宫颈高级别鳞状上皮内病变发生相关因素的研究进展
Research Progress on Related Factors of Cervical High-Grade Squamous Intraepithelial Lesions
摘要: 宫颈癌前病变被定义为宫颈的高级别鳞状上皮内病变(HSIL),如不积极治疗,可进一步发展为宫颈癌。因此,HSIL的早期发现及治疗对抑制宫颈癌的发生至关重要。宫颈高级别鳞状上皮内病变发生的影响因素多种多样,包括人乳头瘤病毒感染、女性生殖道菌群稳态失调、吸烟、胎次、性传播感染史、年龄、血糖及其他社会因素等。本文对宫颈高级别鳞状上皮内病变发生的相关因素进行综述,以期为宫颈高级别病变患者的管理及个性化治疗提供一定参考。
Abstract: Precancerous lesions are defined as high-grade squamous intraepithelial lesions (HSIL) of the cervix that can progress to cervical cancer if left untreated. Therefore, early detection and treatment of HSIL are very important to inhibit the occurrence of cervical cancer. There are many factors influ-encing the occurrence of cervical high-grade squamous intraepithelial lesion, including human pap-illomavirus infection, female reproductive tract flora homeostasis disorder, smoking, parity, history of sexually transmitted infections, age, blood glucose and other social factors. This article reviews the related factors of cervical high-grade squamous intraepithelial lesion, in order to provide some reference for the management and personalized treatment of patients with cervical high-grade squamous intraepithelial lesion.
文章引用:王红颖, 陈志芳. 宫颈高级别鳞状上皮内病变发生相关因素的研究进展[J]. 临床医学进展, 2023, 13(12): 20536-20542. https://doi.org/10.12677/ACM.2023.13122888

1. 引言

宫颈癌是女性最常见的恶性肿瘤之一。2020年,全球估计有604,127例宫颈癌病例和341,831例死亡病例,相应的年龄标准化发病率为每10万妇女13.3例/年,死亡率为每10万妇女年7.2例/年 [1] 。但宫颈癌的形成及发展是个漫长的过程,一般从癌前病变到宫颈癌的发生大约需要20~30年的时间,因此宫颈癌前病变的诊疗规范也成为了临床医生的关注重点。2012年LAST建议将CIN分类改为二级分类法:低级别鳞状上皮内病变(LSIL/CIN1)和高级别鳞状上皮内病变(HSIL/CIN2, CIN3) [2] 。近年来,越来越多的证据证实LSIL和HISL是两种不同且不连续的生物过程,后者是肿瘤细胞克隆增殖的癌前病变,而前者是HPV感染后仍具有正常的分层上皮结构 [3] [4] 。在Loopik等人的一篇meta分析报告中指出,在保守治疗的CIN1患者中,总体消退率和持续率分别为60% (95% CI = 55~65)和25% (95% CI = 20~30),发展为CIN2+的进展率为11% (95% CI = 8~13),发展为CIN3+的进展率为2% (95% CI = 1~3) [5] 。虽然大部分低级别鳞状上皮内病变可以消退,但仍有一部分可能会进展为高级别上皮内病变,甚至进展为宫颈癌,如果诊断不明确或者不及时,将延迟最佳治疗时机。此外,在Sykes PH等人的一项临床研究中证实,超过一半的25岁以下宫颈上皮内瘤变2级女性将在24个月内消退为宫颈上皮内瘤变1级或恢复正常,而无需有创性治疗 [6] 。因为过度的诊断和治疗,不仅会给女性带来生理和心理负担,还会造成不良妊娠结局 [7] [8] [9] 。因此,正确认识HSIL和LSIL对于临床管理至关重要,故本文对宫颈高级别鳞状上皮内病变发生的相关危险因素进行系列阐述,旨在为发生宫颈病变的患者管理及个性化治疗提供一定参考。

2. HPV病毒感染与HSIL

人乳头瘤病毒(HPV)感染是宫颈癌的主要原因。据报道,宫颈鳞状细胞癌中约95%与HPV感染相关 [10] 。人乳头瘤病毒是瘤病毒亚组中的一种DNA病毒,感染肛门生殖道的HPV类型约有30种,其中被归类为“高风险”类型的HPV有15种(包括16,18,31,33,35,39,45,51,52,56,58,59,68,73和82),与高级别病变和浸润性宫颈癌有关 [11] 。11种HPV类型被归类为“低风险”HPV类型(包括6,11,40,42,43,44,54,61,70和81),主要与生殖器疣和良性宫颈病变有关 [12] 。Luo Q等研究发现,宫颈高级别鳞状上皮内病变患者中最常见的HPV感染类型是HPV-16,其次是HPV-52,HPV-58和HPV-33 [13] 。Alarcón-Romero LDC等人的研究也证实,在患有HSIL的女性中,HPV-16 (9.42%)和HPV-33 (5.07%)的患病率最高,年龄在35~44岁之间 [14] 。故在进行宫颈病变筛查时,还应考虑除HPV16/18以外的HPV类型感染,以早期发现宫颈病变并治疗。

根据有关前瞻性研究表示,多种HR-HPV类型在宫颈病变的发生中存在协同感染,感染多种HR-HPV类型往往会增加宫颈疾病的严重程度 [15] 。并且大多数学者认为HPV病毒载量与宫颈病变程度之间存在明显的相关性,即随着病毒载量的增加,宫颈病变的风险增加。但一项中国大型回顾性研究结果中显示,仅HPV16基因型中发现病毒载量有统计学意义,其他七种基因型(1/2/18/31/33/45/52)没有这种差异 [16] 。其他研究也证实,HPV病毒载量确实与宫颈病变CIN水平有关,但它需要反映在特定基因型中。如Li Y等人的研究表明,在感染HPV 16和18基因型中,不同宫颈病理分级的病毒载量存在显著差异(P < 0.05),相关系数分别为0.441和0.343。在感染HPV基因型 31、33、51、52、53和58中,慢性宫颈炎、CIN1、CIN2、CIN3的病毒载量差异有统计学意义(P < 0.05),相关系数分别为0.442、0.256、0.234、0.142、0.156和0.265。对于感染其他HPV基因型(HPV 6、11、26、35、39、45、56、59、66、73、81和82),不同宫颈病理分级的病毒载量差异无统计学意义 [17] 。除此之外,HR-HPV的持续感染也与宫颈上皮内病变有着紧密的联系,Ebisch RMF等人的研究表明,持续19个月HR-HPV感染女性的HSIL患病率为3.24%,与HR-HPV阴性女性中0.001%的患病率及HR-HPV感染清除女性的1.5% HSIL的患病率相比,有统计学意义 [18] 。

3. 女性阴道菌群环境与HSIL

越来越多的证据表明,与HPV感染增加相关的生殖道感染(如细菌性阴道病(BV)、解脲支原体、沙眼衣原体、白色念珠菌(VVC)、毛滴虫阴道炎(TV))被认为是宫颈恶性进展的病因学辅助因素 [19] [20] 。在没有特定病原体的情况下,非特异性宫颈炎症可能是高级别病变的辅助因素。阴道微生物群是一个复杂的生态系统,健康女性的阴道微生物群由200多种细菌组成,这个生态系统通常以乳酸杆菌属为主。乳酸杆菌能够产生许多保护性肽和代谢产物,如乳酸和其他酸性化合物,能够抑制致病菌的粘附和生长。当宫颈阴道微生物组的体内平衡被破坏时,会导致一种称为生态失调的病症。通过上皮屏障破坏、代谢失调、异常细胞增殖、基因组不稳定、慢性炎症和血管生成,进而促使恶性病变的发生 [21] [22] 。阴道乳酸杆菌在维持宫颈上皮屏障功能主要是通过维持低pH值和细菌素生成来阻止HPV进入基底角质形成细胞 [23] 。此外,相关研究表明,宫颈微生物群还会在宫颈癌发展过程中改变局部细胞因子表达,微生物和代谢特征有利于HPV的持久性存在,从而使个体面临更大的肿瘤疾病风险 [22] 。Ma Y等研究发现随着乳酸杆菌(尤其是脆乳杆菌)的逐渐消耗,微生物组的多样性增加与宫颈疾病的严重程度有关 [20] 。Long T等研究也证实与炎症阴性组相比,严重炎症患者细胞学异常发生率显著增加12.598倍,HSIL风险显著增加756.47倍 [24] 。总而言之,宫颈高级别病变与宫颈阴道微生物群免疫反应有关,需要控制阴道环境的稳态。

4. 吸烟与HSIL

吸烟是多种疾病的主要危险因素,包括癌症和免疫介导的炎症性疾病。烟草烟雾含有多种化学物质,包括大量活性氧和氮物质(ROS和RNS)等,这些化学物质会损害细胞和亚细胞靶标,如脂质、蛋白质和核酸。越来越多的证据支持吸烟引起的ROS及其产生的氧化应激在炎症和癌变中的关键作用 [25] 。吸烟是宫颈上皮内瘤变(CIN)的明确危险因素,一些研究表明,有吸烟史的CIN女性发生宫颈癌的风险要高得多 [26] 。Ozturk M等研究证明吸烟与HSIL的存在显著相关 [27] 。Du X等研究得出被动吸烟者发生HSIL的比例是非吸烟者的1.57倍,支持被动吸烟是HSIL发生的显着独立危险因素 [28] 。同时持续吸烟与一些不良结局相关,包括癌症复发增加、继发性恶性肿瘤风险增加、治疗结局不良和生活质量下降 [29] 。

5. 胎次与HSIL

Ephrem Dibisa K等人研究表明,产次 ≥ 5次的妇女发生宫颈癌前病变的风险是产次 < 5次妇女的2.4倍(AOR = 2.41 (95%CI: 1.23~4.75)) [30] 。另一项观察也证实,胎次 > 3次的妇女与宫颈癌前病变和癌症的发展有显着关联 [31] 。可能是多次分娩造成了宫颈上皮细胞损伤,同时怀孕期间激素水平较高导致慢性宫颈炎、宫颈鳞状上皮外翻等,从而促进了宫颈病变的发生。

6. 性传播感染与HSIL

与没有性传播感染史的女性相比,有性传播感染史的女性发生宫颈癌前病变的几率高出3.5倍(AOR = 3.46 (95%CI: 1.94~6.18)) [30] 。这可能是因为超过90%的宫颈病变均由HPV的持续感染发展而来,而性传播感染是有性伴侣的结果,拥有多个性伴侣会增加感染HPV的风险,故拥有多个性伴侣是宫颈癌前病变的危险因素。在性生活中,使用避孕套避免了交叉感染也降低了HPV感染的机会,这种屏障将病毒载量降低,从而使免疫系统更好的清除HPV病毒,以防止持续的HPV感染导致宫颈病变 [32] 。

7. HIV与HSIL

人类免疫缺陷病毒(HIV)感染会增加获得多种性传播感染疾病的风险。一篇综述中通过检索11项Meta分析和10项系统评价的数据,得出感染HIV的女性感染人乳头瘤病毒、进展为HSIL和ICC的风险将增加3~6倍。当他们接受cART最佳治疗并HIV病毒载量受到抑制至少2年时,这些风险可降低20%~30% [33] 。研究报道,人类免疫缺陷病毒(HIV)相关免疫缺陷对HPV自然病程有不利影响,与HPV感染的获得增加和持久性有关。HIV感染导致CD4+ T细胞的数量和功能下降,导致HPV感染率高,从而降低其自发消除的机会 [34] 。

8. 年龄与HSIL

HSIL的检出率因患者的年龄不同而异,不同等级宫颈病变患者的年龄分布存在明显差异。一项研究表明,HSIL的检出率在41~50岁人群中最高(32.37%) [35] 。在另一项研究中,HSIL+检出率在≤30岁年龄组最高(40.52%),在51~60岁年龄组最低(21.65%) [36] 。这可能是因为宫颈病变发生的主要因素为HR-HPV的持续性感染,而HPV患病率与年龄高度相关。年轻女性HPV感染率较高,但人体自身免疫机能随着年龄的增长而降低,清除病毒感染的能力随之下降,导致病毒持续性感染的机会增加,从而使宫颈病变发生的概率上升。

9. 血糖与HSIL

大量研究表明,葡萄糖水平升高与不良健康结果之间存在密切关联,包括高血压疾病、肾脏疾病、心脏疾病、代谢紊乱、和肿瘤 [37] [38] [39] 。相关研究表明,糖尿病女性导致宫颈病变的风险增加,可能是高血糖水平与病毒感染和细胞介导的免疫缺陷的易感性增加有关 [40] ,使得HPV清除困难,从而导致癌症进展的促进。

10. 其他

此外,在Ephrem Dibisa K等人的研究中还指出,月经不规律、性行为后接触性出血、有激素使用史、经济低下、对宫颈癌筛查和治疗方法持不利态度者发生宫颈癌前病变的风险均比未有上述因素者高 [30] ,因此在预防、控制、治疗宫颈病变时,应将上述因素考虑在内。

宫颈癌是女性第四大常见恶性肿瘤,预后差,病死率高。但宫颈癌的发展是个漫长的过程,由宫颈癌前病变进展而来。目前我国主要通过接种HPV疫苗及宫颈癌筛查等措施来预防宫颈癌。但HPV疫苗在我国尚未完全普及且疫苗的预防效果也需要数年时间验证。所以,正确的宫颈癌筛查方法及有效的治疗措施可以帮助患者预防及控制病情的发展和恶化。而导致宫颈病变的临床因素较多,医生应结合病变风险个性化评估,从而制定个体化治疗方案,避免过度治疗或延误治疗。

NOTES

*通讯作者。

参考文献

[1] Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., Arbyn, M., Basu, P., Bray, F. and Vaccarella, S. (2023) Global Estimates of Incidence and Mortality of Cervical Cancer in 2020: A Baseline Analysis of the WHO Global Cervical Cancer Elimination Initiative. The Lancet Global Health, 11, e197-e206.
https://doi.org/10.1016/S2214-109X(22)00501-0
[2] Darragh, T.M., Colgan, T.J., Thomas, C.J., Heller, D.S., Henry, M.R., Luff, R.D., et al. (2013) The Lower Anogenital Squamous Terminology Standardization Project for HPV-Associated Lesions. International Journal of Gynecological Pathology, 32, 76-115.
https://doi.org/10.1097/PGP.0b013e31826916c7
[3] Sun, D., Li, H., Cao, M., He, S., Lei, L., Peng, J., et al. (2020) Cancer Burden in China: Trends, Risk Factors and Prevention. Cancer Biology & Medicine, 17, 879-895.
https://doi.org/10.20892/j.issn.2095-3941.2020.0387
[4] Chen, R., Zhang, R., Zhang, M., Liu, S., Xie, M., Yang, Z., Shi, Q., Chen, H., Xiong, H., Wang, N. and Jiang, Q. (2023) CIN Grades Possessing Different HPV RNA Location Patterns and RNAscope Is Helpful Tool for Distinguishing Squamous Intraepithelial Lesions in Difficult Cervical Cases. Diagnostic Pathology, 18, Article No. 23.
https://doi.org/10.1186/s13000-023-01308-w
[5] Loopik, D.L., Bentley, H.A., Eijgenraam, M.N., et al. (2021) The Natural History of Cervical Intraepithelial Neoplasia Grades 1, 2, and 3: A Systematic Review and Meta-Analysis. Journal of Lower Genital Tract Disease, 25, 221-231.
https://doi.org/10.1097/LGT.0000000000000604
[6] Sykes, P.H., Simcock, B.J., Innes, C.R., Harker, D., Willi-man, J.A., Whitehead, M., et al. (2022) Predicting Regression of Cervical Intraepithelial Neoplasia Grade 2 in Women under 25 Years. American Journal of Obstetrics & Gynecology, 226, 222.e1-222.e13.
https://doi.org/10.1016/j.ajog.2021.09.009
[7] Sparić, R., Bukumirić, Z., Stefanović, R., Tinelli, A., Kostov, S. and Watrowski, R. (2022) Long-Term Quality of Life Assessment after Excisional Treatment for Cervical Dysplasia. Journal of Obstetrics and Gynaecology, 42, 3061-3066.
https://doi.org/10.1080/01443615.2022.2083486
[8] Giovannetti, O., Tomalty, D., Greco, S., Kment, B., Komisaruk, B., Hannan, J., Goldstein, S., Goldstein, I. and Adams, M.A. (2023) Patient and Provider Perspectives on LEEP/LLETZ Treatment and Outcomes: An Interview Study. The Journal of Sexual Medicine, 20, 977-990.
https://doi.org/10.1093/jsxmed/qdad026
[9] Monti, M., D’Aniello, D., Scopelliti, A., Tibaldi, V., Santangelo, G., Colagiovanni, V., et al. (2021) Relationship between Cervical Excisional Treatment for Cervical Intraepithelial Neoplasia and Obstetrical Outcome. Minerva Obstetrics and Gynecology, 73, 233-246.
https://doi.org/10.23736/S2724-606X.20.04678-X
[10] Cancer Genome Atlas Research Network, Albert Einstein College of Medicine Analytical Biological Services, et al. (2017) Integrated Genomic and Molecular Characterization of Cervical Cancer. Nature, 543, 378-384.
https://doi.org/10.1038/nature21386
[11] Shukla, S., Bharti, A.C., Mahata, S., Hussain, S., Kumar, R., Hedau, S., et al. (2009) Infection of Human Papillomaviruses in Cancers of Different Human Organ Sites. Indian Journal of Medi-cal Research, 130, 222-233.
[12] Castellsagué, X., Díaz, M., de Sanjosé, S., Muñoz, N., Herrero, R., Franceschi, S., et al. (2006) Worldwide Human Papillomavirus Etiology of Cervical Adenocarcinoma and Its Cofactors: Implications for Screening and Prevention. Journal of the National Cancer Institute, 98, 303-315.
https://doi.org/10.1093/jnci/djj067
[13] Luo, Q., Zeng, X., Luo, H., Pan, L., Huang, Y., Zhang, H. and Han, N. (2023) Epidemiologic Characteristics of High-Risk HPV and the Correlation between Multiple Infections and Cervical Lesions. BMC Infectious Diseases, 23, Article No. 667.
https://doi.org/10.1186/s12879-023-08634-w
[14] Alarcón-Romero, L.D.C., Organista-Nava, J., Gómez-Gómez, Y., Ortiz-Ortiz, J., Hernández-Sotelo, D., Del Moral-Hernández, O., et al. (2022) Prevalence and Distribution of Human Papillomavirus Genotypes (1997-2019) and Their Association with Cervical Cancer and Precursor Lesions in Women from Southern Mexico. Cancer Control, 29.
https://doi.org/10.1177/10732748221103331
[15] Na, J., Li, Y., Wang, J., Wang, X., Lu, J. and Han, S. (2023) The Correlation between Multiple HPV Infections and the Occurrence, Development, and Prognosis of Cervical Cancer. Frontiers in Microbiology, 14, Article ID: 1220522.
https://doi.org/10.3389/fmicb.2023.1220522
[16] Tao, X., Austin, R.M., Yu, T., Zhong, F., Zhou, X., Cong, Q., et al. (2022) Risk Stratification for Cervical Neoplasia Using Extended High-Risk HPV Genotyping in Women with ASC-US Cytology: A Large Retrospective Study from China. Cancer Cytopathology, 130, 248-258.
https://doi.org/10.1002/cncy.22536
[17] Li, Y., Wang, H., Zhang, Y., Jing, X., Wu, N., Hou, Y. and Hao, C. (2021) Correlation between Multi-Type Human Papillomavirus Infections and Viral Loads and the Cervical Pathological Grade. International Journal of Gynecology & Obstetrics, 152, 96-102.
https://doi.org/10.1002/ijgo.13406
[18] Ebisch, R.M.F., Ketelaars, P.J.W., van der Sanden, W.M.H., Schmeink, C.E., Lenselink, C.H., Siebers, A.G., Massuger, L.F.A.G., Melchers, W.J.G. and Bekkers, R.L.M. (2018) Screening for Persistent High-Risk HPV Infections May Be a Valuable Screening Method for Young Women: A Retrospective Cohort Study. PLOS ONE, 13, e0206219.
https://doi.org/10.1371/journal.pone.0206219
[19] Wu, S., Ding, X., Kong, Y., Acharya, S., Wu, H., Huang, C., Liang, Y., Nong, X. and Chen, H. (2021) The Feature of Cervical Microbiota Associated with the Progression of Cervi-cal Cancer among Reproductive Females. Gynecologic Oncology, 163, 348-357.
https://doi.org/10.1016/j.ygyno.2021.08.016
[20] Ma, Y., Li, Y., Liu, Y., Cao, L., Han, X., Gao, S. and Zhang, C. (2023) Vaginal Microbiome Dysbiosis Is Associated with the Different Cervical Disease Status. Journal of Microbiology, 61, 423-432.
https://doi.org/10.1007/s12275-023-00039-3
[21] Castanheira, C.P., Sallas, M.L., Nunes, R.A.L., Lorenzi, N.P.C. and Termini, L. (2021) Microbiome and Cervical Cancer. Pathobiology, 88, 187-197.
[22] Łaniewski, P., Ilhan, Z.E. and Herbst-Kralovetz, M.M. (2020) The Microbiome and Gynaecological Cancer Development, Prevention and Therapy. Nature Reviews Urology, 17, 232-250.
https://doi.org/10.1038/s41585-020-0286-z
[23] Mitra, A., MacIntyre, D.A., Marchesi, J.R., Lee, Y.S., Bennett, P.R. and Kyrgiou, M. (2016) The Vaginal Microbiota, Human Papillomavirus Infec-tion and Cervical Intraepithelial Neoplasia: What Do We Know and Where Are We Going Next? Microbiome, 4, Article No. 58.
https://doi.org/10.1186/s40168-016-0203-0
[24] Long, T., Long, L., Chen, Y., Li, Y., Tuo, Y., Hu, Y., Xie, L., He, G., Zhao, W., Lu, X. and Lin, Z. (2021) Severe Cervical Inflammation and High-Grade Squamous Intraepithelial Lesions: A Cross-Sectional Study. Archives of Gynecology and Obstetrics, 303, 547-556.
https://doi.org/10.1007/s00404-020-05804-y
[25] Caliri, A.W., Tommasi, S. and Besaratinia, A. (2021) Relation-ships among Smoking, Oxidative Stress, Inflammation, Macromolecular Damage, and Cancer. Mutation Re-search-Reviews in Mutation Research, 787, Article ID: 108365.
https://doi.org/10.1016/j.mrrev.2021.108365
[26] Saldaña-Rodríguez, P., Bahena-Román, M., Delgado-Romero, K., Madrid-Marina, V. and Torres-Poveda, K. (2023) Prevalence and Risk Factors for High-Risk Human Papillomavirus In-fection and Cervical Disorders: Baseline Findings from an Human Papillomavirus Cohort Study. Cancer Control, 30.
https://doi.org/10.1177/10732748231202925
[27] Ozturk, M., Umudum, H., Aydin, A., Ulubay, M., Keskin, U., Dede, M. and Yenen, M.C. (2016) Immediate Risk of HSIL Presence in Women Who Have Both ASC-US Cytology and Negative High-Risk HPV Test. European Journal of Gynaecological Oncology, 37, 232-237.
[28] Du, X., Li, M., Zhou, Y., Yang, H., Isachenko, V., Takagi, T. and Meng, Y. (2020) Evidence of Passive Smoking as a Risk Factor of High-Grade Squamous Intraepithelial Lesion: A Case-Control Study. Biological and Pharmaceutical Bulletin, 43, 1061-1066.
https://doi.org/10.1248/bpb.b19-01098
[29] Mayadev, J., Lim, J., Durbin-Johnson, B., Valicenti, R. and Alvarez, E. (2018) Smoking Decreases Survival in Locally Advanced Cervical Cancer Treated with Radiation. American Journal of Clinical Oncology, 41, 295-301.
https://doi.org/10.1097/COC.0000000000000268
[30] Ephrem Dibisa, K., Tamiru Dinka, M., Mekonen Moti, L. and Fetensa, G. (2022) Precancerous Lesion of the Cervix and Associated Factors among Women of West Wollega, West Ethiopia, 2022. Cancer Control, 29.
https://doi.org/10.1177/10732748221117900
[31] Nessa, A., Ara, R., Fatema, P., Nasrin, B., Chowdhury, A., Khan, K.H., Barua, A.R. and Rashid, M.H.U. (2020) Influence of Demographic and Reproductive Factors on Cervical Pre-Cancer and Cancer in Bangladesh. Asian Pacific Journal of Cancer Prevention, 21, 1883-1889.
https://doi.org/10.31557/APJCP.2020.21.7.1883
[32] 王龙毅, 汪晓茜, 何海珍, 等. 高危型HPV感染及宫颈病理进展相关影响因素分析[J]. 重庆医学, 2023, 52(21): 3283-3286, 3293.
[33] Gilles, C., Konopnicki, D. and Ro-zenberg, S. (2023) The Recent Natural History of Human Papillomavirus Cervical Infection in Women Living with HIV: A Scoping Review of Meta-Analyses and Systematic Reviews and the Construction of a Hypothetical Model. HIV Medi-cine, 24, 877-892.
https://doi.org/10.1111/hiv.13490
[34] Badial, R.M., Dias, M.C., Stuqui, B., Melli, P.P.D.S., Quintana, S.M., Bonfim, C.M.D., Cordeiro, J.A., Rabachini, T., Calmon, M.F., Provazzi, P.J.S. and Rahal, P. (2018) Detection and Genotyping of Human Papillomavirus (HPV) in HIV-Infected Women and Its Relationship with HPV/HIV Co-Infection. Medicine (Baltimore), 97, e9545.
https://doi.org/10.1097/MD.0000000000009545
[35] Gwqjrllmchyhb, L. (2019) The Value of Pathological Exam-ination in Cervical Cancer Screening for HR-HPV Positive Women in Different Age Groups. Chinese Journal of Woman and Child Health Research, 30, 1368-1373.
[36] Wang, Z., Gu, Y., Wang, H., Chen, J., Zheng, Y., Cui, B. and Yang, X. (2020) Distribution of Cervical Lesions in High-Risk HPV (hr-HPV) Positive Women with ASC-US: A Retrospec-tive Single-Center Study in China. Virology Journal, 17, 185.
https://doi.org/10.1186/s12985-020-01455-2
[37] Kanter, M., Angadi, S. and Slavin, J. (2021) Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. The New England Journal of Medicine, 385, 378-379.
https://doi.org/10.1056/NEJMc2107926
[38] Zhu, R., Larsen, T.M., Fogelholm, M., et al. (2021) Dose-Dependent Associations of Dietary Glycemic Index, Glycemic Load, and Fiber with 3-Year Weight Loss Maintenance and Glycemic Status in a High-Risk Population: A Secondary Analysis of the Diabetes Prevention Study PREVIEW. Diabetes Care, 44, 1672-1681.
https://doi.org/10.2337/dc20-3092
[39] Askari, M., Dehghani, A., Abshirini, M., et al. (2021) Glycemic Index, but Not Glycemic Load, Is Associated with an Increased Risk of Metabolic Syndrome: Meta-Analysis of Observational Studies. International Journal of Clinical Practice, 75, e14295.
https://doi.org/10.1111/ijcp.14295
[40] Reinholdt, K., Thomsen, L.T., Munk, C., Dehlendorff, C., Aalborg, G.L., Carstensen, B., et al. (2021) Incidence of Human Papil-lomavirus-Related Anogenital Precancer and Cancer in Women with Diabetes: A Nationwide Registry-Based Cohort Study. International Journal of Cancer, 148, 2090-2101.
https://doi.org/10.1002/ijc.33365