072502321085234
[52] Park, Y.J., Chung, H.K., Park, D.J., Kim, W.B., Kim, S.W., Koh, J.J. and Cho, B.Y. (2000) Polymorphism in the Promoter and Exon 1 of the Cytotoxic T Lymphocyte Antigen-4 Gene Associated with Autoimmune Thyroid Disease in Koreans. Thyroid: Official Journal of the American Thyroid As-sociation, 10, 453-459.
https://doi.org/10.1089/thy.2000.10.453
[53] Chatzigeorgiou, A., Lyberi, M., Chatzilymperis, G., Nezos, A. and Kamper, E. (2009) CD40/CD40L Signaling and Its Implication in Health and Disease. BioFactors (Oxford, England), 35, 474-483.
https://doi.org/10.1002/biof.62
[54] Wang, P.W., Liu, R.T., Juo, S.H., Wang, S.T., Hu, Y.H., Hsieh, C.J., Chen, M.H., Chen, I.Y. and Wu, C.L. (2004) Cytotoxic T Lymphocyte-Associated Molecule-4 Polymorphism and Re-lapse of Graves’ Hyperthyroidism after Antithyroid Withdrawal. The Journal of Clinical Endocrinology and Metabolism, 89, 169-173.
https://doi.org/10.1210/jc.2003-030854
[55] Wang, P.W., Chen, I.Y., Liu, R.T., Hsieh, C.J., Hsi, E. and Juo, S.H. (2007) Cytotoxic T Lymphocyte-Associated Molecule-4 Gene Polymorphism and Hyperthyroid Graves’ Disease Relapse after Antithyroid Drug Withdrawal: A Follow-Up Study. The Journal of Clinical Endocrinology and Metabolism, 92, 2513-2518.
https://doi.org/10.1210/jc.2006-2761
[56] Sahin, M., Erdogan, M.F. and Erdogan, G. (2005) Cytotoxic T Lym-phocyte-Associated Molecule-4 Polymorphisms in Turkish Graves’ Disease Patients and Association with Probability of Remission after Antithyroid Therapy. European Journal of Internal Medicine, 16, 352-355.
https://doi.org/10.1016/j.ejim.2005.06.007
[57] Kim, K.W., Park, Y.J., Kim, T.Y., Park, D.J., Park, K.S. and Cho, B.Y. (2007) Susceptible Alleles of the CD40 and CTLA-4 Genes Are Not Associated with the Relapse after Antithyroid Withdrawal in Graves’ Disease. Thyroid: Official Journal of the American Thyroid Association, 17, 1229-1234.
https://doi.org/10.1089/thy.2007.0011
[58] Bufalo, N.E., Dos Santos, R.B., Rocha, A.G., Teodoro, L., Romaldini, J.H. and Ward, L.S. (2021) Polymorphisms of the Genes CTLA4, PTPN22, CD40, and PPARG and Their Roles in Graves’ Disease: Susceptibility and Clinical Features. Endocrine, 71, 104-112.
https://doi.org/10.1007/s12020-020-02337-x