骨质疏松症与干眼关系的研究进展
Research Progress on the Relationship between Osteoporosis and Dry Eye
DOI: 10.12677/ACM.2024.141111, PDF, HTML, XML, 下载: 16  浏览: 16 
作者: 张 宸:西安医学院研究生院,陕西 西安;空军军医大学唐都医院眼科,陕西 西安;马 楠*:空军军医大学唐都医院眼科,陕西 西安
关键词: 干眼症骨质疏松性激素维生素D炎症Dry Eye Disease Osteoporosis Sex Hormones Vitamin D Inflammation
摘要: 干眼病是由于泪腺泪液分泌减少,泪水蒸发增加或泪液质量差引起,会导致眼表炎症、损伤及神经感觉异常。骨质疏松是一种与炎症和激素失衡相关的多因素疾病,特点是骨量减少、骨微结构破坏和骨脆性增加,这些都会增加骨折的风险。干眼病和骨质疏松有共同的危险因素和流行病学特征,炎症和性激素缺乏已被证明是这两种疾病的基础。有研究报道,骨质疏松通过调节性激素水平、嘌呤能信号传导以及维生素D的水平等方面来影响干眼的发生发展。然而,很少提到这两种疾病的相关性。本文通过对骨质疏松症与干眼病之间的潜在关系进行系统性回顾,介绍骨质疏松与干眼的流行病学、危险因素、发病机制以及近年来主要的治疗手段,为临床医生提供参考。
Abstract: Dry eye disease is caused by reduced tear secretion from the lacrimal gland, increased tear evapo-ration or poor tear quality, which can lead to ocular surface inflammation, damage and abnormal nerve sensation. Osteoporosis is a multifactorial disease associated with inflammation and hormo-nal imbalance, characterized by reduced bone mass, destruction of bone microarchitecture, and in-creased bone fragility, which increase the risk of fractures. Dry eye disease and osteoporosis share common risk factors and epidemiological features, and inflammation and sex hormone deficiencies have been shown to underlie both diseases. Studies have reported that osteoporosis affects the oc-currence and development of dry eye by regulating sex hormone levels, purinergic signaling, and vitamin D levels. However, the correlation between these two diseases is rarely mentioned. This ar-ticle conducts a systematic review of the potential relationship between osteoporosis and dry eye disease, introduces the epidemiology, risk factors, pathogenesis, and main treatments in recent years of osteoporosis and dry eye disease, and provides a reference for clinicians.
文章引用:张宸, 马楠. 骨质疏松症与干眼关系的研究进展[J]. 临床医学进展, 2024, 14(1): 795-803. https://doi.org/10.12677/ACM.2024.141111

1. 引言

干眼病(Dry eye disease, DED)是一种病因复杂的眼部疾病,其发生原因包括泪液分泌不足和泪液蒸发过多。泪膜的不稳定性会导致眼表发炎、损伤和神经感觉异常,进而引起眼部不适和视力下降 [1] 。DED的常见症状包括持续搔痒、发红、干燥和烧灼感,眼内持续异物感,对光线敏感和视物模糊,严重影响患者的生活质量 [2] 。骨质疏松(Osteoprosis, OP)是一种以骨密度降低和骨组织微结构破坏为特征,导致骨质脆性增加和易于骨折的全身性骨代谢疾病。旧骨清除与新骨生成这两个过程不断重复,共同构成骨的代谢过程,称为骨重建或者骨转化 [3] 。某些致病因素打破骨转化的动态平衡,就会导致骨质疏松的发生。预防骨质疏松症患者的骨折是治疗的关键目标,视力障碍是DED的一种常见并发症,会妨碍患者日常活动的安全,包括跌倒和骨折的风险增加 [4] 。有研究报道,骨质疏松症患者患干眼症的风险增加 [4] ,因此,应该尽早筛查患有骨质疏松症患者干眼症的发病情况,并积极给予治疗,有助于降低OP患者的骨折风险,延长患者寿命,提高患者生活质量。

2. 流行病学

根据TFOS DEWS II的诊断标准,干眼病全球患病率为29.5%,其中女性为28.1%,男性为24.9% [5] 。在全球范围内,50岁以上的人群中有三分之一的女性和五分之一的男性在其一生中会经历骨质疏松性骨折。另外,每年有超过8万例骨折是由骨质疏松症引起的,约9%的患者发生髋部骨折,在骨折后一年内,高达33%的患者死亡 [6] 。干眼病与骨质疏松症的患病率均较高,给社会带来沉重的经济负担,严重影响人们的生活质量。

3. 危险因素

3.1. 年龄

在老年人中,睑板腺脱落和睑板腺萎缩的发生率较高,这与脂质生成减少有关。另外,眼睑的解剖学变化,包括眼睑回缩或眼睑错位,也会导致角膜暴露和干眼症 [7] 。年龄的增长也与骨形成减少和骨转换率降低有关。骨的基质和矿物质成分的变化也会导致骨脆性的增加,在松质骨中可以观察到骨小梁变薄和骨小梁丢失,而在皮质骨中,骨丢失导致皮质厚度减少和皮质孔隙度增加 [8] 。这些改变都增加了骨折的风险。

3.2. 性别

雌激素可抑制睑板腺腺体的分泌、抑制脂肪生成来促进眼表炎症,其潜在的机制是雌激素下调了cAMP信号通路,该通路负责睑板腺中的细胞增殖 [9] 。雌激素在骨的生长和成熟以及成人骨转换的调节中起着重要的作用。雌激素与雌激素受体结合,促进骨保护素(OPG)的表达,并抑制核因子-κβ配体(RANKL)的作用,从而抑制破骨细胞的形成和增强骨吸收活性。雌激素的缺乏会改变雌激素靶基因的表达,增加IL-1、IL-6和肿瘤坏死因子(TNF)的分泌 [10] 。

3.3. 饮食

充足的钙、维生素D对眼表及骨骼健康有积极的影响。

泪膜中的钙在细胞信号传导、代谢、基因表达、渗透压,甚至结膜杯状细胞的功能中尤为重要 [11] 。证据表明钙软膏可减轻干眼症的症状 [12] 。骨质疏松症患者的低钙血症提示潜在的甲状腺功能减退、维生素D缺乏或胃肠道吸收不良。这表明,保持足够的钙水平对于治疗这两种疾病至关重要。

最近的一项meta分析显示,VD缺乏症患者的平均眼表疾病指数(Ocular Surface Disease Index, OSDI)评分较高,Schirmer值评分较低,表明患者主观症状较重,泪液分泌较少。同样,一项研究报道DED患者的平均血清维生素D水平低于对照组 [13] 。维生素D缺乏也是老年人骨折的既定危险因素,因为较高的骨转换、钙吸收减少和继发性甲状旁腺功能亢进会导致骨量损失 [14] 。

4. 发病机制

骨质疏松症与干眼症之间的病理生理关系复杂,然而已经提出了以下一些可能的机制。

4.1. 性激素缺乏

雌激素和雄激素均已被证明在干眼症和骨质疏松症的发展中起重要作用。

在泪腺、睑板腺中可以观察到雄激素和雌激素受体的表达 [15] 。性激素通过调节睑板腺,从而影响泪膜的稳定性 [16] 。雌激素通过诱导抗体合成和激活ER-α触发细胞介导的炎症反应,发挥免疫增强作用,刺激免疫反应,而雄激素可能对体液和细胞免疫反应有抑制作用,并作为天然抗炎调节剂 [17] 。动物研究表明雄激素刺激脂质产生,具有抗炎作用,有利于TGF-β的合成并抑制IL-1β和TNF-α等炎性因子的合成 [18] ,而雌激素减少睑板腺的脂质分泌,抑制脂肪生成来促进眼表炎症 [9] 。雄激素缺乏、雄激素受体功能障碍和不敏感以及使用抗雄激素药物已被证明与阻塞性睑板腺功能障碍相关 [19] 。

骨是一种很强的雌激素依赖性组织,雌激素在整个生命周期中获取和维持骨矿物质含量中起着重要作用。生理上,雌激素通过一种特定的受体(ER-α)直接影响成骨细胞,也通过破骨细胞祖细胞和T淋巴细胞间接抑制破骨细胞的分化和活性 [20] 。在绝经期,雌激素缺乏的主要后果是骨吸收活动的增加,而骨形成的相对不足,这不能弥补骨吸收的增加。其结果是骨丢失加速和微结构的改变,骨小梁组织紊乱、变薄和破裂,所有这些都导致骨折的风险增加。其中潜在的原因可能是雌激素调控骨髓细胞中细胞因子IL-6的表达 [21] 。体外发现雄激素可刺激成骨细胞前体的增殖 [22] 。雄激素缺乏和雄激素剥夺治疗也被证明会促进男性骨质疏松症 [23] 。

4.2. 嘌呤能信号传导机制

嘌呤能信号传导是这两种疾病背后的另一种可能机制。嘌呤能受体接受腺苷或三磷酸腺苷(ATP)的刺激,分别分为P1和P2受体。P2受体根据其活性可进一步分为P2X和P2Y受体。有研究报道嘌呤能信号传导会影响干眼症以及骨质疏松 [24] 。嘌呤能受体可以在眼表找到,在P2Y2受体的刺激下,黏蛋白产生增加,泪膜往往更稳定 [25] 。从骨质疏松症的角度来看,P2Y2受体的激活已被证明可以抑制成骨细胞活性和延缓骨形成 [26] 。缺乏P2Y2受体的小鼠骨矿物质含量升高。

4.3. 维生素D缺乏

研究表明,老年人维生素D缺乏与DED以及OP之间存在关联 [27] [28] 。维生素D对调节钙稳态,骨代谢,免疫调节,炎症控制,细胞增殖和细胞分化至关重要。维生素D缺乏与泪液破裂时间缩短、Schirmer值降低、泪液高渗和泪膜功能障碍有关,最终可能会发展成为DED [29] 。相反,维生素D可通过抑制局部炎症的关键介质白细胞介素-6 (IL-6)的产生,刺激眼泪中抗氧化细胞因子的释放来缓解DED。维生素D可以通过改善角膜上皮屏障功能,从而改善眼部状况 [30] 。维生素D对于维持肌肉骨骼健康至关重要,因为它可以促进钙的吸收、骨骼中类骨组织形成以及维持肌肉功能。维生素D水平降低会导致继发性甲状旁腺功能亢进、骨质流失和肌无力 [31] 。维生素D缺乏时会减少抗炎细胞因子(如IL-10和IL-13)的合成以及增加促炎细胞因子(如TNF-α和IL-8)的合成 [32] 。

因此,维生素D可以抑制骨质疏松症和干眼症的潜在炎症级联反应。维生素D补充剂有助于治疗这两种疾病。

4.4. 免疫及炎症因素

眼表的先天免疫细胞会触发炎症级联反应,信号由细胞表面受体检测,这些受体负责检测各种刺激,如病原体相关分子模式(pathogen-associated molecular pattern, PAMP)或活性氧(reactive oxygen species, ROS)。信号启动了下游途径,激活核因子-κB (NF-κB)或其他转录因子 [33] 。NF-κB信号通路控制许多参与炎症反应的基因的转录,导致NLRP3炎症小体激活,NLRP3是DED中的关键炎症小体蛋白,是通过ROS-NLRP3-IL-1β信号轴发作用 [34] ,进而激活促炎细胞因子IL-1β和IL-18。另外,在DED的眼表面,白细胞介素IL-1、IL-6、IL-8、INF-γ、TNF-α和基质金属蛋白酶等炎症介质的浓度增加,这与疾病的严重程度有关。DED患者的表皮生长因子(EGF)也迅速下降,EGF是维持眼表上皮稳态的重要生长因子 [35] 。

除了雌激素缺乏对骨骼的直接负面影响外,绝经后妇女免疫状态的间接影响也可能导致持续的骨破坏,因为绝经后妇女往往表现出慢性低度炎症表型,细胞因子表达和免疫细胞谱发生改变。在这种背景下,各种免疫细胞与成骨细胞和破骨细胞可以通过细胞间的直接接触,或更有可能通过旁分泌机制相互作用。另外,特定亚型的T淋巴细胞表达TNF-α,TNF-α被证明可以增加成骨细胞凋亡,并通过B细胞产生的NF-κB配体受体激活物(RANKL)间接刺激破骨细胞生成,从而触发绝经后的骨丢失 [36] 。

根据研究,缺乏雌激素导致促炎细胞因子大幅增加,包括白细胞介素-1 (IL-1),白细胞介素-6 (IL-6),TNF-α,M-CSF和前列腺素E2 (PGE2)。这些细胞因子中的大多数直接或间接作用于成骨细胞和破骨细胞,改善单核细胞向成熟破骨细胞的分化,并调节破骨细胞功能 [37] 。老年人血清炎症标志物水平较高可预测与年龄相关的骨密度丢失和骨吸收增加 [38] 。根据Cauley等人的研究 [39] ,老年人血清炎症标志物水平较高的骨折的风险更大。

5. 预防及治疗

5.1. 激素替代治疗

目前,激素替代治疗(hormone replacement therapy, HRT)通常用于绝经后妇女,以缓解与性激素缺乏相关的干眼症状 [40] 。一项研究报道,患有睑板腺功能障碍(Meibomian Gland Dysfunction, MGD)的围绝经期妇女在使用过HRT治疗后1个月出现DED症状改善 [41] 。然而,一项研究报告说,补充雌激素可能会使患有干眼的绝经后妇女的眼部症状恶化,HRT治疗干眼症的临床疗效仍存在争议 [42] 。替代疗法治疗DED对女性的临床效果很复杂,取决于年龄、治疗前性激素水平、卵巢生理和治疗方式。有研究报道,局部或透皮睾酮补充剂已被证明可以改善DED [43] 。未来的随机对照试验将需要确定性激素补充剂对干眼症的影响。

1947年,富勒·奥尔布赖特第一次确立了外源性激素给予绝经后妇女以维持骨量,从而降低骨折风险 [44] 的原则。从那时起,绝经期激素替代疗法一直被用于预防绝经后妇女发生骨质疏松症和相关骨折的风险。雌激素替代治疗有效地预防了绝经后妇女的骨丢失,并将椎体和髋部骨折的风险降低了34%。因此建议使用雌激素治疗绝经早期妇女的绝经症状,并作为预防骨质流失和降低骨折高危妇女的骨折风险的治疗方法 [45] 。雌激素对骨转换和骨密度的变化有剂量依赖性效应。研究报道,绝大多数开始低剂量雌激素治疗的妇女将有助于预防绝经后早期骨丢失。推荐使用更低的雌激素剂量,已经被证明相比高雌激素剂量可以有效地缓解血管舒缩症状。虽然这种激素治疗方案降低了骨折的风险,但它与心脑血管事件的风险增加以及患乳腺癌的风险增加有关 [46] 。

因此,靶向性激素可能是这两种疾病的有效治疗方法。

5.2. 补充维生素D

维生素D缺乏会导致与干眼症相关的症状,其补充可减少眼表炎症并改善一些泪膜参数,例如泪膜破裂时间(TBUT)、荧光素染料表面染色、眼睑边缘充血和泪液分泌。在小鼠中维生素D已被证明通过抑制朗格汉斯细胞迁移到角膜来抑制眼表炎症,这抑制角膜新生血管形成。维生素D诱导IL-10的产生并减少炎症细胞因子,如IL-1、IL-6、TNF-α和CRP [47] 。此外,维生素D通过增加眼泪中的抗氧化细胞因子来减少炎症。维生素D可降低泪液渗透压并提高泪膜的稳定性 [48] 。另外在一项观察性研究发现,肌内注射维生素D对于人工泪液治疗难以缓解DED影响的患者有几种积极影响,包括促进泪液分泌,减少眼表和眼睑边缘的泪液不稳定和炎症,改善DED症状 [47] 。

为了纠正骨量缺失状态,补充剂可以每天以600~800 IU维生素D的剂量使用,结合钙摄入量700至1200毫克/天(最好通过膳食摄入),可以实现对髋部和非椎骨骨折的保护作用。这种剂量的维生素D可有效降低跌倒风险,推荐用于≥50岁的女性和男性,骨折风险较高的患者可以增加。然而间歇性高剂量的维生素D (每月60,000 IU或每年500,000 IU)与跌倒和骨折的风险增加有关。因此,在正常状态下,推荐的日剂量不应超过4000 IU的维生素D [49] 。钙和维生素D的组合对于接受骨特异性治疗的患者是必要的,并预防继发性甲状旁腺功能亢进,低镁血症和骨代谢紊乱 [50] 。维生素D是脂溶性的,将其与膳食一起补充可以获得最佳的吸收效果。然而,在一项meta分析中指出,间歇性或每日单独服用标准剂量的维生素D均与骨折风险降低无关,但维生素D和钙的日常治疗是一种更有希望的策略 [51] 。因此,维生素D可以用作这两种疾病的辅助治疗。

5.3. 生活方式治疗

在一项有氧运动与DED之间联系的研究中,观察到有氧运动(Aerobic exercise, AE)可以促进泪液分泌,降低泪液中的氧化应激标志物水平,提高干眼患者的泪膜稳定性。可能的机制为AE兴奋交感神经,但抑制副交感神经,泪腺中的交感神经主要位于泪腺泡血管周围,可引起血管舒张并增加电解质和水的分泌,这可能是AE后干眼患者泪液分泌增加的主要原因。另外,氧化应激在干眼的发病机制中起重要作用,可能是干眼的潜在治疗靶点 [52] 。研究发现,DES患者运动后氧化应激标志物8-OhdG显著降低 [53] 。

适度运动作为一种有效的非药物治疗方法,也有助于增加骨形成,并有助于缓解OP。其可能的机制是,运动通过释放肌激素和通过机械力分泌抗炎细胞因子来影响细胞凋亡和自噬。运动会增加有利于骨形成的抗炎细胞因子如IL-2,IL-10,IL-12和干扰素(IFN)的分泌,并减少促炎细胞因子如IL-1,IL-6和TNF-α的分泌,以防止骨吸收 [54] 。此外,运动也可能影响参与骨代谢的表观遗传过程。机械刺激通过改变非编码RNA的表达,促进骨髓间充质干细胞(BMSCs)向成骨分化。此外,通过减少DNA甲基化,机械刺激也可以改变成骨基因的表观遗传状态,并表现出相关的表达增加 [55] 。Stewart等人发现,在久坐不动的老年人和年轻人中,12周的耐力和阻力运动可以有效减少促炎细胞因子IL-6的产生 [56] 。因此,保持适当的运动对维持眼表和骨骼健康很重要。

6. 展望

骨质疏松症与患干眼的风险增加有关,干眼则会导致视力模糊并增加跌倒和骨折的风险。 这两种疾病在老年人群中更为普遍,这意味着它们之间的任何关联对临床医生来说都相当重要。我们建议治疗骨质疏松症患者的医生尽早寻找干眼的迹象。在发现的情况下,应将患者转诊给眼科医生,以减少视力模糊、跌倒和不良结局的可能性。目前,国内外对骨质疏松症与干眼症之间的发病机制及治疗手段仍有争议,因此,对于骨质疏松与干眼的治疗仍是一项重大挑战,对OP及DED患者的管理也需进一步完善。

NOTES

*通讯作者。

参考文献

[1] Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C.K., et al. (2017) TFOS DEWS II Definition and Classification Report. The Ocular Surface, 15, 276-283.
https://doi.org/10.1016/j.jtos.2017.05.008
[2] Tsubota, K., Pflugfelder, S.C., Liu, Z., Baudouin, C., Kim, H.M., Messmer, E.M., et al. (2020) Defining Dry Eye from a Clinical Perspective. International Journal of Molecular Sciences, 21, Article No. 9271.
https://doi.org/10.3390/ijms21239271
[3] Johnston, C.B. and Dagar, M. (2020) Osteoporosis in Older Adults. The Medical Clinics of North America, 104, 873-884.
https://doi.org/10.1016/j.mcna.2020.06.004
[4] Jeng, Y.T., Lin, S.Y., Hu, H.Y., Lee, O.K. and Kuo, L.L. (2018) Osteoporosis and Dry Eye Syndrome: A Previously Unappreciated Association That May Alert Active Prevention of Fall. PLOS ONE, 13, e0207008.
https://doi.org/10.1371/journal.pone.0207008
[5] Papas, E.B. (2021) The Global Prevalence of Dry Eye Disease: A Bayesian View. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists), 41, 1254-1266.
https://doi.org/10.1111/opo.12888
[6] Sözen, T., Özışık, L. and Başaran, N. (2017) An Overview and Manage-ment of Osteoporosis. European Journal of Rheumatology, 4, 46-56.
https://doi.org/10.5152/eurjrheum.2016.048
[7] Villani, E., Canton, V., Magnani, F., Viola, F., Nucci, P. and Ratiglia, R. (2013) The Aging Meibomian Gland: An in Vivo Confocal Study. Investigative Ophthalmology & Visual Science, 54, 4735-4740.
https://doi.org/10.1167/iovs.13-11914
[8] Muñoz, M., Robinson, K. and Shibli-Rahhal, A. (2020) Bone Health and Osteoporosis Prevention and Treatment. Clinical Obstetrics and Gynecology, 63, 770-787.
https://doi.org/10.1097/GRF.0000000000000572
[9] Golebiowski, B., Badarudin, N., Eden, J., You, J., Hampel, U. and Stapleton, F. (2017) Does Endogenous Serum Oestrogen Play a Role in Meibomian Gland Dysfunction in Post-menopausal Women with Dry Eye? The British Journal of Ophthalmology, 101, 218-222.
https://doi.org/10.1136/bjophthalmol-2016-308473
[10] Cheng, C.H., Chen, L.R. and Chen, K.H. (2022) Osteo-porosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. International Journal of Molecular Sciences, 23, Article No. 1376.
https://doi.org/10.3390/ijms23031376
[11] Putney, J.W. and Bird, G.S. (2014) Calcium Signaling in Lacrimal Glands. Cell Calcium, 55, 290-296.
https://doi.org/10.1016/j.ceca.2014.01.001
[12] Tsubota, K., Monden, Y., Yagi, Y., Goto, E. and Shimmura, S. (1999) New Treatment of Dry Eye: The Effect of Calcium Ointment through Eyelid Skin Delivery. The British Journal of Ophthalmology, 83, 767-770.
https://doi.org/10.1136/bjo.83.7.767
[13] Liu, J., Dong, Y. and Wang, Y. (2020) Vitamin D Deficiency Is Associ-ated with Dry Eye Syndrome: A Systematic Review and Meta-Analysis. Acta Ophthalmologica, 98, 749-754.
https://doi.org/10.1111/aos.14470
[14] Lane, N.E. (2006) Epidemiology, Etiology, and Diagnosis of Osteoporosis. American Journal of Obstetrics and Gynecology, 194, S3-S11.
https://doi.org/10.1016/j.ajog.2005.08.047
[15] Esmaeli, B., Harvey, J.T. and Hewlett, B. (2000) Immunohisto-chemical Evidence for Estrogen Receptors in Meibomian Glands. Ophthalmology, 107, 180-184.
https://doi.org/10.1016/S0161-6420(99)00040-8
[16] Nuzzi, R. and Caselgrandi, P. (2022) Sex Hormones and Their Effects on Ocular Disorders and Pathophysiology: Current Aspects and Our Experience. International Journal of Molecular Sciences, 23, Article No. 3269.
https://doi.org/10.3390/ijms23063269
[17] Narita, S., Goldblum, R.M., Watson, C.S., Brooks, E.G., Estes, D.M., Curran, E.M. and Midoro-Horiuti, T. (2007) Environmental Estrogens Induce Mast Cell Degranulation and Enhance IgE-Mediated Release of Allergic Mediators. Environmental Health Perspectives, 115, 48-52.
https://doi.org/10.1289/ehp.9378
[18] Beauregard, C. and Brandt, P. (2004) Down Regulation of Interleu-kin-1beta-Induced Nitric Oxide Production in Lacrimal Gland Acinar Cells by Sex Steroids. Current Eye Research, 29, 59-66.
https://doi.org/10.1080/02713680490513227
[19] Grasso, A., Di Zazzo, A., Giannaccare, G., Sung, J., Inomata, T., Shih, K.C., et al. (2021) Sex Hormones Related Ocular Dryness in Breast Cancer Women. Journal of Clinical Medicine, 10, Article No. 2620.
https://doi.org/10.3390/jcm10122620
[20] Khosla, S. and Monroe, D.G. (2018) Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harbor Perspectives in Medicine, 8, a031211.
https://doi.org/10.1101/cshperspect.a031211
[21] Gosset, A., Pouillès, J.M. and Trémollieres, F. (2021) Meno-pausal Hormone Therapy for the Management of Osteoporosis. Best Practice & Research Clinical Endocrinology & Me-tabolism, 35, Article ID: 101551.
https://doi.org/10.1016/j.beem.2021.101551
[22] Clarke, B.L. and Khosla, S. (2009) Androgens and Bone. Ster-oids, 74, 296-305.
https://doi.org/10.1016/j.steroids.2008.10.003
[23] Adler, R.A. (2014) Osteoporosis in Men: A Review. Bone Re-search, 2, Article No. 14001.
https://doi.org/10.1038/boneres.2014.1
[24] Terakado, K., Yogo, T., Kohara, Y., Soeta, S., Nezu, Y., Harada, Y., et al. (2014) Conjunctival Expression of the P2Y2 Receptor and the Effects of 3% Diquafosol Ophthalmic Solution in Dogs. Veterinary Journal (London, England: 1997), 202, 48-52.
https://doi.org/10.1016/j.tvjl.2014.05.022
[25] Lau, O.C., Samarawickrama, C. and Skalicky, S.E. (2014) P2Y2 Receptor Agonists for the Treatment of Dry Eye Disease: A Re-view. Clinical Ophthalmology (Auckland, N.Z.), 8, 327-334.
https://doi.org/10.2147/OPTH.S39699
[26] Abbracchio, M.P., Burnstock, G., Boeynaems, J.M., Barnard, E.A., Boyer, J.L., Kennedy, C., et al. (2006) International Union of Pharmacology LVIII: Update on the P2Y G Pro-tein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy. Pharmacological Reviews, 58, 281-341.
https://doi.org/10.1124/pr.58.3.3
[27] Lips, P. and van Schoor, N.M. (2011) The Effect of Vitamin D on Bone and Osteoporosis. Best Practice & Research Clinical Endocrinology & Metabolism, 25, 585-591.
https://doi.org/10.1016/j.beem.2011.05.002
[28] Yildirim, P., Garip, Y., Karci, A.A. and Guler, T. (2016) Dry Eye in Vitamin D Deficiency: More than an Incidental Association. International Journal of Rheumatic Diseases, 19, 49-54.
https://doi.org/10.1111/1756-185X.12727
[29] Demirci, G., Karaman Erdur, S., Ozsutcu, M., Eliacik, M., Olmus-celik, O., Aydin, R. and Kocabora, M.S. (2018) Dry Eye Assessment in Patients with Vitamin D Deficiency. Eye & Contact Lens, 44, S62-S65.
https://doi.org/10.1097/ICL.0000000000000325
[30] Meng, Y.F., Xin, Q., Lu, J., Xiao, P. and Li, J. (2019) Asso-ciation between Single Nucleotide Polymorphisms in the Vitamin D Receptor and Incidence of Dry Eye Disease in Chi-nese Han Population. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 4759-4765.
https://doi.org/10.12659/MSM.915434
[31] Yao, P., Sun, L., Lu, L., Ding, H., Chen, X., Tang, L., et al. (2017) Effects of Genetic and Nongenetic Factors on Total and Bioavailable 25(OH)D Responses to Vitamin D Sup-plementation. The Journal of Clinical Endocrinology and Metabolism, 102, 100-110.
https://doi.org/10.1210/jc.2016-2930
[32] Azizieh, F., Alyahya, K.O. and Raghupathy, R. (2016) Association be-tween Levels of Vitamin D and Inflammatory Markers in Healthy Women. Journal of Inflammation Research, 9, 51-57.
https://doi.org/10.2147/JIR.S103298
[33] Guzmán, M., Keitelman, I., Sabbione, F., Trevani, A.S., Giordano, M.N. and Galletti, J.G. (2016) Desiccating Stress-Induced Disruption of Ocular Surface Immune Tolerance Drives Dry Eye Disease. Clinical and Experimental Immunology, 184, 248-256.
https://doi.org/10.1111/cei.12759
[34] Chi, W., Hua, X., Chen, X., Bian, F., Yuan, X., Zhang, L., et al. (2017) Mitochondrial DNA Oxidation Induces Imbalanced Ac-tivity of NLRP3/NLRP6 Inflammasomes by Activation of Caspase-8 and BRCC36 in Dry Eye. Journal of Autoimmunity, 80, 65-76.
https://doi.org/10.1016/j.jaut.2017.02.006
[35] Perez, V.L., Stern, M.E. and Pflugfelder, S.C. (2020) In-flammatory Basis for Dry Eye Disease Flares. Experimental Eye Research, 201, Article ID: 108294.
https://doi.org/10.1016/j.exer.2020.108294
[36] Fischer, V. and Haffner-Luntzer, M. (2022) Interaction between Bone and Immune Cells: Implications for Postmenopausal Osteoporosis. Seminars in Cell & Developmental Biology, 123, 14-21.
https://doi.org/10.1016/j.semcdb.2021.05.014
[37] Clowes, J.A., Riggs, B.L. and Khosla, S. (2005) The Role of the Immune System in the Pathophysiology of Osteoporosis. Immunological Reviews, 208, 207-227.
https://doi.org/10.1111/j.0105-2896.2005.00334.x
[38] Barbour, K.E., Boudreau, R., Danielson, M.E., Youk, A.O., Wactawski-Wende, J., Greep, N.C., et al. (2012) Inflammatory Markers and the Risk of Hip Fracture: The Women’s Health Initiative. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 27, 1167-1176.
https://doi.org/10.1002/jbmr.1559
[39] Cauley, J.A., Danielson, M.E., Boudreau, R.M., Forrest, K.Y., Zmuda, J.M., Pahor, M., et al. (2007) Inflammatory Markers and Incident Fracture Risk in Older Men and Women: The Health Aging and Body Composition Study. Journal of Bone and Mineral Research: The Official Journal of the American Soci-ety for Bone and Mineral Research, 22, 1088-1095.
https://doi.org/10.1359/jbmr.070409
[40] Scuderi, G., Con-testabile, M.T., Gagliano, C., Iacovello, D., Scuderi, L. and Avitabile, T. (2012) Effects of Phytoestrogen Supplementa-tion in Postmenopausal Women with Dry Eye Syndrome: A Randomized Clinical Trial. Canadian Journal of Ophthal-mology, 47, 489-492.
https://doi.org/10.1016/j.jcjo.2012.08.019
[41] Jin, X., Lin, Z., Liu, Y., Lin, L. and Zhu, B. (2016) Hormone Replacement Therapy Benefits Meibomian Gland Dysfunction in Perimenopausal Women. Medicine, 95, e4268.
https://doi.org/10.1097/MD.0000000000004268
[42] Dang, A., Nayeni, M., Mather, R. and Mal-vankar-Mehta, M.S. (2020) Hormone Replacement Therapy for Dry Eye Disease Patients: Systematic Review and Me-ta-Analysis. Canadian Journal of Ophthalmology, 55, 3-11.
https://doi.org/10.1016/j.jcjo.2019.05.012
[43] Nanavaty, M.A., Long, M. and Malhotra, R. (2014) Transdermal Androgen Patches in Evaporative Dry Eye Syndrome with Androgen Deficiency: A Pilot Study. The British Journal of Ophthalmology, 98, 567-569.
https://doi.org/10.1136/bjophthalmol-2013-304637
[44] Albright, F. (1947) Osteoporosis. Annals of Internal Med-icine, 27, 861-882.
https://doi.org/10.7326/0003-4819-27-6-861
[45] (2017) The 2017 Hormone Therapy Position Statement of the North American Menopause Society. Menopause (New York, N.Y.), 24, 728-753.
https://doi.org/10.1097/GME.0000000000000921
[46] Bassuk, S.S. and Manson, J.E. (2016) The Timing Hy-pothesis: Do Coronary Risks of Menopausal Hormone Therapy Vary by Age or Time Since Menopause Onset? Metabo-lism: Clinical and Experimental, 65, 794-803.
https://doi.org/10.1016/j.metabol.2016.01.004
[47] Watts, P., Sahai, A., Kumar, P.R., Shamshad, M.A., Trivedi, G.K. and Tyagi, L. (2020) A Prospective Study to Assess the Role of Vitamin D Individually and in Combination with Cyclosporine in the Treatment of Dry Eye in Patients with Deficient Serum 25(OH)D Levels. Indian Journal of Oph-thalmology, 68, 1020-1026.
https://doi.org/10.4103/ijo.IJO_1492_19
[48] Hwang, J.S., Lee, Y.P. and Shin, Y.J. (2019) Vitamin D Enhances the Efficacy of Topical Artificial Tears in Patients with Dry Eye Disease. Cornea, 38, 304-310.
https://doi.org/10.1097/ICO.0000000000001822
[49] Bischoff-Ferrari, H.A., Dawson-Hughes, B., Orav, E.J., Staehelin, H.B., Meyer, O.W., Theiler, R., et al. (2016) Monthly High-Dose Vitamin D Treatment for the Prevention of Functional Decline: A Randomized Clinical Trial. JAMA Internal Medicine, 176, 175-183.
https://doi.org/10.1001/jamainternmed.2015.7148
[50] Gregson, C.L., Armstrong, D.J., Bowden, J., Cooper, C., Edwards, J., Gittoes, N.J.L., et al. (2022) UK Clinical Guideline for the Prevention and Treatment of Osteoporosis. Ar-chives of Osteoporosis, 17, Article No. 58.
https://doi.org/10.1007/s11657-022-01061-5
[51] Yao, P., Bennett, D., Mafham, M., Lin, X., Chen, Z., Armitage, J. and Clarke, R. (2019) Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-Analysis. JAMA Network Open, 2, e1917789.
https://doi.org/10.1001/jamanetworkopen.2019.17789
[52] Heidari, M., Noorizadeh, F., Wu, K., Inomata, T. and Mashaghi, A. (2019) Dry Eye Disease: Emerging Approaches to Disease Analysis and Therapy. Journal of Clinical Medicine, 8, Article No. 1439.
https://doi.org/10.3390/jcm8091439
[53] Sano, K., Kawashima, M., Ito, A., Inaba, T., Morimoto, K., Watanabe, M. and Tsubota, K. (2014) Aerobic Exercise Increases Tear Secretion in Type 2 Diabetic Mice. Investigative Ophthalmology & Visual Science, 55, 4287-4294.
https://doi.org/10.1167/iovs.13-13289
[54] Yuan, Y., Chen, X., Zhang, L., Wu, J., Guo, J., Zou, D., et al. (2016) The Roles of Exercise in Bone Remodeling and in Prevention and Treatment of Osteoporosis. Progress in Biophysics and Molecular Biology, 122, 122-130.
https://doi.org/10.1016/j.pbiomolbio.2015.11.005
[55] Zhang, L., Zheng, Y.L., Wang, R., Wang, X.Q. and Zhang, H. (2022) Exercise for Osteoporosis: A Literature Review of Pathology and Mechanism. Frontiers in Immunology, 13, Article ID: 1005665.
https://doi.org/10.3389/fimmu.2022.1005665
[56] Stewart, L.K., Flynn, M.G., Campbell, W.W., Craig, B.A., Robinson, J.P., McFarlin, B.K., et al. (2005) Influence of Exercise Training and Age on CD14+ Cell-Surface Expression of Toll-Like Receptor 2 and 4. Brain, Behavior, and Immunity, 19, 389-397.
https://doi.org/10.1016/j.bbi.2005.04.003