慢性意识障碍相关概念及评估手段的文献回顾
Literature Review of Related Concepts and Assessment Methods of Chronic Disturbance of Consciousness
DOI: 10.12677/ACM.2024.141233, PDF, HTML, XML, 下载: 82  浏览: 138 
作者: 杨浩啸雨:西安医学院研究生工作部,陕西 西安;缪星宇*:陕西省人民医院神经外科,陕西 西安
关键词: 慢性意识障碍植物状态最小意识状态评估方法Prolonged Disturbance of Consciousness Vegetative State Minimum State of Consciousness Assessment Method
摘要: 慢性意识障碍是神经外科医生临床上常见的脑神经创伤后不良并发症之一,但关于其下各分类概念甚是相近,医生在临床工作中快速且准确地识别出患者当前所处的意识状态难度较大。因此本篇文章针对慢性意识障碍概念及临床评估方法进行了详细的文献回顾。
Abstract: Prolonged disturbance of consciousness is one of the common post-traumatic complications of neu-rosurgeons, but the concepts of its classification are very similar. It is difficult for doctors to quickly and accurately identify the current state of consciousness of patients in clinical work. Therefore, this article makes a detailed literature review on the concept and clinical evaluation methods of chronic disturbance of consciousness.
文章引用:杨浩啸雨, 缪星宇. 慢性意识障碍相关概念及评估手段的文献回顾[J]. 临床医学进展, 2024, 14(1): 1620-1628. https://doi.org/10.12677/ACM.2024.141233

1. 背景

自人类发展史以来,人们对意识的探究从未停歇,甚至针对意识是什么这一问题衍生了众多学派,但无论哪一种流派对意识的解释大多都为同义重复和自身指代 [1] 。直至目前,世界范围内比较能接受的关于意识的说法是:个体对自身存在、思维、感觉和知觉的主观体验和认知。它是我们的主观体验的核心,涉及我们对自己和世界的知觉、思考、情感和意义的感知。意识使我们能够感知和理解自己的思维过程、情绪状态、身体感觉以及外部世界的事物和事件。它是我们与世界互动和理解自己的基础。并且现代医学检查技术,例如,脑电图(EEG)和功能性磁共振成像(fMRI)等可以监测到不同意识状态下大脑的活动模式 [2] [3] 。此外,临床实践中也发现,意识丧失的病人往往伴随着严重的脑部损伤或疾病,因此临床研究者们发现个体的意识状态与其神经功能的完整性密切相关 [4] 。这意味着,意识可以分为两个相辅相成的部分:意识水平(level of consciousness)或觉醒(arousal)以及意识内容(contents of consciousness)或感知(awareness) [5] ,前者由脑干上行网状激活系统支持,保持大脑皮层的兴奋,维持觉醒状态,若该系统受到干扰或破坏,人体则可出现相应意识障碍(DoC)轻如嗜睡、重如昏迷(coma)。

站在神经解剖角度:觉醒的发生是感觉信息从脑干神经核团发出后通过网状丘脑皮质和丘脑外通路投射并激活大脑皮层的过程。站在神经电生理角度:觉醒状态与皮质丘脑系统内的高能量需求和电活动有关。脑电记录(EEG)进一步证实了这一点,它表明觉醒水平的高低与大脑皮层中电活动的频率的高低呈正相关 [6] 。因此皮质丘脑网络的完整性遭到破坏可以解释在严重脑损伤中出现的觉醒功能障碍 [1] 。而意识内容则由脑皮质及皮质下结构支持,其包括各种高级皮层功能如注意力、意向、记忆、感觉、知觉、情绪、情感等。典型的意识内容受损的意识障碍比如谵妄状态。感知是指个体以综合的方式对外部和内部刺激做出相应反应的能力。站在神经解剖角度相关研究表明:脑额顶叶和丘脑的连通性在感知的维持中起到了关键作用 [7] 。前脑中游回路(包括额叶和前额叶皮层以及纹状顶负反馈回路)和额顶叶网络与DoC恢复期间大脑活动的恢复一致,该回路平行于皮质丘脑的直接投射,并影响丘脑投射到皮质和纹状体 [8] [9] 。这一猜想得到了功能磁共振(fMRI)研究的支持,表明DOC患者大脑的额顶叶网络的连接与沟通受到了干扰 [10] 。

还有相关研究表明,在健康个体中,觉醒程度的上升与感知的线性增加有关 [11] 。在意识障碍状态下,这两部分意识成分会发生不同程度的分离,如植物状态(vegetative state, VS)和最小意识状态(MCS)。意识障碍是指个体意识的维持和激活发生异常,包括意识清晰度的改变、意识内容的改变或意识丧失。它是一种常见的临床症状,可能是由于包括脑血管意外在内的多种原因引起的。意识障碍程度由轻到重可以表现为嗜睡、意识模糊、昏睡、谵妄、昏迷等不同程度的症状。其中昏迷是最严重的意识障碍类型,它描述的是一种更深层次的无反应状态(昏迷),明确的临床特征是指完全不能自发性或在受刺激后引起觉醒 [1] 。不能自主睁眼并且脑电图不能显示明显的睡眠–觉醒周期也没有言语或有目的的运动活动,遵循命令或感觉刺激。这种意识状态的出现往往和弥漫性皮质、白质、双侧丘脑或局灶性旁正中被盖核或脑干功能等的损害相关 [1] 。

在此过程中,大脑的警觉和唤醒功能以及意识和意识的内容都会受到影响 [12] 。通常,在解除导致患者昏迷的诱因后昏迷患者往往能很快恢复意识,其要与晕厥、脑震荡或其他短暂性无意识状态明确区分,若要诊断昏迷,意识丧失必须持续至少1小时。一般来说,解除诱因后患者昏迷状态的维持时间不会太长存活下来的昏迷患者会在2~4周内开始苏醒并逐渐恢复 [1] [13] ,真正意义上的持续性昏迷状态十分罕见,在此不做讨论。昏迷幸存者可能会转归为以下几种状态:脑死亡、恢复知觉、VS或MCS,对于后两种情况的患者,若其意识障碍程度持续28天没有改善迹象则被称为慢性意识障碍(pDoC) [14] 。慢性意识障碍是神经外科常见的脑神经创伤后不良并发症之一,虽然关于慢性意识障碍下各个子分类的概念早已提出,但由于其概念内容相近且临床评估方法相对复杂,因此临床医生在临床工作中常不能快速地准确评估患者当前所处的意识状态,这可能会使临床医生对其病情产生错误的认知,从而延误患者接受及时治疗的时机。因此笔者在此首先阐述一下各种意识障碍状态的准确定义。

2. 概念阐述

2.1. 脑死亡

虽然受到各个国家或地区的法律及宗教信仰的影响,脑死亡或者说在神经学诊断标准下的死亡(DNC)在世界范围上的定义并不完全相同,但目前比较能被世界范围内广泛接受的共同标准主要基于昏迷评估和脑干反射障碍评估:(1) 瞳孔位置大小固定不变,直径可以在正常范围或散大,且对光反射消失;(2) 角膜反射、头眼反射和前庭–眼反射消失;(3) 对伤害性颅脑刺激面部无运动;(4) 双侧咽后部刺激不引发呕吐反射;(5) 深部吸痰时咳嗽反射消失;(6) 对肢体的伤害性刺激没有大脑介导的运动反应 [15] [16] [17] [18] 。

2.2. VS

VS指的是病人能觉醒,但不能感知自身状况或周围环境,这个概念首先由Jennett和Plum等人提出,他们引用了牛津英语词典对“vegetative”一词的解释,因VS患者仅过着“没有智力活动或社会交往的肉体生活”,所以我们可以把VS患者定义为“能够生长发育但没有感知的个体” [19] 。患者可以被外部刺激唤醒,但没有意识的感知或自发行动的迹象 [6] 。持续植物状态(Persistent vegetative state)指的是急性创伤性或非创伤性脑损伤后持续1个月的VS,此阶段常被认为是可逆的。而永久性植物状态(Permanent vegetative state)通常指的是非创伤性脑损伤后VS持续3个月或创伤性脑损伤后VS持续12个月,此阶段常备认为是不可逆的。这些评估方法适用于弥漫性创伤性脑损伤和缺氧后事件的患者,而对于其他非创伤性起源所导致的VS,预后可能不太好预测,判断预后时还需要进一步考虑导致VS的病因和机制 [20] [21] 。

2.3. MCS

对于一些保持最低限度的意识的pDoC患者,他们可以出现重复的不完全一致的命令遵循。根据Aspen团队于2002年提出的MCS诊断标准,MCS患者可以遵循简单的命令,对部分简单问题通过手势或声音表达给出是或否的反馈(不论正确率),发出可理解的词句,做出有目的性的行为(包括与环境刺激相关而发生的运动或情感行为的表达,这需要与反射性活动进行鉴别) [4] ,此类患者进一步改善的可能比VS患者更大 [22] 。近年来,研究者们根据对MCS患者的深入研究观察,基于其行为反应的复杂性,将MCS进一步细分,即MCS+、MCS− [23] 。患者脱离MCS的关键是判断其是否产生功能性交流或使用物体的能力程度高低 [24] 。

2.4. 混乱状态(Confusional State)

DoC患者一旦脱离MCS,会经历一段短暂的混乱和烦躁时期。主要症状包括:易怒、注意力不集中、顺行性遗忘、烦躁不安、情绪不稳定、知觉受损、注意力异常以及睡眠–觉醒周期紊乱 [25] 。造成这种状态的一个关键原因是行为反应的日常波动。尽管有环境因素干扰,但行为反应一致性的恢复可能暗示这一时期的结束 [4] 。

3. 评估方法

虽然以上这些pDoC子类的相关概念已经有明确的定义划分,但由于现实中各种DoC患者的临床特征可能并不具有典型性,临床上短时间内鉴别VS和MCS患者难度较大,而这将会影响医生对患者的后续治疗策略制定以及对患者预后判断。因此如何准确快速地区分患者处于VS还是MCS对医生的临床工作具有重要意义。目前临床上常用的评估方法包括:

3.1. 患者临床体征检查

针对患者的临床病理表现的检查是鉴别各类DOC的关键。这类检查应包含7个部分,包括睡眠–觉醒周期、意识状况、肢体运动情况、听觉功能、视觉功能、信息表达或交流能力和情绪表达 [24] 。首先,对于患者睡眠–觉醒周期的检查可以仅通过观察其间歇性睁眼活动也可结合脑电图检测,睡眠觉醒周期的出现往往提示着更好的预后。研究表明,出现类似睡眠的脑电表现可能是患者有利预后的可靠标志 [26] [27] 。并且这些患者的睡眠模式会在后续的康复治疗期间变得更加复杂,并与患者的意识的恢复同步进行 [28] 。而进一步对于患者意识存在与否的判断将有助于区分VS和MCS。主要的评估方法为:1) 功能性互动交流,患者必须通过在连续两次测试中对6个简单情景问题做出是或否的反馈(不论是否准确)。例如:“你现在处在医院吗?”或“我戴着眼镜吗?”这些反馈可以是手势、面部运动、声音;2) 物体使用,例如:患者将食物放到嘴边、电话靠近耳朵或将遥控器指向电视等 [24] 。此外,在继续剩余部分检查时候测试者还应需要注意以下几点:1) 患者对问题的反馈可以不准确,但必须可重复;2) 患者给出的反馈必须与测试者的刺激有明确关系而又不能单用反射活动解释,例患者对物体或人的视觉追踪或伸手抓拿伸直操纵物体;3) 需要测试者对患者进行严格的体格检查和用药检查,以排除失语症、运动障碍、感觉缺陷及药物等因素对患者的影响 [24] 。

3.2. 量表评估

自1974年格拉斯哥大学的神经外科教授Graham Teasdale和Bryan Jennett首次发布格拉斯哥昏迷评分(GCS)以来,其对昏迷患者预后的评估得到了国际的广泛认可 [29] 。虽然pDoC患者觉醒的深度可以用GCS来客观评估 [6] ,但GCS仅由睁眼、运动、言语三个部分组成,并不能评估患者的脑干反射及意识状况,因此随着现代医学的发展人们逐渐开发了更多能精确评估pDoC患者意识状况的量表。针对患者神经行为评估的量表需要同时具备标准化评分和检测MCS的能力。目前医学界内比较推荐用于评估MCS患者的量表是CRS-R [1] 。昏迷恢复量表(CRS)于1991年首次提出,并于2004年被修订更新(CRS-R) [30] 。多项研究已证明,CRS-R对DOC患者的诊断和意识状况的监测方面的具有高度敏感性和可靠性 [4] 。该量表涉及视觉、听觉、肢体运动、言语反应、交流和唤醒程度六个方面,每个方面可以获得的最高分数为2到6分,最高总分为23分。要想诊断MCS,除了患者需要获得一定分数外,还需要在特定项目上表现积极,例如“持续存在的遵嘱运动”、“视觉追踪”或“有害刺激定位”。在患者检查前24小时,需要停用镇静剂和其他作用于中枢的药物,并在这些药物需要在整个研究期间停用,肌肉松弛剂至少减少至有效剂量的一半。通过CRS-R,临床医生能更好的区分VS与MCS患者,从而重新评估患者预后并及时调整治疗方案 [31] 。

3.3. 影像学评估

随着近代科学的不断发展,目前能用于针对大脑的影像学检查手段主要有氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)、MRI、CT等,其中静息状态功能磁共振成像(fMRI),包括扩散张量成像(DTI),是目前作为衡量脑白质完整性的敏感指标 [32] 。然而,患者在进入包括磁共振扫描仪在内的各种仪器中进行检查时,其嘈杂且不适的环境可能会对那些无法表达其不适患者的相关神经功能检查造成相当大的影响。此外,为了防止患者在扫描仪中出现不必要的运动,检查者们经常会被迫使用肌肉松弛药进行镇静或松弛肌肉,这会导致DoC患者意识程度进一步下降,从而会导致对患者残余意识的误判。近来,基于神经影像学技术结合患者临床特征,有学者提出DoC患者的意识水平与前脑皮质丘脑环路完整性成正相关 [33] 。随着这个研究的发表,相关学者们根据前脑皮质丘脑环路的完整性进一步提出了意识觉醒的中央环路假说,该假说描述了前脑中脑网络与额顶叶网络的关系 [9] [34] - [40] ,并指出中央丘脑是连接这两个网络的关键中枢 [41] [42] [43] 。该假说目前受到了国际上的广泛认可。基于相关影像学检查及中央环路假说的四个分型我们可以更好地理解DoC患者的病情、病因,从而更好地评估相关患者的预后。

3.4. 脑电图检测

静息脑电与DOC患者的预后有关 [44] 。特别是,脑电信号的高度复杂性(即可变性)似乎预示着良好的功能结果 [45] 。此外,EEG被成功地用于研究DOC对经颅磁刺激(TMS)的有效连接 [46] 。而在VS患者,TMS只导致局部神经元反应,MCS显示复杂的激活到达更远的同侧和对侧皮质部位。我们发现静息状态下的频谱脑电,特别是其脑电峰频率功率谱可以很好地反映DOC患者的意识水平 [31] 。并且结合前文提及中央环路模型假说,研究人员将DoC患者分为A、B、C、D四个分型 [9] [35] [38] [42] [47] [48] [49] 。其中“A”指的是脑电峰频率功率谱仅出现delta频率(<4 Hz),这代表完全功能性皮质丘脑传入神经阻滞 [50] ;“B”型的特征是脑电峰频率功率谱中theta波(5~7 Hz)活动,代表着部分功能性皮质丘脑传入神经阻滞 [51] ;“C”则指脑电峰频率功率谱中出现共定位的theta和beta (15~40 Hz),这种模式的出现常意味着皮质丘脑系统传入神经通路相对完整,并且丘脑的电化学信号能被相对完整的新皮质区域接收到 [52] ;“D”常代表中央丘脑环路传入传出功能良好。利用脑电峰频率功率谱及中央环路模型分型,临床医生可以节约大量时间,很快对不同的DoC患者进行分类、诊断及预后评估。

3.5. 经颅多普勒超声(TCD)

TCD是一种利用超声多普勒效应,以颅骨较薄部位和自然骨孔(如颞骨、枕骨大孔、眼眶等)作为检测声窗,对颅内动脉血流动力学进行评估的廉价且非侵入性的检查 [53] 。目前,TCD通常用于指导一系列病理患者的治疗,包括闭塞性脑血管疾病、蛛网膜下腔出血(SAH)和外伤等 [53] 。通过MRI和PET-CT等相关影像学检查,许多研究人员发现DoC患者的脑血流量和脑代谢显著减少,并且这些变化与DoC患者病情的发展相关 [54] [55] [56] 由于大脑存在一种能自动调节血流量的复杂机制,因此,在血压波动的情况下,脑血流灌注压(CPP)可保持相对恒定 [57] [58] 。相关研究指出,基于TCD检查指标算出的平均血流指数(Mx)是评估动态脑自动调节的几种方法之一,并且其有效性和可靠性已经得到了相关文献支持。Mx这一概念是1996年由Chuosnyka团队提出,该团队研究发现CPP的波动与TCD测量大脑中动脉(MCAV)的脑血流速度之间存在明显相关性,因此他们指出Mx的增加表明大脑自我调节的恶化,而Mx的下降表明改善 [59] 。后续研究者在研究过程中发现Mx水平与GCS分值对于判断患者预后具有一致趋势,GCS分值越高(4~5分)、预后越好的患者,其Mx越低 [60] 。然而在临床当中考虑到颅内压测量可能不易实现,因此有学者提出可以用动脉血压代替颅内压结合患者MCAV,从而算出Mx的替代品Mxa,且经过相关研究Mx在临床上评估患者脑自动调节功能上和Mxa一样具有敏感性 [61] [62] 。还有相关研究指出TCD所测得的血管搏动指数(PI)是量化脑血管阻力(CVR)的可靠指标 [41] 。此外,DOC患者的CVR水平已被证明超过正常水平,且CVR的增加与PI呈正相关 [63] [64] 。因此,临床医生通过对TCD测量数据的分析也可以将DoC患者进行快速的分型及预后评估。

4. 结语

本文综述了包括脑死亡、昏迷、VS、MCS等慢性意识障碍的详细概念,并总结了当前临床上如何较为准确评估慢性意识障碍患者当前意识状态的方法。旨在帮助临床医生在医疗工作中准确地评判患者病情,并基于此做出正确的治疗,使患者受益。

参考文献

NOTES

*通讯作者。

参考文献

[1] Giacino, J.T., Fins, J.J., Laureys, S. and Schiff, N.D. (2014) Disorders of Consciousness after Acquired Brain Injury: The State of the Science. Nature Reviews Neurology, 10, 99-114.
https://doi.org/10.1038/nrneurol.2013.279
[2] Zhang, J., Zhang, H., Yan, F., et al. (2022) Investigating the Mechanism and Prognosis of Patients with Disorders of Consciousness on the Basis of Brain Networks between the Thalamus and Whole-Brain. Frontiers in Neurology, 13, Article 990686.
https://doi.org/10.3389/fneur.2022.990686
[3] Zhuang, Y., Ge, Q., Li, Q., et al. (2023) Combined Behavioral and EEG Evidence for the 70 Hz Frequency Selection of Short-Term Spinal Cord Stimulation in Disorders of Consciousness. CNS Neuroscience & Therapeutics.
https://doi.org/10.1111/cns.14388
[4] Eapen, B.C., Georgekutty, J., Subbarao, B., et al. (2017) Disorders of Consciousness. Physical Medicine and Rehabilitation Clinics of North America, 28, 245-258.
https://doi.org/10.1016/j.pmr.2016.12.003
[5] Plum, F. and Posner, J.B. (1972) The Diagnosis of Stupor and Coma. Contemporary Neurology Series, 10, 1-286.
[6] Cavanna, A.E., Shah, S., Eddy, C.M., et al. (2011) Con-sciousness: A Neurological Perspective. Behavioural Neurology, 24, 107-116.
https://doi.org/10.1155/2011/645159
[7] Laureys, S. (2005) The Neural Correlate of (un)Awareness: Lessons from the Vegetative State. Trends in Cognitive Sciences, 9, 556-559.
https://doi.org/10.1016/j.tics.2005.10.010
[8] Fridman, E.A. and Schiff, N.D. (2022) Organizing a Rational Ap-proach to Treatments of Disorders of Consciousness Using the Anterior Forebrain Mesocircuit Model. Journal of Clini-cal Neurophysiology, 39, 40-48.
https://doi.org/10.1097/WNP.0000000000000729
[9] Schiff, N.D. (2010) Recovery of Consciousness after Brain Injury: A Mesocircuit Hypothesis. Trends in Neurosciences, 33, 1-9.
https://doi.org/10.1016/j.tins.2009.11.002
[10] Crone, J.S., Soddu, A., Holler, Y., et al. (2014) Altered Network Properties of the Fronto-Parietal Network and the Thalamus in Impaired Consciousness. NeuroImage: Clinical, 4, 240-248.
https://doi.org/10.1016/j.nicl.2013.12.005
[11] Cavanna, A.E. and Ali, F. (2011) Epilepsy: The Quintes-sential Pathology of Consciousness. Behavioural Neurology, 24, Article ID: 37450.
https://doi.org/10.1155/2011/374507
[12] Samuels, M.A. (1993) The Evaluation of Comatose Patients. Hospital Practice, 28, 165-182.
https://doi.org/10.1080/21548331.1993.11442770
[13] Laureys, S., Owen, A.M. and Schiff, N.D. (2004) Brain Function in Coma, Vegetative State, and Related Disorders. The Lancet Neurology, 3, 537-546.
https://doi.org/10.1016/S1474-4422(04)00852-X
[14] Bernat, J.L. (2006) Chronic Disorders of Consciousness. The Lancet, 367, 1181-1192.
https://doi.org/10.1016/S0140-6736(06)68508-5
[15] Wijdicks, E.F. (2002) Brain Death Worldwide: Accepted Fact But No Global Consensus in Diagnostic Criteria. Neurology, 58, 20-25.
https://doi.org/10.1212/WNL.58.1.20
[16] Larson, M.D. and Muhiudeen, I. (1995) Pupillometric Analysis of the “absent Light Reflex”. Archives of Neurology, 52, 369-372.
https://doi.org/10.1001/archneur.1995.00540280051018
[17] Wijdicks, E.F., Varelas, P.N., Gronseth, G.S., et al. (2010) Evidence-Based Guideline Update: Determining Brain Death in Adults: Report of the Quality Standards Sub-committee of the American Academy of Neurology. Neurology, 74, 1911-1918.
https://doi.org/10.1212/WNL.0b013e3181e242a8
[18] Shemie, S.D., Hornby, L., Baker, A., et al. (2014) Interna-tional Guideline Development for the Determination of Death. Intensive Care Medicine, 40, 788-797.
https://doi.org/10.1007/s00134-014-3242-7
[19] Jennett, B. and Plum, F. (1972) Persistent Vegetative State after Brain Damage. A Syndrome in Search of a Name. The Lancet, 1, 734-737.
https://doi.org/10.1016/S0140-6736(72)90242-5
[20] Wilson, B.A., Gracey, F. and Bainbridge, K. (2001) Cogni-tive Recovery from “Persistent Vegetative State”: Psychological and Personal Perspectives. Brain Injury, 15, 1083-1092.
https://doi.org/10.1080/02699050110082197
[21] Menon, D.K., Owen, A.M., Williams, E.J., et al. (1998) Cortical Processing in Persistent Vegetative State. The Lancet, 352, 200.
https://doi.org/10.1016/S0140-6736(05)77805-3
[22] Giacino, J.T. (1997) Disorders of Consciousness: Differen-tial Diagnosis and Neuropathologic Features. Seminars in Neurology, 17, 105-111.
https://doi.org/10.1055/s-2008-1040919
[23] Bruno, M.A., Vanhaudenhuyse, A., Thibaut, A., et al. (2011) From Unresponsive Wakefulness to Minimally Conscious PLUS and Functional Locked-in Syndromes: Recent Advances in Our Understanding of Disorders ofConsciousness. Journal of Neurology, 258, 1373-1384.
https://doi.org/10.1007/s00415-011-6114-x
[24] Giacino, J.T., Ashwal, S., Childs, N., et al. (2002) The Minimally Conscious State: Definition and Diagnostic Criteria. Neurology, 58, 349-353.
https://doi.org/10.1212/WNL.58.3.349
[25] Sherer, M., Nakase-Thompson, R., Yablon, S.A. and Gontkovsky, S.T. (2005) Multidimensional Assessment of Acute Confusion after Traumatic Brain Injury. Archives of Physical Medicine and Rehabilitation, 86, 896-904.
https://doi.org/10.1016/j.apmr.2004.09.029
[26] Bergamasco, B., Bergamini, L., Doriguzzi, T., et al. (1968) The Sleep Cycle in Coma: Prognostic Value. Electroencephalography and Clinical Neurophysiology, 25, 87.
[27] Chatrian, G.E., White, L.J. and Daly, D. (1963) Electroencephalographic Patterns Resembling Those of Sleep in Certain Comatose States after Injuries to the Head. Electroencephalography and Clinical Neurophysiology, 15, 272-280.
https://doi.org/10.1016/0013-4694(63)90096-8
[28] Ron, S., Algom, D., Hary, D. and Cohen, M. (1980) Time-Related Changes in the Distribution of Sleep Stages in Brain Injured Patients. Electroencephalography and Clinical Neurophysiology, 48, 432-441.
https://doi.org/10.1016/0013-4694(80)90135-2
[29] Teasdale, G. and Jennett, B. (1974) Assessment of Coma and Impaired Consciousness. A Practical Scale. The Lancet, 2, 81-84.
https://doi.org/10.1016/S0140-6736(74)91639-0
[30] Kalmar, K. and Giacino, J.T. (2005) The JFK Coma Recov-ery Scale—Revised. Neuropsychological Rehabilitation, 15, 454-460.
https://doi.org/10.1080/09602010443000425
[31] Lechinger, J., Bothe, K., Pichler, G., et al. (2013) CRS-R Score in Disorders of Consciousness Is Strongly Related to Spectral EEG at Rest. Journal of Neurology, 260, 2348-2356.
https://doi.org/10.1007/s00415-013-6982-3
[32] Hermann, B., Stender, J., Habert, M.O., et al. (2021) Multimodal FDG-PET and EEG Assessment Improves Diagnosis and Prognostication of Disorders of Consciousness. NeuroImage: Clinical, 30, Article ID: 102601.
https://doi.org/10.1016/j.nicl.2021.102601
[33] Forgacs, P.B., Frey, H.P., Velazquez, A., et al. (2017) Dynamic Regimes of Neocortical Activity Linked to Corticothalamic Integrity Correlate with Outcomes in Acute Anoxic Brain In-jury after Cardiac Arrest. Annals of Clinical and Translational Neurology, 4, 119-129.
https://doi.org/10.1002/acn3.385
[34] Demertzi, A., Soddu, A. and Laureys, S. (2013) Consciousness Supporting Networks. Current Opinion in Neurobiology, 23, 239-244.
https://doi.org/10.1016/j.conb.2012.12.003
[35] Buckwalter, J.A., Parvizi, J., Morecraft, R.J. and van Hoesen, G.W. (2008) Thalamic Projections to the Posteromedial Cortex in the Macaque. Journal of Comparative Neurology, 507, 1709-1733.
https://doi.org/10.1002/cne.21647
[36] Fridman, E.A., Beattie, B.J., Broft, A., et al. (2014) Regional Cerebral Metabolic Patterns Demonstrate the Role of Anterior Forebrain Mesocircuit Dysfunction in the Severely Injured Brain. Proceedings of the National Academy of Sciences of the United States of America, 111, 6473-6478.
https://doi.org/10.1073/pnas.1320969111
[37] Raichle, M.E., MacLeod, A.M., Snyder, A.Z., et al. (2001) A De-fault Mode of Brain Function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676-682.
https://doi.org/10.1073/pnas.98.2.676
[38] Leon-Carrion, J., Leon-Dominguez, U., Pollonini, L., et al. (2012) Synchronization between the Anterior and Posterior Cortex Determines Consciousness Level in Patients with Traumatic Brain Injury (TBI). Brain Research, 1476, 22-30.
https://doi.org/10.1016/j.brainres.2012.03.055
[39] Lutkenhoff, E.S., Chiang, J., Tshibanda, L., et al. (2015) Tha-lamic and Extrathalamic Mechanisms of Consciousness after Severe Brain Injury. Annals of Neurology, 78, 68-76.
https://doi.org/10.1002/ana.24423
[40] Liu, J., Lee, H.J., Weitz, A.J., et al. (2015) Frequency-Selective Control of Cortical and Subcortical Networks by Central Thalamus. eLife, 4, e9215.
https://doi.org/10.7554/eLife.09215
[41] Gosling, R.G. and King, D.H. (1974) Arterial Assessment by Dop-pler-Shift Ultrasound. Journal of the Royal Society of Medicine, 67, 447-449.
https://doi.org/10.1177/00359157740676P113
[42] Laureys, S. and Schiff, N.D. (2012) Coma and Consciousness: Paradigms (Re)Framed by Neuroimaging. Neuroimage, 61, 478-491.
https://doi.org/10.1016/j.neuroimage.2011.12.041
[43] Thibaut, A., Di Perri, C., Chatelle, C., et al. (2015) Clinical Response to tDCS Depends on Residual Brain Metabolism and Grey Matter Integrity in Patients with Minimally Con-scious State. Brain Stimulation Journal, 8, 1116-1123.
https://doi.org/10.1016/j.brs.2015.07.024
[44] Bagnato, S., Boccagni, C., Prestandrea, C., et al. (2010) Prognostic Value of Standard EEG in Traumatic and Non- Traumatic Disorders of Consciousness following Coma. Clinical Neuro-physiology, 121, 274-280.
https://doi.org/10.1016/j.clinph.2009.11.008
[45] Fingelkurts, A.A., Fingelkurts, A.A., Bagnato, S., et al. (2011) Life or Death: Prognostic Value of a Resting EEG with Regards to Survival in Patients in Vegetative and Minimally Conscious States. PLOS ONE, 6, e25967.
https://doi.org/10.1371/journal.pone.0025967
[46] Rosanova, M., Gosseries, O., Casarotto, S., et al. (2012) Re-covery of Cortical Effective Connectivity and Recovery of Consciousness in Vegetative Patients. Brain, 135, 1308-1320.
https://doi.org/10.1093/brain/awr340
[47] Williams, S.T., Conte, M.M., Goldfine, A.M., et al. (2013) Common Resting Brain Dynamics Indicate a Possible Mechanism Underlying Zolpidem Response in Severe Brain Injury. eLife, 2, e1157.
https://doi.org/10.7554/eLife.01157
[48] Schiff, N.D., Giacino, J.T., Kalmar, K., et al. (2007) Behavioural Improvements with Thalamic Stimulation after Severe Traumatic Brain Injury. Nature, 448, 600-603.
https://doi.org/10.1038/nature06041
[49] Chatelle, C., Thibaut, A., Gosseries, O., et al. (2014) Changes in Cerebral Metabolism in Patients with a Minimally Conscious State Responding to Zolpidem. Frontiers in Human Neuroscience, 8, Article 917.
https://doi.org/10.3389/fnhum.2014.00917
[50] Timofeev, I., Grenier, F., Bazhenov, M., et al. (2000) Origin of Slow Cortical Oscillations in Deafferented Cortical Slabs. Cerebral Cortex, 10, 1185-1199.
https://doi.org/10.1093/cercor/10.12.1185
[51] Silva, L.R., Amitai, Y. and Connors, B.W. (1991) Intrinsic Oscilla-tions of Neocortex Generated by Layer 5 pyraMidal Neurons. Science, 251, 432-435.
https://doi.org/10.1126/science.1824881
[52] Llinas, R.R., Ribary, U., Jeanmonod, D., et al. (1999) Thalamocorti-cal Dysrhythmia: A Neurological and Neuropsychiatric Syndrome Characterized by Magnetoencephalography. Proceed-ings of the National Academy of Sciences of the United States of America, 96, 15222-15227.
https://doi.org/10.1073/pnas.96.26.15222
[53] Bonow, R.H., Young, C.C., Bass, D.I., et al. (2019) Transcranial Doppler Ultrasonography in Neurological Surgery and Neurocritical Care. Neurosurgical Focus, 47, E2.
https://doi.org/10.3171/2019.9.FOCUS19611
[54] Boly, M., Faymonville, M.E., Schnakers, C., et al. (2008) Per-ception of Pain in the Minimally Conscious State with PET Activation: An Observational Study. The Lancet Neurology, 7, 1013-1020.
https://doi.org/10.1016/S1474-4422(08)70219-9
[55] Levy, D.E., Sidtis, J.J., Rottenberg, D.A., et al. (1987) Dif-ferences in Cerebral Blood Flow and Glucose Utilization in Vegetative versus Locked-in Patients. Annals of Neurology, 22, 673-682.
https://doi.org/10.1002/ana.410220602
[56] Tommasino, C., Grana, C., Lucignani, G., et al. (1995) Regional Cerebral Metabolism of Glucose in Comatose and Vegetative State Patients. Journal of Neurosurgical Anesthe-siology, 7, 109-116.
https://doi.org/10.1097/00008506-199504000-00006
[57] Claassen, J., Thijssen, D., Panerai, R.B. and Faraci, F.M. (2021) Regulation of Cerebral Blood Flow in Humans: Physiology and Clinical Implications of Autoregulation. Physio-logical Reviews, 101, 1487-1559.
https://doi.org/10.1152/physrev.00022.2020
[58] Olsen, M.H., Riberholt, C.G., Mehlsen, J., et al. (2022) Reliabil-ity and Validity of the Mean Flow Index (Mx) for Assessing Cerebral Autoregulation in Humans: A Systematic Review of the Methodology. Journal of Cerebral Blood Flow & Metabolism, 42, 27-38.
https://doi.org/10.1177/0271678X211052588
[59] Czosnyka, M., Smielewski, P., Kirkpatrick, P., et al. (1996) Monitoring of Cerebral Autoregulation in Head-Injured Patients. Stroke, 27, 1829-1834.
https://doi.org/10.1161/01.STR.27.10.1829
[60] Lewis, P.M., Smielewski, P., Pickard, J.D. and Czosnyka, M. (2007) Dynamic Cerebral Autoregulation: Should Intracranial Pressure Be Taken into Account? Acta Neurochirurgica, 149, 549-555.
https://doi.org/10.1007/s00701-007-1160-y
[61] Lang, E.W., Yip, K., Griffith, J., et al. (2003) Hemispheric Asymmetry and Temporal Profiles of Cerebral Pressure Autoregulation in Head Injury. Journal of Clinical Neuroscience, 10, 670-673.
https://doi.org/10.1016/S0967-5868(03)00197-8
[62] Lang, E.W., Lagopoulos, J., Griffith, J., et al. (2003) Nonin-vasive Cerebrovascular Autoregulation Assessment in Traumatic Brain Injury: Validation and Utility. Journal of Neuro-trauma, 20, 69-75.
https://doi.org/10.1089/08977150360517191
[63] Smith, E.E., Vijayappa, M., Lima, F., et al. (2008) Impaired Visual Evoked Flow Velocity Response in Cerebral Amyloid Angiopathy. Neurology, 71, 1424-1430.
https://doi.org/10.1212/01.wnl.0000327887.64299.a4
[64] Aggarwal, S., Brooks, D.M., Kang, Y., et al. (2008) Noninvasive Monitoring of Cerebral Perfusion Pressure in Patients with Acute Liver Failure Using Transcranial Doppler Ultrasonography. Liver Transplantation, 14, 1048-1057.
https://doi.org/10.1002/lt.21499