全髋关节置换术假体稳定性的研究进展
Research Progress on the Stability of Prostheses in Total Hip Arthroplasty
DOI: 10.12677/ACM.2024.141254, PDF, HTML, XML, 下载: 46  浏览: 85 
作者: 刘贵昂:暨南大学第二临床医学院,广东 深圳;岱文锋:深圳市福永人民医院骨科,广东 深圳;余洋溢, 李广恒*:深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)骨关节外科,广东 深圳
关键词: 髋关节置换脱位假体稳定性Hip Arthroplasty Dislocation Prosthetic Stability
摘要: 随着人口老龄化的加剧和对高品质生活的渴望,对全髋关节置换术(THA)的需求逐年增加。脱位仍然是THA术后的常见并发症。尽管利用3D建模或导航系统能帮助医生较为准确的评估假体安放位置,但是术中稳定性检查仍是最可靠的评估手段。目前临床医师对于假体稳定性检查方法的认知还有一定不足,本文章结合文献报道内容,对THA假体稳定性的研究现状进行分析,主要目的在于为手术医生提供参考,现作如下综述。
Abstract: With the intensification of aging population and the desire for high-quality life, the demand for total hip arthroplasty (THA) is increasing year by year. Dislocation continues to be a common complica-tion following THA. Although the use of 3D modeling or navigation systems can assist doctors in more accurately assessing the placement of prosthetics, intraoperative stability test remains the most reliable means of evaluation. Currently, there is still some lack of awareness among clinical physicians regarding methods for assessing prosthetic stability intraoperatively. This article, in conjunction with the reported literature, analyzes the current research status of prosthetic stability in THA. The primary objective is to provide insights and recommendations based on the existing knowledge for orthopedic surgeons, and the following review is hereby made.
文章引用:刘贵昂, 岱文锋, 余洋溢, 李广恒. 全髋关节置换术假体稳定性的研究进展[J]. 临床医学进展, 2024, 14(1): 1789-1795. https://doi.org/10.12677/ACM.2024.141254

1. 引言

全髋关节置换术(total hip arthroplasty, THA)开创于20世纪初,是骨科领域最历史悠久的手术之一。随着社会人口老龄化的发展,罹患骨性关节炎等髋部疾病的老年患者越来越多,保守疗法如药物、理疗等对于严重的患者治疗有限。THA作为医学、材料学和生物力学等多学科综合发展的研究成果,成为了股骨头坏死,髋关节骨性关节炎的终末治疗方案。据统计,初次髋关节置换及翻修手术的数目每年都呈上升趋势,美国HCUP统计自2003~2012年,美国髋关节置换手术平均每年增长2.9 [1] ,2008年至2017年,英国髋关节置换手术的总数增长了37% [2] 。髋关节假体的15年生存率可达90%以上。虽然随着材料科学、假体的设计以及手术操作技术的发展与成熟,全髋关节置换术后并发症的发生率已经明显降低。尽管如此,髋关节置换术后5年内翻修的病例仍无法从根本上完全消除。髋关节置换术失败的原因有:无菌性假体松动、假体脱位、髋臼磨损、感染、假体周围骨折等 [3] 。Parvizi等人 [4] 发现假体脱位的发生率仅次于无菌性假体松动位列第二。Bozic [5] 等人的研究中调查了51,345例翻修手术的诱因,其中“脱位”高于“假体周围感染”、“无菌性松动”,占比22.5%。人工髋关节脱位一方面将巨大的痛苦带给了患者,促进了患者经济负担的增加,另一方面二次手术也可能会促进更多术后并发症的发生,对患者的髋关节功能及生命安全造成严重的不良影响。为了防止术后脱位,手术医师一般在假体放置后进行假体稳定性的检查。目前术中假体稳定性的最可靠检查方法尚无定论。本文旨在总结近年来关于髋关节置换术中假体稳定性的检查方法,以期为指导术中假体安放和确认稳定性提供参考。

2. 假体脱位机制

2.1. 假体撞击

撞击是髋关节假体脱位的原因之一,它会导致髋关节不稳、假体磨损加快和一些不明原因的疼痛。Ganz等人 [6] 提出的人体正常解剖结构的髋关节撞击发生机制可能与髋关节假体撞击的机制类似。在人体髋关节中,撞击发生于骨盆与股骨之间;而在髋关节假体中,撞击发生在假体与假体或骨与骨之间。由于撞击是一个动态过程,所以很难通过临床检查与x线验证撞击的发生率。大多数研究都是基于3D模型建立或尸体研究从而得出结论。Tanino等人 [7] 通过开发术中透视模型,分析了29个髋关节假体的撞击原因,发现髋关节伸直外旋时撞击点主要集中在内衬后缘,发生假体–假体撞击;髋关节屈曲内旋时撞击发生在假体外部,进而推测撞击点在大转子和骨盆之间,为骨–骨撞击。Malik等人 [8] 认为较大的头颈比可以降低撞击风险,从而带来更大的髋关节活动度,减少脱位。Chandler等人 [9] 的尸体研究认为增大头颈比来增加髋关节活动度的同时,盲目增加股骨颈长度会导致撞击发生率增加,所以建议手术中选择直径尽量大的股骨头配合中等长度的股骨颈假体来获得安全的活动范围。另一方面,带有高边的内衬设计虽然可以降低由于假体位置(外展角与前倾角)安放不当导致的手术效果不佳,但是会降低髋关节活动度,增加假体撞击风险。

2.2. 假体安全区

Lewinnek等人 [10] 早在1978年便通过回顾300例THA患者的术后x线数据,提出髋臼安全区的概念,即髋臼前倾15˚ ± 10˚、外展40˚ ± 10˚可以使THA术后假体脱位发生率降低为1.5%。随着THA技术的发展,安全区概念开始遭到质疑。研究表明即使臼杯放置在安全区内也没办法完全避免术后脱位发生。Callanan [11] 根据对于1823例术后平片的分析修订安全区为前倾5˚~25˚,外展30˚~45˚。Reina等人 [12] 认为通过平衡假体稳定性和生物力学机制,臼杯前倾15˚~30˚、外展40˚~50˚可以降低假体不稳定风险。2017年的一项系统综述显示 [13] ,假体是否处于安全区内与术后稳定性无明显相关性,针对每个患者的理想安全区范围可能随着患者自身因素的变化而改变。“安全区”的概念是静态的、恒定的,但是脊柱–骨盆作为紧密连接的整体,随着姿势的改变而动态变化。多项研究证实成人脊柱畸形 [14] 、既往腰椎融合术后 [15] 、脊柱骨盆僵硬 [16] 患者的脱位概率增加。上述患者在从站立位转为坐位过程中,由于骨盆后倾减少,只能通过股骨代偿性屈曲来达到目标体位,增加了假体前方撞击导致后脱位的风险。对于椎板切除术后腰椎后凸以及神经肌肉性后凸的患者 [17] ,从坐位转为站立位时骨盆后倾加大以代偿矢状面不平衡,易出现后方撞击导致前脱位。对于不同脊柱骨盆失衡类型,需要根据对应的功能性安全区采取不同的假体安放策略。

撞击与脱位并不是同时发生的。当髋关节假体发生撞击时,股骨头在髋臼假体内发生相对位移,内衬边缘对股骨头产生抵抗力矩进而有助于防止股骨头从内衬中脱出。随着撞击力量逐渐增加,该力矩无法限制股骨头的继续移动时,才会发生脱位 [18] 。髋臼假体的外展角与前倾角对限制股骨头后脱位的阻力矩存在影响。前倾角增加,阻力矩随之增加;外展角增加,阻力矩减小,后脱位风险增高。

2.3. 术中CT导航/机器人的应用

传统THA在基础解剖、手术技术等方面都取得了巨大进展,但传统手术技术的精度不能够有效解决术后相关并发症的问题,高精度手术机器人应运而生,正在成为辅助关节置换手术的可靠工具。Benjamin [19] 比较了MAKO髋关节置换系统和传统手术对于臼杯安放的准确性差异,机器人THA组中有92% (46/50)的臼杯位于Callanan修订的安全区内(前倾5˚~25˚,外展30˚~45˚),相比之下,传统THA组为62% (31/50)。Migliorini [20] 认为CT导航相比传统手术可以增加臼杯放置准确性,并能减少双下肢腿长差异。Jang [21] 报道使用术中无图像导航技术测量不同股骨头长度对假体ER角度(外展10˚并屈膝90˚时最大外旋角度)的影响:使用加长头可以恢复双下肢长度同时增加前方软组织张力,但会减小ER角度,可能造成前脱位,并建议应该调整股骨头长度以保证术中ER角在35˚~40˚之间。Ando [22] 报道MAKO机器人辅助相比CT导航对于治疗发育性髋关节脱位有更大优势,臼杯植入更为准确,术后脱位更少。

3. 术中髋关节稳定性检查

3.1. 后外侧入路

在髋关节置换手术中,后外侧入路是最常规的手术入路。由于有着视野清晰、学习曲线短等优势,在早期被作为主要手术方式用在临床治疗中。然而,通过临床实践发现,后外侧入路因为破坏了髋关节后方结构,会增加后脱位风险,不利于患者恢复。

通过文献检索,后外侧入路的稳定性检查方式众多。术中稳定性检查的目的是通过尽可能模拟患者术后日常生活的极限活动范围,预测患者术后的假体撞击情况。Bunn等人 [23] 认为外科医生通过髋关节100˚屈曲和15˚内旋或90˚屈曲、10˚内收内旋检查髋关节后方稳定性,前方稳定性通过伸直15˚并极度外旋的方法测试。同时发现股骨头假体直径增大并不会影响发生撞击时的髋关节内外旋角度,但由于“跳跃距离”因假体直径增加而增加,Robinson [24] 报道从发生撞击到出现脱位有额外12˚的关节活动,所以假体较大的患者更加难以发生脱位。Bourne等人 [25] 在一项对于恢复股骨偏心距的研究中提到使用测试髋关节在伸直并最大外旋以及90˚屈曲并最大内旋时的撞击和不稳定性来评估假体稳定性。Nadzadi [26] 报道5种体位检查后方稳定,2种位置检查前方稳定。其中后脱位率最高的动作为SSL (Low sit-to-stand),即以双脚与肩同宽、端正坐姿的状态下从39厘米高的椅子上站起,脱位率为87% (41/47);后脱位率最低的动作为STOOP,即双脚与肩同宽站在平地并弯腰用左手拿取右脚旁边的物品,脱位率14% (6/42)。前脱位动作PIVOT,即站姿并固定右脚于地面同时向左旋转躯干,脱位率40% (23/58),过程中检测到股骨10˚~20˚伸直与最大50˚外旋。虽然文献中提及的7种检查方法基本包含了患者术后日常生活的大部分场景,但每种方法脱位率差异较大,七种方法中的任何一种都不是对所有个体均适用的,也无法依靠单一的动作在术中进行稳定性检查。Woolson等人 [27] 报道安装假体后髋关节屈曲大于90˚后内旋30˚假体不出现后脱位证明后方稳定,极度伸直髋关节后外旋45˚不出现前脱位证明前方稳定。若出现术中脱位情况,通过切除髋臼边缘骨赘、切除股骨颈边缘骨质甚至在必要时重新安放假体等方法以达到最佳活动范围。但经过3个月随访仍出现4% (14/315)脱位率,其中后脱位13例,前脱位1例。Harris [28] 报道通过屈曲110˚和屈曲90˚并内旋20˚不发生撞击验证后方稳定性,通过极度伸直并外旋30˚无撞击从而验证髋关节前方稳定性。Yoshimine [29] 参考美国骨科医师学会(AAOS)和日本骨科协会(JOA)提出的平均髋关节活动度,结合计算机对ADL (Activities of Daily Living日常生活的动作)与OsA (Oscillation Angle,震荡角度:股骨柄中心轴在髋臼假体中的最大活动度)模拟,认为超过120˚髋关节屈曲、90˚屈曲并45˚外旋、30˚后伸和40˚外旋是可以接受的标准角度。Lachiewicz和Soileau在不使用高边内衬情况下,认为ROM达到屈曲超过90˚并内旋超过60˚即髋关节假体稳定。经过5~10年随访74例初次髋关节置换患者,均未出现脱位等并发症。Sierra [30] 报道的术中检查方法是测量屈髋100˚时的最大内旋角度,若无法达到45˚,则依靠使用放置在后方的高边内衬达到满意的活动度(保证高边不与股骨柄在伸直外旋位不发生撞击为前提)。

3.2. 直接前入路

随着直接前入路(direct anterior approach, DAA)髋关节置换手术的普及,人们越来越关注手术入路对假体脱位率的影响。先前文献报道与传统后外侧入路相比,DAA存在较低术后脱位率 [31] [32] 。Horne和Connolly [33] [34] 同时提到通过极度伸直髋关节与伸直并外旋髋关节来判断是否存在不稳定情况。Fritz [35] 报道在直接前入路手术中,在用透视确认假体的贴合度、腿长和偏心距后,外旋髋关节至90˚并后伸15˚~20˚来验证假体最终稳定。学者在术中通常只进行前方稳定性检查,对于DAA手术中后脱位现象并未过多关注,可能是后方软组织的完整性得到保留,能进一步限制假体向后方脱出。理论上DAA手术通过阔筋膜张肌/股直肌的肌肉间隙进入以完成髋关节部位的手术操作,避免破坏后方关节囊和外旋肌群,可以减少与之相关的假体后方不稳及后脱位发生。深圳市人民医院进行的髋关节置换术中检验稳定性的方法为:伸髋伸膝状态,外旋患足至最大角度,无法转动时且假体未脱位,即前方稳定;屈髋屈膝90˚,内旋髋关节至最大角度,无法转动时假体未脱位,即后方稳定。使用该方法检查发现若发现存在假体前方脱位,一般认为与软组织张力相关 [36] ,通过增加头长、改变偏心距可以避免再次脱位;若发现后方脱位,考虑与假体角度导致的骨–骨或假体–假体撞击相关,通过调整臼杯前倾角与高边内衬位置可避免。

以上研究表明,对于髋关节置换术中假体稳定性的检查方法多种多样且缺少权威性。一是由于患者脊柱骨盆条件、股骨前倾角、髋臼形状及深度等因素各异,需要大量样本方能获得普适的检查方法;二是因为考虑到手术体位及测量技术的限制,在术中准确测量髋关节活动度相对困难,利用导航辅助大大增加患者成本及风险,大多数医师仅仅依靠术中透视获得静态图像判断假体是否处于合适位置。不同入路的术中检测方法虽然不尽相同,但都旨在最大程度模拟患者术后日常生活的活动范围,避免频繁发生假体撞击加剧磨损,引发半脱位甚至脱位。

4. 小结与展望

髋关节作为连接骨盆与股骨的球窝关节,承担人体的上半身重量以及下肢的各项活动,这是髋关节置换术后脱位高风险的原因。针对不同患者而言,假体“安全区”是各异的,关节外科医生在手术中应该根据稳定性检查结果,尽可能通过调整截骨量、假体位置、偏心距等方法,找到合适的假体安放角度,优先保证患者假体稳定,并获得较大的髋关节活动度,以降低术后脱位发生。目前如何验证假体稳定还没有明确定论,还需要大量临床研究探寻一种简便、有效、可重复性高的术中检查方法。

NOTES

*通讯作者。

参考文献

[1] Heckmann, N.D., Sivasundaram, L., Stefl, M.D., et al. (2018) Total Hip Arthroplasty Bearing Surface Trends in the United States from 2007 to 2014: The Rise of Ceramic on Polyethylene. The Journal of Arthroplasty, 33, 1757-1763.
https://doi.org/10.1016/j.arth.2017.12.040
[2] Ferguson, R.J., Palmer, A.J., Taylor, A., et al. (2018) Hip Re-placement. The Lancet, 392, 1662-1671.
https://doi.org/10.1016/S0140-6736(18)31777-X
[3] Soliman, M.M., Islam, M.T., Chowdhury, M.E.H., et al. (2023) Advancement in Total Hip Implant: A Comprehensive Review of Mechanics and Performance Parameters across Diverse Novelties. Journal of Materials Chemistry B, 11, 10507-10537.
https://doi.org/10.1039/D3TB01469J
[4] Parvizi, J., Picinic, E. and Sharkey, P.F. (2008) Revision Total Hip Ar-throplasty for Instability: Surgical Techniques and Principles. The Journal of Bone and Joint Surgery. American Volume, 90, 1134-1142.
[5] Bozic, K.J., Kurtz, S.M., Lau, E., et al. (2009) The Epidemiology of Revision Total Hip Arthro-plasty in the United States. The Journal of Bone and Joint Surgery. American Volume, 91, 128-133.
https://doi.org/10.2106/JBJS.H.00155
[6] Ganz, R., Parvizi, J., Beck, M., et al. (2003) Femoroacetabular Im-pingement: A Cause for Osteoarthritis of the Hip. Clinical Orthopaedics and Related Research, 417, 112-120.
https://doi.org/10.1097/01.blo.0000096804.78689.c2
[7] Tanino, H., Ito, H., Harman, M.K., et al. (2008) An in Vivo Model for Intraoperative Assessment of Impingement and Dislocation in Total Hip Arthroplasty. The Journal of Arthroplasty, 23, 714-720.
https://doi.org/10.1016/j.arth.2007.07.004
[8] Malik, A., Maheshwari, A. and Dorr, L.D. (2007) Impingement with Total Hip Replacement: The Journal of Bone & Joint Surgery, 89, 1832-1842.
https://doi.org/10.2106/JBJS.F.01313
[9] Chandler, D.R., Glousman, R., Hull, D., et al. (1982) Prosthetic Hip Range of Motion and Impingement. The Effects of Head and Neck Geometry. Clinical Orthopaedics and Related Re-search, 166, 284-291.
https://doi.org/10.1097/00003086-198206000-00045
[10] Lewinnek, G.E., Lewis, J.L., Tarr, R., et al. (1978) Dis-locations after Total Hip-Replacement Arthroplasties. The Journal of Bone and Joint Surgery. American Volume, 60, 217-220.
https://doi.org/10.2106/00004623-197860020-00014
[11] Callanan, M.C., Jarrett, B., Bragdon, C.R., et al. (2011) The John Charnley Award: Risk Factors for Cup Malpositioning: Quality Improvement through a Joint Registry at a Ter-tiary Hospital. Clinical Orthopaedics & Related Research, 469, 319-329.
https://doi.org/10.1007/s11999-010-1487-1
[12] Reina, N., Putman, S., Desmarchelier, R., et al. (2017) Can a Tar-get Zone Safer than Lewinnek’s Safe Zone Be Defined to Prevent Instability of Total Hip Arthroplasties? Case-Control Study of 56 Dislocated THA and 93 Matched Controls. Orthopaedics & Traumatology: Surgery & Research, 103, 657-661.
https://doi.org/10.1016/j.otsr.2017.05.015
[13] Seagrave, K.G., Troelsen, A., Malchau, H., et al. (2017) Acetabular Cup Position and Risk of Dislocation in Primary Total Hip Arthroplasty. Acta Orthopaedica, 88, 10-17.
https://doi.org/10.1080/17453674.2016.1251255
[14] DelSole, E.M., Vigdorchik, J.M., Schwarzkopf, R., et al. (2017) Total Hip Arthroplasty in the Spinal Deformity Population: Does Degree of Sagittal Deformity Affect Rates of Safe Zone Placement, Instability, or Revision? The Journal of Arthroplasty, 32, 1910-1917.
https://doi.org/10.1016/j.arth.2016.12.039
[15] Perfetti, D.C., Schwarzkopf, R., Buckland, A.J., et al. (2017) Pros-thetic Dislocation and Revision after Primary Total Hip Arthroplasty in Lumbar Fusion Patients: A Propensity Score Matched-Pair Analysis. The Journal of Arthroplasty, 32, 1635-1640.
https://doi.org/10.1016/j.arth.2016.11.029
[16] Gausden, E.B., Parhar, H.S., Popper, J.E., et al. (2018) Risk Fac-tors for Early Dislocation Following Primary Elective Total Hip Arthroplasty. The Journal of Arthroplasty, 33, 1567-1571.
https://doi.org/10.1016/j.arth.2017.12.034
[17] Phan, D., Bederman, S.S. and Schwarzkopf, R. (2015) The Influence of Sagittal Spinal Deformity on Anteversion of the Acetabular Component in Total Hip Arthroplasty. The Bone & Joint Journal, 97-B, 1017-1023.
https://doi.org/10.1302/0301-620X.97B8.35700
[18] Scifert, C.F., Brown, T.D., Pedersen, D.R., et al. (1998) A Finite Element Analysis of Factors Influencing Total Hip Dislocation. Clinical Orthopaedics and Related Research, 355, 152-162.
https://doi.org/10.1097/00003086-199810000-00016
[19] Domb, B.G., El, Bitar, Y.F., Sadik, A.Y., et al. (2014) Comparison of Robotic-Assisted and Conventional Acetabular Cup Placement in THA: A Matched-Pair Controlled Study. Clinical Orthopaedics & Related Research, 472, 329-336.
https://doi.org/10.1007/s11999-013-3253-7
[20] Migliorini, F., Cuozzo, F., Oliva, F., et al. (2023) CT-Based Navigation for Total Hip Arthroplasty: A Meta-Analysis. European Journal of Medical Research, 28, Article No. 443.
https://doi.org/10.1186/s40001-023-01437-4
[21] Jang, S.J., Jones, C., Shanaghan, K., et al. (2023) The Impact of Varying Femoral Head Length on Hip External Rotation during Posterior-Approach Total Hip Arthroplasty. Arthroplast Today, 19, Article ID: 101072.
https://doi.org/10.1016/j.artd.2022.101072
[22] Ando, W., Takao, M., Hamada, H., et al. (2021) Comparison of the Accuracy of the Cup Position and Orientation in Total Hip Arthroplasty for Osteoarthritis Secondary to Developmental Dysplasia of the Hip between the Mako Robotic Arm-Assisted System and Computed Tomography-Based Navigation. International Orthopaedics (SICOT), 45, 1719-1725.
https://doi.org/10.1007/s00264-021-05015-3
[23] Bunn, A., Colwell, C.W. and D’lima, D.D. (2014) Effect of Head Diameter on Passive and Active Dynamic Hip Dislocation: Passive and Active Hip Dislocation. Journal of Ortho-paedic Research, 32, 1525-1531.
https://doi.org/10.1002/jor.22659
[24] Robinson, R.P., Simonian, P.T., Gradisar, I.M., et al. (1997) Joint Motion and Surface Contact Area Related to Component Position in Total Hip Arthroplasty. The Journal of Bone and Joint Sur-gery. British Volume, 79, 140-146.
https://doi.org/10.1302/0301-620X.79B1.0790140
[25] Bourne, R.B. and Rorabeck, C.H. (2002) Soft Tissue Bal-ancing: The Hip. The Journal of Arthroplasty, 17, 17-22.
https://doi.org/10.1054/arth.2002.33263
[26] Nadzadi, M.E., Pedersen, D.R., Yack, H.J., et al. (2003) Kinematics, Kinetics, and Finite Element Analysis of Commonplace Maneuvers at Risk for Total Hip Dislocation. Journal of Biome-chanics, 36, 577-591.
https://doi.org/10.1016/S0021-9290(02)00232-4
[27] Woolson, S.T. and Rahimtoola, Z.O. (1999) Risk Factors for Dislocation during the First 3 Months after Primary Total Hip Replacement. The Journal of Arthroplasty, 14, 662-668.
https://doi.org/10.1016/S0883-5403(99)90219-X
[28] Harris, W.H. (1980) Advances in Surgical Technique for Total Hip Replacement: Without and with Osteotomy of the Greater Trochanter. Clinical Orthopaedics and Related Re-search, 146, 188-204.
https://doi.org/10.1097/00003086-198001000-00026
[29] Yoshimine, F. (2005) The Influence of the Oscillation Angle and the Neck Anteversion of the Prosthesis on the Cup Safe-Zone That Fulfills the Criteria for Range of Motion in Total Hip Replacements. The Required Oscillation Angle for an Acceptable Cup Safe-Zone. Journal of Biomechanics, 38, 125-132.
https://doi.org/10.1016/j.jbiomech.2004.03.012
[30] Sierra, R.J., Raposo, J.M., Trousdale, R.T., et al. (2005) Dis-location of Primary THA Done through a Posterolateral Approach in the Elderly: Clinical Orthopaedics and Related Re-search, 441, 262-267.
https://doi.org/10.1097/01.blo.0000194308.23105.f4
[31] Ponzio, D.Y., Poultsides, L.A., Salvatore, A., et al. (2018) In-Hospital Morbidity and Postoperative Revisions after Direct Anterior vs Posterior Total Hip Arthroplasty. The Journal of Arthroplasty, 33, 1421-1425.
https://doi.org/10.1016/j.arth.2017.11.053
[32] Miller, L.E., Gondusky, J.S., Kamath, A.F., et al. (2018) Influence of Surgical Approach on Complication Risk in Primary Total Hip Arthroplasty. Acta Orthopaedica, 89, 289-294.
https://doi.org/10.1080/17453674.2018.1438694
[33] Horne, P.H. and Olson, S.A. (2011) Direct Anterior Ap-proach for Total Hip Arthroplasty Using the Fracture Table. Current Reviews in Musculoskeletal Medicine, 4, 139-145.
https://doi.org/10.1007/s12178-011-9087-6
[34] Connolly, K.P. and Kamath, A.F. (2016) Direct Anterior Total Hip Arthroplasty: Literature Review of Variations in Surgical Technique. World Journal of Orthopedics, 7, 38-43.
https://doi.org/10.5312/wjo.v7.i1.38
[35] Fritz, J.K., Waddell, B.S., Kitziger, K.J., et al. (2021) Is Dislocation Risk Due to Posterior Pelvic Tilt Reduced with Direct Anterior Approach Total Hip Arthroplasty? The Journal of Arthroplas-ty, 36, 3692-3696.
https://doi.org/10.1016/j.arth.2021.07.003
[36] Charles, M.N., Bourne, R.B., Davey, J.R., et al. (2004) Soft-Tissue Balancing of the Hip: The Role of Femoral Offset Restoration. The Journal of Bone & Joint Surgery, 86, 1078-1088.
https://doi.org/10.2106/00004623-200405000-00030