高分辨率血管壁成像评估颅内动脉瘤稳定性的研究进展
Research Progress in Evaluating the Stability of Intracranial Aneurysms with High Resolution Vascular Wall Imaging
DOI: 10.12677/ACM.2024.141160, PDF, HTML, XML, 下载: 81  浏览: 124 
作者: 曾 星, 贾 琳*:新疆医科大学第一附属医院影像中心,新疆 乌鲁木齐
关键词: 高分辨率血管壁成像颅内动脉瘤动脉瘤稳定性动脉瘤壁强化High Resolution Vascular Wall Imaging Intracranial Aneurysms Aneurysm Stability Aneurysm Wall Enhancement
摘要: 与传统血管成像技术(CTA、MRA及DSA)相比,高分辨血管壁成像技术不仅可以提供动脉瘤不同时期的形态学特征,更可以清晰的显示血管壁的结构,钆对比剂注射后还可以反映出血管壁的炎性改变,通过评估动脉瘤壁强化,从而评估颅内动脉瘤的稳定性。本文对HR-VWI在评估颅内动脉瘤稳定性的研究进展进行综述。
Abstract: Compared with traditional angiography techniques (CTA, MRA and DSA), high-resolution vascular wall imaging can not only provide the morphological characteristics of aneurysms at different peri-ods, but also clearly display the structure of the vascular wall. After injection of gadolinium contrast agent, it can also reflect the inflammatory changes of the vascular wall, and evaluate the stability of intracranial aneurysms by evaluating the strengthening of the aneurysm wall. This article reviews the research progress of HR-VWI in evaluating the stability of intracranial aneurysms.
文章引用:曾星, 贾琳. 高分辨率血管壁成像评估颅内动脉瘤稳定性的研究进展[J]. 临床医学进展, 2024, 14(1): 1111-1116. https://doi.org/10.12677/ACM.2024.141160

1. 引言

未破裂的颅内动脉瘤(Unruptured intracranial aneurysms, UIAs)的发病率很高,全球3%~5%的成年人可能患有动脉瘤 [1] 。但是动脉瘤性蛛网膜下腔出血(Aneurysmal subarachnoid hemorrhage, aSAH)的发病率却很低(每年每10万人中只有3~50例) [2] [3] ,这表明大多数未破裂动脉瘤是没有症状表现的。动脉瘤破裂发生的危险因素很多,包括动脉瘤特异性(大小、形态和位置)和患者特异性(年龄、种族、性别、aSAH病史和高血压)因素;其中一些包含在破裂预测模型中,例如PHASES评分 [4] ,但是,它们的临床应用并不广泛;尽管大多数未破裂动脉瘤都很小(破裂风险最低) [5] ,但是大多数破裂的动脉瘤也很小,这一观察结果被称为“动脉瘤悖论”,强调了动脉瘤不稳定性生物标志物的必要性,特别是在评估常见的、小的未破裂动脉瘤时。由于非侵入式神经血管成像技术的广泛应用,偶然发现动脉瘤的检出率增加,这表现更加明显 [6] 。

目前,评估颅内动脉的传统成像技术有磁共振血管造影(Magnetic resonance angiography, MRA)、计算机断层扫描血管成像(Computed tomography angiography, CTA)和数字减影血管造影(Digital subtraction angiography, DSA),这些成像技术倾向于显示血管腔的情况,缺乏对血管壁及灌注的评估。但是,管腔的改变例如狭窄和扩张一般是因为血管壁损伤引起的,因此这些传统的管腔成像技术在评估IA方面还是有一定的局限性。高分辨率磁共振血管壁成像(High-resolution magnetic resonance vessel wall imaging, HR-MR VWI)是一种能够提供动脉瘤壁特征信息的新兴技术模式 [7] ,目前已应用于许多不同类型的颅内血管病,从动脉瘤到狭窄闭塞性血管病;HR-VWI能给我们提供管腔信息,使我们能直接可视化血管壁中的病理部位,从而使我们能够研究疾病机制;HR-MR VWI的成像原理是通过抑制血管内血流还有血管外脑脊液的信号,利用高对比度分辨率和高空间分辨率,只显示血管壁的信号,使血管壁结构可视化成为可能 [7] 。

2. 动脉瘤壁强化

Matouk CC等人 [8] 首先提出使用HR-MR VWI来识别动脉瘤性SAH的破裂部位,他们发现与未破裂的IA相比,破裂的IA在所有病例中表现出厚壁强化。HR-MR VWI现在被提出用于根据动脉瘤壁强化(AWE)的存在来识别容易破裂的不稳定IA。Santarosa C等 [7] 提出已有定性和定量方法可用于评估AWE,最简单的方法是区分有或没有动脉瘤壁强化的IA;其他的定性方法是将AWE分为无强化/轻微强化/明显强化 [9] 、局灶性强化/环形强化 [10] [11] 或薄壁强化/厚壁强化 [10] 。Nagahata等 [9] 将“明显的AWE”定义为动脉瘤增强,与脉络丛或静脉丛的动脉瘤增强相同,“轻微的AWE”定义为造影剂扫描前后壁信号强度增加;他们的结果显示,破裂动脉瘤组有78.3%的动脉瘤出现了瘤壁强化,而未破裂组只有4.8%的强化率,破裂组的动脉瘤瘤壁强化程度明显高于未破裂组的瘤壁强化。但是,瘤壁强化程度的高低与动脉瘤发生发展之间的关系还有待进一步验证。2018年,Edjlali等 [10] 提出了将AWE分为4级:0级——无强化;1级——局灶性厚壁强化(>1 mm);2级——薄壁环形强化(≤1 mm);3级——厚壁环形强化(>1 mm),他们发现环形强化的是大约90%增大或破裂的动脉瘤,而稳定的动脉瘤只有30%出现这一特征。AWE评估的定量方法根据壁强化指数(WEI)的测量值,该指数定义是钆剂注射前后IA壁信号强度的变化,或动脉瘤与垂体柄强化比率的测量 [7] ;结果表明,破裂动脉瘤组的动脉瘤壁强化指数显著高于未破裂组。这些研究都表明,IA的瘤壁是否强化以及强化程度与动脉瘤是否稳定有关,然而IA的瘤壁发生的炎性改变又与动脉瘤的稳定性密切相关,因此我们认为或可将AWE作为血管壁炎性反应的标志。

2.1. 瘤壁强化与动脉瘤特征

多项研究提出AWE的存在与IA的解剖学特征相关,如大小、位置和形状。他们的研究结果 [12] [13] [14] 表明较大的IA中的AWE更高;但是,在较小的IAs (尺寸 < 7 mm)中也会出现AWE [14] ;高深度/颈宽长宽比被证明与较高的AWE相关 [13] [15] ;较大的AWE值多见于位于大脑前动脉、后交通动脉、后循环动脉或大脑中动脉的IAs [14] 。在临床使用的评分(PHASES、UIAT和ELAPSS评分)中,其中一些位置被认为具有破裂的高风险;不规则的IA形状可能会导致与内皮功能障碍相关的血流模式改变,进而导致通透性增加或造影剂停滞,尽管情况并不一定总是如此,但是IA不规则形状存在时,通常会观察到比较高的AWE [15] [16] [17] [18] [19] 。子囊的存在与异质性AWE有关,AWE存在于动脉瘤的主囊中,但在子囊中通常不存在 [16] 。

有人认为IA的形成、重塑以及破裂与血流动力学力有关,Shimizu等 [20] 在最近对大鼠进行的一项研究中证明,低壁剪切应力(WSS,即每单位面积流动的血液对动脉壁施加的切向力)和高振荡剪切指数(OSI,即WSS波动的大小与心动周期的函数)与动脉瘤生长区域共同定位,并且这些区域被巨噬细胞高度浸润;AWE与低时间平均WSS、低最大OSI和大的低剪切面积共定位 [21] [22] [23] ,表明AWE与低WSS条件相关,但有必要进一步研究血流动力学与AWE之间的联系。一些研究调查了AWE是否与临床上用于评估特定IA破裂风险的评分相关,结果显示AWE与PHASES评分、UIAT评分或ELAPSS评分呈正相关 [12] [21] ,然而,也有研究 [13] 表明UIAT评分与AWE之间也不存在相关性。Hartman等 [24] 描述,PHASES评分 > 3分的IA更常出现壁薄和AWE。到目前为止,还没有证据表明AWE与吸烟状况、每日使用乙酰水杨酸或他汀类药物、高血压、性别、糖尿病或IAs家族史之间存在关联 [13] [14] [18] [19] 。

2.2. 瘤壁强化与动脉瘤的瘤壁组成

在发生动脉瘤性蛛网膜下腔出血的情况下,Matouk CC等人 [8] 首先使用AWE来识别责任动脉瘤。事实上,几乎所有破裂的IA在成像中都会出现瘤壁的强化,在这类破裂的IA中,基于术中检查以及组织学检查,AWE与炎症细胞浸润 [9] [25] 或者与动脉瘤的破裂部位存在止血血栓有关;更具体地说,有研究发现环形AWE与大量炎症反应和新生血管形成的关系更为密切,而局灶性AWE似乎更多的出现在新鲜腔内血栓潴留造影剂的情况下 [26] 。因为炎症也见于未破裂的IA [27] ,并且容易导致IA不稳定,因此建议使用AWE的有/无来区分稳定和不稳定的未破裂IA;AWE与未破裂IA壁内中性粒细胞或巨噬细胞的存在呈正相关 [17] [19] [28] [29] 。在出现AWE但是没有髓过氧化物酶活性的动脉瘤中,存在病理性滋养血管 [28] ;病理性的滋养血管十分脆弱,很容易出血破裂造成血液外渗,同时将造影剂以及一些炎性细胞运输到动脉瘤壁。病理性滋养血管通常在非病变颅内动脉中不存在,但它们可以在动脉粥样硬化性病变和血管壁重塑的缺氧情况下出现;因此,在动脉瘤壁中发生动脉粥样硬化性病变和新生血管形成时,就可以看到AWE的出现 [17] [19] [29] 。另外,未破裂IA中的动脉粥样硬化斑块似乎与局灶性AWE比均匀性AWE更相关 [17] 。Ishii等 [30] 通过比较未破裂IA管腔和载瘤动脉的脂蛋白(a)浓度,发现较高的脂蛋白(a)浓度与未破裂IA的AWE增加有关,血栓形成的动脉瘤壁的AWE也更高 [15] [19] 。Matsushige等 [16] 报道,分别在薄壁(20~50 μm)和厚壁(120~320 μm)中观察到局灶性和环形AWE。总而言之,对未破裂的IA进行的研究表明,AWE可能是由于壁增厚伴炎性细胞浸润和滋养血管的存在、壁变薄伴内皮屏障完整性受损或壁内血肿。

2.3. 临床中瘤壁强化的应用

对于破裂的IA,AWE可用于识别多发性IA患者的责任动脉瘤。基于AWE的模式,识别腔内血栓(局灶性AWE),提示IA破裂的部位,有助于临床治疗 [31] 。目前,在日常临床实践中使用HR-MR VWI检测和解释未破裂IA中的AWE尚未达成共识。然而,无论使用何种方法对AWE的缺失/存在进行分类或对AWE进行分级,不同的研究人员似乎都能够使用HR-MR VWI区分稳定和不稳定的IA。最近一篇系统综述和荟萃分析文章 [32] 纳入了6项研究的500多例动脉瘤,结果显示,AWE筛查不稳定IA的敏感性较高(95%);重要的是,作者还表明,AWE的缺失与IA稳定性密切相关(阴性预测值为96%)。Gariel等 [33] 在一项前瞻性队列研究中纳入了2例未破裂的小IA,随访了25年,已经证明AWE增加是IA壁生长和不稳定性的标志。在两项回顾性纵向研究中 [16] [34] ,作者发现,与稳定型IA相比,有形态学改变的IA患者更常见AWE。目前关于HR-VWI在颅内动脉瘤患者中的临床应用的证据有限,HR-VWI尚未在任何临床研究中得到验证,也可能不能一致地用于临床决策,所以仍需要更长的纵向随访研究来确认AWE作为壁不稳定性的独立生物标志物的使用。

3. 小结

HR-VWI对IA疾病来说是一个非常有前途的工具,目前的证据表明,HR-VWI可能成为动脉瘤不稳定和破裂风险的一个重要的非侵入性生物标志物,能更好地表征动脉瘤壁(不稳定性),为颅内动脉瘤的治疗提供新的见解,帮助临床医生决定观察或治疗未破裂的IA。重要的是,动脉瘤没有强化可能反映了稳定、未破裂的表型,更大规模的多中心前瞻性研究将促进HR-VWI在常规临床实践中的广泛应用。

NOTES

*通讯作者。

参考文献

[1] Vlak, M.H., Algra, A., Brandenburg, R. and Je Rinkel, G. (2011) Prevalence of Unruptured Intracranial Aneurysms, with Emphasis on Sex, Age, Comorbidity, Country, and Time Period: A Systematic Review and Meta-Analysis. The Lancet Neurology, 10, 626-636.
https://doi.org/10.1016/S1474-4422(11)70109-0
[2] Tminan, N. and Rinkel, G.J. (2016) Unruptured Intracranial Aneurysms: Development, Rupture and Preventive Management. Nature Reviews Neu-rology, 12, 699-713.
https://doi.org/10.1038/nrneurol.2016.150
[3] de Rooij, N.K., Linn, F.H., van der Plas, J.A., et al. (2007) Incidence of Subarachnoid Haemorrhage: A Systematic Review with Emphasis on Region, Age, Gender and Time Trends. Journal of Neurology, Neurosurgery and Psychiatry, 78, 1365-1372.
https://doi.org/10.1136/jnnp.2007.117655
[4] Bijlenga, P., Gondar, R., Schilling, S., et al. (2017) PHASES Score for the Management of Intracranial Aneurysm: A Cross-Sectional Population-Based Retrospective Study. Stroke, 48, 2105-2112.
https://doi.org/10.1161/STROKEAHA.117.017391
[5] Wiebers, D.O., Whisnant, J.P., Huston III., J., et al. (2003) Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treat-ment. Lancet, 362, 103-110.
https://doi.org/10.1016/S0140-6736(03)13860-3
[6] Etminan, N. and Rinkel, G.J. (2015) Cerebral Aneurysms: Cerebral Aneurysm Guidelines—More Guidance Needed. Nature Reviews Neurology, 11, 490-491.
https://doi.org/10.1038/nrneurol.2015.146
[7] Santarosa, C., Cord, B., Koo, A., Bhogal, P., Malhotra, A., Pay-abvash, S., Minja, F.J. and Matouk, C.C. (2020) Vessel Wall Magnetic Resonance Imaging in Intracranial Aneurysms: Principles and Emerging Clinical Applications. Interventional Neuroradiology, 26, 135-146.
https://doi.org/10.1177/1591019919891297
[8] Matouk, C.C., Mandell, D.M., Gunel, M., Bulsara, K.R., Mal-hotra, A., Hebert, R., Johnson, M.H., Mikulis, D.J. and Minja, F.J. (2013) Vessel Wall Magnetic Resonance Imaging Identifies the Site of Rupture in Patients with Multiple Intracranial Aneurysms: Proof of Principle. Neurosurgery, 72, 492-496.
https://doi.org/10.1227/NEU.0b013e31827d1012
[9] Agahata, S., Nagahata, M., Obara, M., Kondo, R., Minagawa, N., Sato, S., Sato, S., Mouri, W., Saito, S. and Kayama, T. (2016) Wall Enhancement of the Intracranial An-eurysms Revealed by Magnetic Resonance Vessel Wall Imaging Using Three-Dimensional Turbo Spin-Echo Sequence with Motion-Sensitized Driven-Equilibrium: A Sign of Ruptured Aneurysm? Clinical Neuroradiolog, 26, 277-283.
https://doi.org/10.1007/s00062-014-0353-z
[10] Edjlali, M., Guedon, A., Ben Hassen, W., Boulouis, G., Ben-zakoun, J., Rodriguez-Regent, C., Trystram, D., Nataf, F., Meder, J.F., Turski, P., Oppenheim, C. and Naggara, O. (2018) Circumferential Thick Enhancement at Vessel Wall MRI Has High Specificity for Intracranial Aneurysm Instabil-ity. Radiology, 289, 181-187.
https://doi.org/10.1148/radiol.2018172879
[11] Fu, Q., Guan, S., Liu, C., Wang, K. and Cheng, J. (2018) Clinical Significance of Circumferential Aneurysmal Wall Enhancement in Symptomatic Patients with Unruptured Intracranial Aneurysms: A High-Resolution MRI Study. Clinical Neuroradiology, 28, 509-514.
https://doi.org/10.1007/s00062-017-0598-4
[12] Petridis, A.K., Filis, A., Chasoglou, E., Fischer, I., Dibue-Adjei, M., Bostelmann, R., Steiger, H.J., Turowski, B. and May, R. (2018) Aneurysm Wall Enhancement in Black Blood MRI Correlates with Aneurysm Size. Black Blood MRI Could Serve as an Objective Criterion of Aneurysm Stability in Near Future. Clinics and Practice, 8, Article 1089.
https://doi.org/10.4081/cp.2018.1089
[13] Roa, J.A., Sabotin, R.P., Varon, A., Raghuram, A., Patel, D., Morris, T.W., Ishii, D., Lu, Y., Hasan, D.M. and Samaniego, E.A. (2021) Performance of Aneurysm Wall Enhancement Com-pared with Clinical Predictive Scales: PHASES, ELAPSS, and UIATS. World Neurosurgery, 147, e538-e551.
https://doi.org/10.1016/j.wneu.2020.12.123
[14] Samaniego, E.A., Roa, J.A. and Hasan, D. (2019) Vessel Wall Imaging in Intracranial Aneurysms. Journal of NeuroInterventional Surgery, 11, 1105-1112.
https://doi.org/10.1136/neurintsurg-2019-014938
[15] Wang, G.X., Wen, L., Lei, S., Ran, Q., Yin, J.B., Gong, Z.L. and Zhang, D. (2018) Wall Enhancement Ratio and Partial Wall Enhancement on MRI Associated with the Rupture of Intracranial Aneurysms. Journal of NeuroInterventional Surgery, 10, 566-570.
https://doi.org/10.1136/neurintsurg-2017-013308
[16] Matsushige, T., Shimonaga, K., Ishii, D., Sakamoto, S., Hosogai, M., Hashimoto, Y., Kaneko, M., Ono, C., Mizoue, T. and Kurisu, K. (2019) Vessel Wall Imaging of Evolving Unruptured Intracranial Aneurysms. Stroke, 50, 1891-1894.
https://doi.org/10.1161/STROKEAHA.119.025245
[17] Quan, K., Song, J., Yang, Z., Wang, D., An, Q., Huang, L., Liu, P., Li, P., Tian, Y., Zhou, L. and Zhu, W. (2019) Validation of Wall Enhancement as a New Imaging Biomarker of Unruptured Cerebral Aneurysm. Stroke, 50, 1570-1573.
https://doi.org/10.1161/STROKEAHA.118.024195
[18] Zhang, Y., Fu, Q., Wang, Y., Cheng, J., Ren, C., Guan, S. and Zhu, C. (2020) Qualitative and Quantitative Wall Enhancement Analyses in Unruptured Aneurysms Are Associated with an Increased Risk of Aneurysm Instability. Frontiers in Neuroscience, 14, Article 580205.
https://doi.org/10.3389/fnins.2020.580205
[19] Zhong, W., Su, W., Li, T., Tan, X., Chen, C., Wang, Q., Wang, D., Su, W. and Wang, Y. (2021) Aneurysm Wall Enhancement in Unruptured Intracranial Aneurysms: A Histopathological Evaluation. Journal of the American Heart Association, 10, e018633.
https://doi.org/10.1161/JAHA.120.018633
[20] Shimizu, K., Kataoka, H., Imai, H., Yamamoto, Y., Yamada, T., Miyata, H., Koseki, H., Abekura, Y., Oka, M., Kushamae, M., Ono, I., Miyamoto, S., Nakamura, M. and Aoki, T. (2021) Hemodynamic Force as a Potential Regulator of Inflammation-Mediated Focal Growth of Saccular Aneurysms in a Rat Model. Journal of Neuropathology & Experimental Neurology, 80, 79-88.
https://doi.org/10.1093/jnen/nlaa131
[21] Larsen, N., Fluh, C., Saalfeld, S., Voss, S., Hille, G., Trick, D., Wodarg, F., Synowitz, M., Jansen, O. and Berg, P. (2020) Multimodal Validation of Focal Enhancement in Intracranial Aneu-rysms as a Surrogate Marker for Aneurysm Instability. Neuroradiology, 62, 1627-1635.
https://doi.org/10.1007/s00234-020-02498-6
[22] Xiao, W., Qi, T., He, S., Li, Z., Ou, S., Zhang, G., Liu, X., Huang, Z. and Liang, F. (2018) Low Wall Shear Stress Is Associated with Local Aneurysm Wall Enhancement on High-Resolution MR Vessel Wall Imaging. American Journal of Neuroradiology, 39, 2082-2087.
https://doi.org/10.3174/ajnr.A5806
[23] Zhang, M., Peng, F., Tong, X., Feng, X., Li, Y., Chen, H., Niu, H., Zhang, B., Song, G., Li, Y., Liu, P., Liu, A. and Li, R. (2021) Associations between Haemodynamics and Wall Enhancement of Intracranial Aneurysm. Stroke and Vascular Neurology, 6, 467-475.
https://doi.org/10.1136/svn-2020-000636
[24] Hartman, J.B., Watase, H., Sun, J., Hippe, D.S., Kim, L., Levitt, M., Sekhar, L., Balu, N., Hatsukami, T., Yuan, C. and Mossa-Basha, M. (2019) Intracranial Aneurysms at Higher Clinical Risk for Rupture Demonstrate Increased Wall Enhancement and Thinning on Multicontrast 3D Vessel Wall MRI. The British Journal of Radiology, 92, Article ID: 20180950.
https://doi.org/10.1259/bjr.20180950
[25] Hu, P., Yang, Q., Wang, D.D., Guan, S.C. and Zhang, H.Q. (2016) Wall Enhancement on High-Resolution Magnetic Resonance Im-aging May Predict an Unsteady State of an Intracranial Saccular Aneurysm. Neuroradiology, 58, 979-985.
https://doi.org/10.1007/s00234-016-1729-3
[26] Matsushige, T., Shimonaga, K., Mizoue, T., Hosogai, M., Hash-imoto, Y., Kaneko, M., Ono, C., Ishii, D., Sakamoto, S. and Kurisu, K. (2019) Focal Aneurysm Wall Enhancement on Magnetic Resonance Imaging Indicates Intraluminal Thrombus and the Rupture Point. World Neurosurgery, 127, e578-e584.
https://doi.org/10.1016/j.wneu.2019.03.209
[27] Gade, P.S., Tulamo, R., Lee, K.W., Mut, F., Ol-likainen, E., Chuang, C.Y., Jae Chung, B., Niemela, M., Rezai Jahromi, B., Aziz, K., Yu, A., Charbel, F.T., Amin-Hanjani, S., Frosen, J., Cebral, J.R. and Robertson, A.M. (2019) Calcification in Human Intracranial Aneurysms Is Highly Prevalent and Displays Both Atherosclerotic and Nonatherosclerotic Types. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 2157-2167.
https://doi.org/10.1161/ATVBAHA.119.312922
[28] Larsen, N., von der Brelie, C., Trick, D., Riedel, C.H., Lind-ner, T., Madjidyar, J., Jansen, O., Synowitz, M. and Fluh, C. (2018) Vessel Wall Enhancement in Unruptured Intracrani-al Aneurysms: An Indicator for Higher Risk of Rupture? High-Resolution MR Imaging and Correlated Histologic Find-ings. American Journal of Neuroradiology, 39, 1617-1621.
https://doi.org/10.3174/ajnr.A5731
[29] Shimonaga, K., Matsushige, T., Ishii, D., Sakamoto, S., Hosogai, M., Kawasumi, T., Kaneko, M., Ono, C. and Kurisu, K. (2018) Clini-copathological Insights from Vessel Wall Imaging of Unruptured Intracranial Aneurysms. Stroke, 49, 2516-2519.
https://doi.org/10.1161/STROKEAHA.118.021819
[30] Ishii, D., Zanaty, M., Roa, J.A., Li, L., Lu, Y., Sabotin, R., Allan, L., Samaniego, E.A. and Hasan, D.M. (2021) Concentration of Lp(a) (Lipoprotein[a]) in Aneurysm Sac Is Asso-ciated with Wall Enhancement of Unruptured Intracranial Aneurysm. Stroke, 52, 1465-1468.
https://doi.org/10.1161/STROKEAHA.120.032304
[31] Matsushige, T., Shimonaga, K., Mizoue, T., Hosogai, M., Hashimoto, Y., Takahashi, H., Kaneko, M., Ono, C., Ishii, D., Sakamoto, S. and Kurisu, K. (2019) Lessons from Vessel Wall Imaging of Intracranial Aneurysms: New Era of Aneurysm Evaluation beyond Morphology. Neurologia Medi-co-Chirurgica, 59, 407-414.
https://doi.org/10.2176/nmc.ra.2019-0103
[32] Texakalidis, P., Hilditch, C.A., Lehman, V., Lanzino, G., Pereira, V.M. and Brinjikji, W. (2018) Vessel Wall Imaging of Intracranial Aneurysms: Systematic Review and Meta-Analysis. World Neurosurgery, 117, e451.
https://doi.org/10.1016/j.wneu.2018.06.008
[33] Gariel, F., Ben Hassen, W., Boulouis, G., Bourcier, R., Trystram, D., Legrand, L., Rodriguez-Regent, C., Saloner, D., Oppenheim, C., Naggara, O. and Edjlali, M. (2020) Increased Wall Enhancement during Follow-Up as a Predictor of Subsequent Aneurysmal Growth. Stroke, 51, 1868-1872.
https://doi.org/10.1161/STROKEAHA.119.028431
[34] Vergouwen, M.D.I., Backes, D., van der Schaaf, I.C., Hendrikse, J., Kleinloog, R., Algra, A. and Rinkel, G.J.E. (2019) Gadolinium Enhancement of the Aneurysm Wall in Unruptured Intracranial Aneurysms Is Associated with an Increased Risk of Aneurysm Instability: A Follow-Up Study. American Journal of Neuroradiology, 40, 1112-1116.
https://doi.org/10.3174/ajnr.A6105