tRFs在肿瘤中的研究进展
Research Progress of tRFs in Tumor
DOI: 10.12677/ACM.2024.142583, PDF, HTML, XML, 下载: 46  浏览: 81  科研立项经费支持
作者: 白兆兆, 白鹏伟:宁夏医科大学第一临床医学院,宁夏 银川 ;王军宏:兰州大学第一临床医学院,甘肃 兰州;许 焱, 牛幸栋:甘肃中医药大学第一临床医学院,甘肃 兰州 ;达明绪*:宁夏医科大学第一临床医学院,宁夏 银川;甘肃省人民医院肿瘤外科,甘肃 兰州
关键词: tRFs生物标记物肿瘤差异表达tRFs Biomarkers Tumor Differential Expression
摘要: 转运RNA (transfer RNA, tRNA)衍生的RNA片段(transfer RNA-derived fragments, tRFs)是一种新型的小非编码RNA (non-coding RNA, ncRNA)。tRFs广泛表达于生物体的各种细胞内。研究发现tRFs可以通过调控翻译、基因表达和细胞周期对肿瘤的发生发展产生非常重要的作用,其在功能上与微小RNA (microRNA, miRNA)具有相似之处,但其具体机制尚不完全清楚,还需进一步探究。本文对tRFs的分类、生物学功能、其异常表达对不同肿瘤的影响以及在肿瘤新型诊断生物标记物和潜在治疗靶点的研究进行了综述,以期为未来的研究提供一个可能的研究思路和方向。
Abstract: RNA fragments (tRFs) derived from transporting RNA (tRNA) is a new type of small non-coding RNA (ncRNA). tRFs is widely expressed in various cells of organisms. Studies have found that tRFs can play a very important role in tumor occurrence and development by regulating translation, gene expression and cell cycle. It is functionally similar to micro-RNA (miRNA), but its specific mechanism is not completely clear and needs to be further explored. This article reviews the clas-sification and biological function of tRFs, the effect of its abnormal expression on different tumors, as well as the research on new diagnostic biomarkers and potential therapeutic targets of tumors, in order to provide a possible research idea and direction for future research.
文章引用:白兆兆, 王军宏, 白鹏伟, 许焱, 牛幸栋, 达明绪. tRFs在肿瘤中的研究进展[J]. 临床医学进展, 2024, 14(2): 4213-4220. https://doi.org/10.12677/ACM.2024.142583

1. 引言

新型生物标记物的发现对于肿瘤的诊断以及预后具有重要的意义,可以为肿瘤的治疗提供新的方向。近年来,越来越多的证据表明一些非编码RNA (non-coding RNA, ncRNA)可作为诊断肿瘤和预测肿瘤进展的生物标记物 [1] 。ncRNA包括tRNA、核糖体RNA (ribosomal RNA, rRNA)、微小RNA (microRNA, miRNA)、小核RNA (small nuclear RNA, snRNA)、长链非编码RNA (long non-coding RNA, lncRNA)和环状RNA (circRNA, circRNA) [2] 。随着通量测序技术的不断发展,一种新型的ncRNA即tRNA的衍生片段(transfer RNA-derived fragments, tRFs)被发现,并可在人类疾病异常表达,例如肿瘤、传染病、免疫系统疾病等,但是tRFs的异常表达在肿瘤的发生发展过程中其机制仍未明确,还需进一步探索,其为肿瘤的发现提供了一种新型的生物标记物,为未来研究提供了一个新的方向。本文将对tRFs异常表达及其对肿瘤的影响进行了综述。

2. tRFs的产生与分类

tRNA衍生的小RNA (tRNA-derived small RNAs, tsRNAs)是一种来源于成熟tRNA或前体tRNA的非编码小RNA,广泛存在于多种物种中 [3] ,tsRNAs可以根据其不同的切割位点分为两种主要类型:tRFs衍生于成熟或前体tRNA,长度约14~30 nt;另外一种为长度约29~50 nt tRNA的半分子(tRNA halves, tiRNAs),由应激诱导并由成熟tRNA反密码子环处的特异性切割产生的 [4] 。此外tRFs根据其不同的切割位点主要分为两大类:tRF-5和tRF-3 [5] [6] 。tRF-5和tRF-3分别由成熟tRNA的5′和3′末端产生 [7] 。tRF-5s其长度为14~30 nt,是由Dicer在tRNA的D-环或茎区中切割而产生的 [8] 。基于切割位点与长度不同,tRF-5s可以进一步分为tRF-5a (14~16 nt)、tRF-5b (22~24 nt)和tRF-5c (28~30 nt) [5] [6] 。tRF-3s长度约为18~22 nt,在3′端(在3′端的三核苷酸“CCA”处),并在成熟tRNA的T环处被Dicer和血管生成素(angiogenin, ANG)切割所产生 [7] 。tRF-3s进一步分为两个亚型:tRF-3a和tRF-3b,长度为13-22 nt [7] 。此外还存在三种tRFs:tRF-1,tRF-2,和i-tRF [9] 。tRF-1是前提tRNA的3′端被核酸内切酶Z (endonuclease Z,RNase Z)或其胞质同源核糖核酸酶Z2 (cytoplasmic homolog ribonuclease Z2, ELAC2)切割所产生的 [6] 。tRF-2是由缺氧诱导条件产生的,在乳腺癌中被发现为肿瘤抑制因子,通过与YBX1 (Y-box binding protein 1, YBX 1) (YBX 1是一种RNA结合蛋白,通常结合并稳定许多致癌转录物)结合,并衍生于tRNAGlu、tRNAAsp、tRNAGly和tRNATyr [5] [6] 。i-tRF区别于其他类型的tRF,来源于成熟tRNA的内部区域,含量高,可能参与许多病理过程 [10] 。

3. tRFs的功能

3.1. miRNA样功能

研究发现tRFs的大小为14~30 nt,其大小与miRNA相似,在功能方面tRFs也与miRNA相似 [11] ,既往研究表明在PAR-CLIP数据库中,tRF-5s和tRF-3s更偏向与AGO蛋白(argonaute protein, AGO) 1、3和4结合而不是2,并且tRF-5s与tRF-3s与AGO结合是类似与miRNA的方式结合 [12] 。在结直肠癌中,来源于tRNALeu和同源pre-miRNA衍生片段tRF/miR-1280,其在结直肠癌细胞中可以通过靶向JAG2抑制Notch信号传导抑制Gata1/3和miR-200b基因,从而抑制肿瘤的生长和转移 [13] 。在B细胞淋巴瘤中,一种属于tRF-3类的tRNAGly-GCC衍生片段CU1276 (tRF-3027b),其具有miRNA的结构和功能特征,异常表达的CU1276通过可以靶向RPA1促进肿瘤的生长 [14] 。上述研究发现说明tRFs具有类似于miRNA的功能。

3.2. 翻译调控

tRNA是翻译机制中重要的转运RNA,而作为tRNA的衍生物tRFs在翻译过程中也具有重要的作用,研究表明长22nt的LeuCAG3′ tsRNA (tRF3011b),至少可以与二种核糖体蛋白(RPS28和RPS15)结合增强翻译 [15] 。5′ tRFs和5′ tiRNA在抑制蛋白质的翻译过程发挥着重要的作用,但不同的是,5′tiRNA抑制翻译是通过从未加帽>加帽的RNA中置换eIF 4G/eIF 4A来抑制蛋白质合成,这仅存在于tRNAAla和tRNACys,5′tRF抑制蛋白质翻译只需要保守的“GG”二核苷酸 [16] [17] 。

3.3. 基因表达

研究发现tRF-3的产生依赖AGO而非Drosha和Dicer,且tRF-3与AGO形成复合物通过类似microRNA样方式调控基因沉默 [18] 。来自肝癌细胞Huh7细胞pretRNA 3′尾端的tRF-U-31可以调节病毒基因的表达,是chr10.tRNA2-Ser (TGA)的衍生物,tRF-U-31的遗传丢失却对细胞生长无影响,但是tRF-U-31可以通过从病毒基因组非编码区顺式作用元件中隔离细胞质La/SSB来发挥抗病毒活性的作用,而这些顺式作用元件则是病毒基因表达必需的 [19] 。

3.4. 细胞周期

研究发现在胆囊癌中发现tRF-3013b,位于T-loop与3′tRNA-His-GTG之间,tRF-3013b直接靶向TPRG1L负性调节c-myc和CDK2的表达来阻滞细胞周期,使细胞周期停滞于G1/S期,从而抑制胆囊癌细胞的增殖和生长 [20] 。在有丝分裂过程中,原癌基因c-myc在细胞增殖和细胞周期进程中起关键作用 [21] ,c-myc可以通过干扰转录因子Miz-1的活性抑制p21的转录,从而使G0~G1期细胞周期停滞减轻 [22] [23] [24] 而CDK 2是驱动G1/S相变的关键细胞周期蛋白依赖性激酶 [25] [26] 。在前列腺癌中异常表达的tRF-1001,其可以使前列腺癌细胞在G2期特异性积累从而抑制细胞的增殖 [8] 。

4. tRF在肿瘤中的作用

4.1. 乳腺癌

乳腺癌(Breast cancer, BC)是女性最常见的恶性肿瘤。有研究发现tRF-19-W4PU732S是5′tRNA-Ser-AGA的衍生片段,在乳腺癌组织和细胞中表达上调,通过抑制RPL 27 3个非翻译区抑制其表达,增强乳腺癌细胞上皮向间充质转化(EMT)和癌症干细胞样细胞(CSC)表型,从而促进乳腺癌的进展 [27] 。但并非所有tRFs都可促进乳腺癌的进展,研究表明一种新的tRF(被命名为tRF-3E),衍生于成熟的tRNAGlu,在抑制乳腺癌方面,tRF-3E是通过与核仁素(nucleolin, NCL)竞争性结合进一步促进p53 mRNA的翻译 [28] 。而在乳腺癌中表达下调的5′-tiRNAVal,可以直接通过靶向FZD 3抑制Wnt/β-连环蛋白信号通路 [29] 。在缺氧诱导的条件下,来源于tRNAGlu、tRNAAsp和tRNAGly的tRFs可以在应激时通过与AKT或EIF4G1等致癌转录物竞争结合YBX1,从而抑制乳腺癌的转移 [30] 。

衍生于成熟tRNA-Val-AAC和tRNA-Val-CAC的tRNA片段即tRF-17-79MP9PP,在乳腺癌细胞中tRF-17-79MP9PP可以与THBS 1的3′UTR结合抑制TGF-β 1/Smad 3信号通路抑制细胞的恶性活动,从而抑制乳腺癌的进展 [31] 。tRF-30-JZOYJE22RR33和tRF-27-ZDXPHO53KSN在乳腺癌曲妥珠单抗耐药患者中显著上调,通过ROC分析发现tRF-30-JZOYJE22RR33和tRF-27 ZDXPHO53KSN与曲妥珠单抗耐药相关 [32] 。在乳腺癌中异常表达的tRFs在早期诊断方面有望成为新型的非侵入性生物标记物,研究发现来源于tRNA5′端6种表达下调的tRFs (tRF-Glu-CTC-003、tRF-Gly-CCC-007、tRF-Gly-CCC-008、tRF-Leu-CAA-003、tRF-Ser-TGA-001和tRF-Ser-TGA-002) [33] ,同时在乳腺癌中表达下调的tRF-Gly-CCC-046、tRF-Tyr-GTA-010和tRF-Pro-TGG-001,而且这三种tRFs的组合可有助于CEA、CA125和CA153诊断进展期乳腺 [34] 。

4.2. 胃癌

目前,越来越多研究表明tRFs的异常表达在胃癌中起着重要的作用,一些tRFs可以成为治疗胃癌的新型潜在的靶点,其他的也可成为诊断早期胃癌的生物标记物和预测预后不良的指标。在胃癌中表达下调的tRFs,研究发现tRF-Glu-TTC-027可以不同程度的调控MAPK信号通路中的三条经典通路ERK1/2、JNK、p38,从而抑制胃癌的进展 [35] 。同样tRF-Val-CAC-016也可以通过调控MAPK信号通路,但靶向调节CACNA 1d的表达来抑制胃癌的进展 [36] 。tRF-5026 a (tRF-18-79MP9P04)则是通过调节PI3K/AKT信号通路来抑制胃癌的进展 [37] 。然而并不是所有的tRFs都是抑制胃癌的进展,研究发现来源于3'tRNA衍生片段tRF-Val,在胃癌中表达上调,通过与伴侣分子EEF 1A1结合,促进其与MDM 2 (一种特异性p53 E3泛素连接酶)的相互作用,从而抑制p53的下游分子途径促进胃癌的进展 [38] 。tRF在成为早期诊断胃癌的新型生物标记物和预测预后指标方面,研究表明在胃癌中表达下调的tRF-33-P4R8YP9LON4VDP [39] 和tRF-19-3L7L73JD [40] ,在胃癌中表达上调的tRF-25、tRF-38和tRF-18 [41] 。在胃癌中表达上调的tRF-31-U5YKFN8DYDZDD是诊断胃癌的新型生物标记物,也是预测预后不良的预测指标,而且上调的tRF-31-U5YKFN8DYDZDD与胃癌晚期、肿瘤浸润深度、淋巴结转移、血管浸润呈正相关 [42] 。

4.3. 肺癌

随着高通量测序技术的不断应用,新型的tRFs在肺癌中不断被发现,而这些异常表达的tRFs可以成为诊断肺癌的新型生物标记物。研究发现在非小细胞肺癌中,来自血浆外泌体下调的5种tRFs (tRF-Leu-TAA-005、tRF-Asn-GTT-010、tRF-Ala-AGC-036、tRF-Lys-CTT-049和tRF-Trp-CCA-057) [43] 。在肺腺癌中,来自血浆中表达上调的tRF-55:76-Tyr-GTA-1-M2和表达下调的 tRF-1:29-Pro-AGG-1-M6 [44] 。而在肺腺癌组织中发现表达上调的tRF-Val-CAC-010,tRF-Val-CAC-011和表达下调的tRF-Ser-TGA-005 [45] 。而异常表达的tRFs也影响这肺癌的进展,研究发现在非小细胞肺癌中表达下调的tRF-Leu-CAG,其表达受抑制时极光激酶A (Aurora kinase A, AUPKA)的表达也受抑制,AUPKA的表达和异常增生与肿瘤密切相关 [46] [47] 。在非小细胞肺癌中,来源于tRNAGly−GCCD环的AS-tDR-007333在非小细胞肺癌中表达上调,AS-tDR-007333 通过激活HSPB 1和ELK 4介导的表观遗传和转录调控轴,靶向致癌介体复合体亚基29 (mediator complex subunit 29 Gene) (MED 29),从而促进非小细胞肺癌的进展 [48] 。HSPB 1是高度保守热休克蛋白(HSP 27)的成员,在正常条件下是低表达,但在多种癌症中高表达(也包括肺癌) [49] [50] 。ELK4是被证实的原癌基因,而且在胰腺癌、黑色素瘤和胃癌中高表达 [51] 。

4.4. 前列腺癌

前列腺癌是男性中最常见的泌尿系肿瘤。研究发现为了明确tRFs在前列腺癌中的作用,建立了一个前列腺癌在不同阶段样本tRFs表达的数据库,来源于成熟胞质tRNA 5'端的tRFs表达上调,而来源于3'端的tRFs表达下调;来源于tRNALysCTT的tRF-315和源于tRNAPheGAA的tRF-544可以预测前列腺癌的复发,总的来说数据库的建立为前列腺癌在不同阶段样本tRFs的表达提供了一个系统目录 [52] 。并且来源于tRNALysCTT的tRF-315也与化疗药物顺铂相关,顺铂可以显著增加tRF-315在前列腺癌中的表达,在大多数肿瘤中p53是缺失或突变,顺铂在前列腺癌中是通过增加P53的表达来发挥抑制肿瘤的作用 [53] ,而且tRF-315抑制剂可以诱导前列腺癌细胞LNCaP和DU 145增加P53表达,这说明顺铂抑制前列腺癌的机制与tRF-315抑制剂相似;总所周知生长阻滞与DNA损伤基因45A (growth arrest and DNA damage 45A, GADD45A)可以抑制各种癌症细胞的增殖(包括前列腺癌) [54] [55] ,而GADD45A是受P53转录调控的一种下游靶基因 [56] ;tRF-315靶向GADD45A的表达受抑制时,顺铂诱导的前列腺癌细胞的subG1期增加的比例降低,表明顺铂抑制细胞的生长是依赖于P53-GADD45A轴,因此tRF-315可以通过靶向抑制GADD45A的表达从而降低顺铂的敏感性 [57] 。在前列腺癌中tRFs也可以成为新型的生物标记物,在前列腺癌中表达上调的tRF-Glu-TTC-2,并且tRF-Glu-TTC-2的表达与肿瘤大小和Gleason评分密切相关 [58] 。

4.5. 其他癌

tRFs的异常表达不仅是在上述癌中发挥着作用,而在其他癌症中也同样发挥着作用。研究发现在宫颈癌中,来源于tRNAGlu的tRF-Glu49表达下调,并且tRF-Glu49可以通过靶向FGL1来抑制宫颈癌的进展 [59] 。在胰腺导管腺癌中,发现tRF-Pro-CGG的表达下调,并且tRF-Pro-CGG的表达与患者的临床生存期和预后密切相关 [60] 。在甲状腺乳头状癌中,发现tRF-3类的tRF-18-H7PU4HD2 (tRF 18)表达上调,并且tRF-18可以通过靶向KIF1B促进甲状腺乳头状癌的进展 [61] 。

5. 展望与总结

随着高通量测序技术的广泛应用,tRFs作为一种重要的肿瘤ncRNA调节因子被发现,其可通过调控翻译、基因表达和细胞周期在人类疾病中发挥着重要作用,同时可以类似miRNA的方式发挥作用。越来越多的研究表明tRFs的异常表达与肿瘤的发生发展密切相关,异常表达的tRFs不仅可成为诊断肿瘤非侵入性生物标记物,还可作为治疗肿瘤的新型潜在靶点。然而,tRFs在癌症发生发展中机制复杂,仍需要通过大量实验进一步探究。随着越来越多的tRFs在癌症中被发现,tRFs将得到进一步的研究,并且可能成为一种诊断癌症的新型非侵入性生物标记物,也为癌症的治疗提供了潜在的治疗靶点。

作者声明

本文全部作者对于研究和撰写的论文出现的不端行为承担相应责任;并承诺论文中涉及的原始图片、数据资料等已按照有关规定保存,可接受核查。

利益冲突

所有作者均声明不存在利益冲突。

基金项目

甘肃省科技计划项目(基金项目编号:21CX6FD163)。

NOTES

*通讯作者。

参考文献

[1] Slack, F.J. (2018) Tackling Tumors with Small RNAs Derived from Transfer RNA. The New England Journal of Medi-cine, 378, 1842-1843.
https://doi.org/10.1056/NEJMcibr1716989
[2] Esteller, M. (2011) Non-Coding RNAs in Human Disease. Nature Reviews Genetics, 12, 861-874.
https://doi.org/10.1038/nrg3074
[3] Zhu, L., Liu, X., Pu, W., et al. (2018) tRNA-Derived Small Non-Coding RNAs in Human Disease. Cancer Letters, 419, 1-7.
https://doi.org/10.1016/j.canlet.2018.01.015
[4] Zhu, L., Ge, J., Li, T., et al. (2019) tRNA-Derived Fragments and tRNA Halves: The New Players in Cancers. Cancer Letters, 452, 31-37.
https://doi.org/10.1016/j.canlet.2019.03.012
[5] Ma, Z., Zhou, J., Shao, Y., et al. (2020) Biochemical Properties and Progress in Cancers of tRNA-Derived Fragments. Journal of Cellular Biochemistry, 121, 2058-2063.
https://doi.org/10.1002/jcb.29492
[6] Kumar, P., Kuscu, C. and Dutta, A. (2016) Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends in Biochemical Sciences, 41, 679-689.
https://doi.org/10.1016/j.tibs.2016.05.004
[7] Yu, X., Xie, Y., Zhang, S., et al. (2021) tRNA-Derived Fragments: Mechanisms Underlying Their Regulation of Gene Expression and Potential Applications as Therapeutic Targets in Cancers and Virus Infections. Theranostics, 11, 461-469.
https://doi.org/10.7150/thno.51963
[8] Lee, Y.S., Shibata, Y., Malhotra, A., et al. (2009) A Novel Class of Small RNAs: tRNA-Derived RNA Fragments (tRFs). Genes & Development, 23, 2639-2649.
https://doi.org/10.1101/gad.1837609
[9] Qin, C., Xu, P.-P., Zhang, X., et al. (2020) Pathological Significance of tRNA-Derived Small RNAs in Neurological Disorders. Neural Regeneration Research, 15, 212-221.
https://doi.org/10.4103/1673-5374.265560
[10] Zhu, P., Yu, J. and Zhou, P. (2020) Role of tRNA-Derived Frag-ments in Cancer: Novel Diagnostic and Therapeutic Targets tRFs in Cancer. American Journal of Cancer Research, 10, 393-402.
[11] Shen, L., Tan, Z., Gan, M., et al. (2019) tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis. Biomolecules, 9, Article 274.
https://doi.org/10.3390/biom9070274
[12] Kumar, P., Anaya, J., Mudunuri, S.B., et al. (2014) Meta-Analysis of tRNA Derived RNA Fragments Reveals That They Are Evolutionarily Conserved and Associate with AGO Proteins to Recognize Specific RNA Targets. BMC Biology, 12, Article No. 78.
https://doi.org/10.1186/s12915-014-0078-0
[13] Huang, B., Yang, H., Cheng, X., et al. (2017) tRF/miR-1280 Suppresses Stem Cell-Like Cells and Metastasis in Colorectal Cancer. Cancer Research, 77, 3194-3206.
https://doi.org/10.1158/0008-5472.CAN-16-3146
[14] Pekarsky, Y., Balatti, V., Palamarchuk, A., et al. (2016) Dysregulation of a Family of Short Noncoding RNAs, TsRNAs, in Human Cancer. Proceedings of the National Acade-my of Sciences of the United States of America, 113, 5071-5076.
https://doi.org/10.1073/pnas.1604266113
[15] Kim, H.K., Fuchs, G., Wang, S., et al. (2017) A Trans-fer-RNA-Derived Small RNA Regulates Ribosome Biogenesis. Nature, 552, 57-62.
https://doi.org/10.1038/nature25005
[16] Sobala, A. and Hutvagner, G. (2013) Small RNAs Derived from the 5’ End of tRNA Can Inhibit Protein Translation in Human Cells. RNA Biology, 10, 553-563.
https://doi.org/10.4161/rna.24285
[17] Ivanov, P., Emara, M.M., Villen, J., et al. (2011) Angiogenin-Induced tRNA Fragments Inhibit Translation Initiation. Molecular Cell, 43, 613-623.
https://doi.org/10.1016/j.molcel.2011.06.022
[18] Kuscu, C., Kumar, P., Kiran, M., et al. (2018) tRNA Fragments (tRFs) Guide Ago to Regulate Gene Expression Post- Transcriptionally in a Dicer-Independent Manner. RNA, 24, 1093-1105.
https://doi.org/10.1261/rna.066126.118
[19] Cho, H., Lee, W., Kim, G.W., et al. (2019) Regulation of La/SSB-Dependent Viral Gene Expression by Pre-tRNA 3’ Trailer-Derived tRNA Fragments. Nucleic Acids Research, 47, 9888-9901.
https://doi.org/10.1093/nar/gkz732
[20] Zou, L., Yang, Y., Zhou, B., et al. (2022) tRF-3013b Inhibits Gallbladder Cancer Proliferation by Targeting TPRG1L. Cellular & Molecular Biology Letters, 27, Article No. 99.
https://doi.org/10.1186/s11658-022-00398-6
[21] Xu, C. and Zheng, J. (2019) siRNA against TSG101 Reduces Proliferation and Induces G0/G1 Arrest in Renal Cell Carcinoma—Involvement of c-myc, cyclin E1, and CDK2. Cellular & Molecular Biology Letters, 24, Article No. 7.
https://doi.org/10.1186/s11658-018-0124-y
[22] Jung, Y.-S., Qian, Y. and Chen, X. (2010) Examination of the Expanding Pathways for the Regulation of P21 Expression and Activity. Cellular Signalling, 22, 1003-1012.
https://doi.org/10.1016/j.cellsig.2010.01.013
[23] Capelluto, D.G.S., Kutateladze, T.G., Habas, R., et al. (2002) The DIX Domain Targets Dishevelled to Actin Stress Fibres and Vesicular Membranes. Nature, 419, 726-729.
https://doi.org/10.1038/nature01056
[24] Wu, S., Cetinkaya, C., Munoz-Alonso, M.J., et al. (2003) Myc Represses Differentiation-Induced P21CIP1 Expression via Miz-1-Dependent Interaction with the p21 Core Promoter. Oncogene, 22, 351-360.
https://doi.org/10.1038/sj.onc.1206145
[25] Asghar, U., Witkiewicz, A.K., Turner, N.C., et al. (2015) The History and Future of Targeting Cyclin-Dependent Kinases in Cancer Therapy. Nature Reviews Drug Discovery, 14, 130-146.
https://doi.org/10.1038/nrd4504
[26] Tadesse, S., Caldon, E.C., Tilley, W., et al. (2019) Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. Journal of Medicinal Chemistry, 62, 4233-4251.
https://doi.org/10.1021/acs.jmedchem.8b01469
[27] Zhang, Z., Liu, Z., Zhao, W., et al. (2022) tRF-19-W4PU732S Promotes Breast Cancer Cell Malignant Activity by Targeting Inhibition of RPL27A (Ribosomal Protein-L27A). Bioengineered, 13, 2087-2098.
https://doi.org/10.1080/21655979.2021.2023796
[28] Falconi, M., Giangrossi, M., Zabaleta, M.E., et al. (2019) A Novel 3’-tRNA(Glu)-Derived Fragment Acts as a Tumor Suppressor in Breast Cancer by Targeting Nucleolin. The FASEB Journal, 33, 13228-13240.
https://doi.org/10.1096/fj.201900382RR
[29] Mo, D., Jiang, P., Yang, Y., et al. (2019) A tRNA Fragment, 5’-tiRNA(Val), Suppresses the Wnt/Beta-Catenin Signaling Pathway by Targeting FZD3 in Breast Cancer. Cancer Letters, 457, 60-73.
https://doi.org/10.1016/j.canlet.2019.05.007
[30] Goodarzi, H., Liu, X., Nguyen, H.C., et al. (2015) Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell, 161, 790-802.
https://doi.org/10.1016/j.cell.2015.02.053
[31] Mo, D., He, F., Zheng, J., et al. (2021) tRNA-Derived Fragment tRF-17-79MP9PP Attenuates Cell Invasion and Migration via THBS1/TGF-Beta1/Smad3 Axis in Breast Cancer. Frontiers in Oncology, 11, Article 656078.
https://doi.org/10.3389/fonc.2021.656078
[32] Sun, C., Yang, F., Zhang, Y., et al. (2018) tRNA-Derived Frag-ments as Novel Predictive Biomarkers for Trastuzumab-Resistant Breast Cancer. Cellular Physiology and Biochemistry, 49, 419-431.
https://doi.org/10.1159/000492977
[33] Wang, J., Ma, G., Li, M., et al. (2020) Plasma tRNA Fragments Derived from 5’ Ends as Novel Diagnostic Biomarkers for Early-Stage Breast Cancer. Molecular Therapy Nucleic Acids, 21, 954-964.
https://doi.org/10.1016/j.omtn.2020.07.026
[34] Zhang, Y., Bi, Z., Dong, X., et al. (2021) tRNA-Derived Frag-ments: tRF-Gly-CCC-046, tRF-Tyr-GTA-010 and tRF-Pro-TGG-001 as Novel Diagnostic Biomarkers for Breast Can-cer. Thoracic Cancer, 12, 2314-2323.
https://doi.org/10.1111/1759-7714.14072
[35] Xu, W., Zhou, B., Wang, J., et al. (2021) tRNA-Derived Fragment tRF-Glu-TTC-027 Regulates the Progression of Gastric Carcinoma via MAPK Signaling Pathway. Frontiers in On-cology, 11, Article 733763.
https://doi.org/10.3389/fonc.2021.733763
[36] Xu, W., Zheng, J., Wang, X., et al. (2022) tRF-Val-CAC-016 Modulates the Transduction of CACNA1d-Mediated MAPK Signaling Pathways to Suppress the Proliferation of Gastric Carcinoma. Cell Communication & Signaling, 20, Article No. 68.
https://doi.org/10.1186/s12964-022-00857-9
[37] Zhu, L., Li, Z., Yu, X., et al. (2021) The tRNA-Derived Frag-ment 5026a Inhibits the Proliferation of Gastric Cancer Cells by Regulating the PTEN/PI3K/AKT Signaling Pathway. Stem Cell Research & Therapy, 12, Article No. 418.
https://doi.org/10.1186/s13287-021-02497-1
[38] Cui, H., Li, H., Wu, H., et al. (2022) A Novel 3’tRNA-Derived Fragment tRF-Val Promotes Proliferation and Inhibits Apoptosis by Targeting EEF1A1 in Gastric Cancer. Cell Death & Disease, 13, Article No. 471.
https://doi.org/10.1038/s41419-022-04930-6
[39] Shen, Y., Yu, X., Ruan, Y., et al. (2021) Global Profile of tRNA-Derived Small RNAs in Gastric Cancer Patient Plasma and Identification of tRF-33-P4R8YP9LON4VDP as a New Tumor Suppressor. International Journal of Medical Sciences, 18, 1570-1579.
https://doi.org/10.7150/ijms.53220
[40] Shen, Y., Xie, Y., Yu, X., et al. (2021) Clinical Diagnostic Values of Transfer RNA-Derived Fragment tRF-19-3L7L73JD and Its Effects on the Growth of Gastric Cancer Cells. Journal of Cancer, 12, 3230-3238.
https://doi.org/10.7150/jca.51567
[41] Lin, C., Zheng, L., Huang, R., et al. (2020) tRFs as Potential Exosome tRNA-Derived Fragment Biomarkers for Gastric Carcinoma. Clinical Laboratory, 66.
https://doi.org/10.7754/Clin.Lab.2019.190811
[42] Huang, Y., Zhang, H., Gu, X., et al. (2021) Elucidating the Role of Serum tRF-31-U5YKFN8DYDZDD as a Novel Diagnostic Biomarker in Gastric Cancer (GC). Frontiers in Oncology, 11, Article 723753.
https://doi.org/10.3389/fonc.2021.723753
[43] Zheng, B., Song, X., Wang, L., et al. (2022) Plasma Exosomal tRNA-Derived Fragments as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Frontiers in Oncology, 12, Article 1037523.
https://doi.org/10.3389/fonc.2022.1037523
[44] You, J., Yang, G., Wu, Y., et al. (2022) Plasma tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 as Novel Diagnostic Biomarkers for Lung Adenocarcinoma. Frontiers in Oncology, 12, Article 991451.
https://doi.org/10.3389/fonc.2022.991451
[45] Zhang, J., Li, L., Luo, L., et al. (2021) Screening and Potential Role of tRFs and tiRNAs Derived from tRNAs in the Carcinogenesis and Development of Lung Adenocarcinoma. Oncology Letters, 22, Article No. 506.
https://doi.org/10.3892/ol.2021.12767
[46] Shao, Y., Sun, Q., Liu, X., et al. (2017) tRF-Leu-CAG Promotes Cell Proliferation and Cell Cycle in Non-Small Cell Lung Cancer. Chemical Biology & Drug Design, 90, 730-738.
https://doi.org/10.1111/cbdd.12994
[47] Dar, A.A., Goff, L.W., Majid, S., et al. (2010) Aurora Kinase Inhibi-tors—Rising Stars in Cancer Therapeutics? Molecular Cancer Therapeutics, 9, 268-278.
https://doi.org/10.1158/1535-7163.MCT-09-0765
[48] Yang, W., Gao, K., Qian, Y., et al. (2022) A Novel tRNA-Derived Fragment AS-tDR-007333 Promotes the Malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 Axes. Journal of Hematology & Oncology, 15, Article No. 53.
https://doi.org/10.1186/s13045-022-01270-y
[49] Yun, C.W., Kim, H.J., Lim, J.H., et al. (2019) Heat Shock Pro-teins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells, 9, Article 60.
https://doi.org/10.3390/cells9010060
[50] Wu, J., Liu, T., Rios, Z., et al. (2017) Heat Shock Proteins and Cancer. Trends in Pharmacological Sciences, 38, 226-256.
https://doi.org/10.1016/j.tips.2016.11.009
[51] Zhu, Z., Song, J., Guo, Y., et al. (2020) LAMB3 Promotes Tumour Progression through the AKT-FOXO3/4 Axis and Is Transcriptionally Regulated by the BRD2/Acetylated ELK4 Complex in Colorectal Cancer. Oncogene, 39, 4666-4680.
https://doi.org/10.1038/s41388-020-1321-5
[52] Olvedy, M., Scaravilli, M., Hoogstrate, Y., et al. (2016) A Com-prehensive Repertoire of tRNA-Derived Fragments in Prostate Cancer. Oncotarget, 7, 24766-24777.
https://doi.org/10.18632/oncotarget.8293
[53] Chiang, K.C., Tsui, K.H., Chung, L.C., et al. (2014) Cisplatin Modulates B-Cell Translocation Gene 2 to Attenuate Cell Proliferation of Prostate Carcinoma Cells in Both p53-Dependent and p53-Independent Pathways. Scientific Reports, 4, Article No. 5511.
https://doi.org/10.1038/srep05511
[54] Ramachandran, K., Gopisetty, G., Gordian, E., et al. (2009) Methyla-tion-Mediated Repression of GADD45alpha in Prostate Cancer and Its Role as a Potential Therapeutic Target. Cancer Research, 69, 1527-1535.
https://doi.org/10.1158/0008-5472.CAN-08-3609
[55] Tront, J.S., Huang, Y., Fornace Jr., A.A., et al. (2010) Gadd45a Functions as a Promoter or Suppressor of Breast Cancer Dependent on the Oncogenic Stress. Cancer Research, 70, 9671-9681.
https://doi.org/10.1158/0008-5472.CAN-10-2177
[56] Su, L.Y., Xin, H.Y., Liu, Y.L., et al. (2014) Anticancer Bioactive Peptide (ACBP) Inhibits Gastric Cancer Cells by Upregulating Growth Arrest and DNA Damage-Inducible Gene 45A (GADD45A). Tumor Biology, 35, 10051-10056.
https://doi.org/10.1007/s13277-014-2272-7
[57] Yang, C., Lee, M., Song, G., et al. (2021) tRNA(Lys)-Derived Fragment Alleviates Cisplatin-Induced Apoptosis in Prostate Cancer Cells. Pharmaceutics, 13, Article 55.
https://doi.org/10.3390/pharmaceutics13010055
[58] Wang, L., Liu, Y., Yan, W., et al. (2022) Clinical Significance of High Expression of tRF-Glu-TTC-2 in Prostate Carcinoma and Its Effect on Growth. American Journal of Men’s Health, 16.
https://doi.org/10.1177/15579883221135970
[59] Wang, Y., Xia, W., Shen, F., et al. (2022) tRNA-Derived Fragment tRF-Glu49 Inhibits Cell Proliferation, Migration and Invasion in Cervical Cancer by Targeting FGL1. On-cology Letters, 24, Article No. 334.
https://doi.org/10.3892/ol.2022.13455
[60] Li, J., Jin, L., Gao, Y., et al. (2021) Low Expression of tRF-Pro-CGG Predicts Poor Prognosis in Pancreatic Ductal Adenocarcinoma. Journal of Clinical Laboratory Analysis, 35, e23742.
https://doi.org/10.1002/jcla.23742
[61] Lu, X., Wu, W., Sun, D., et al. (2022) tRNA-Derived Fragment tRF-18 Facilitates Cell Proliferation and Inhibits Cell Apoptosis via Modulating KIF1B in Papillary Thyroid Carcinoma. Critical Reviews in Eukaryotic Gene Expression, 32, 21-31.
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022040682